基本信息
王冉冉  女  硕导  中国科学院上海硅酸盐研究所
电子邮件: wangranran@mail.sic.ac.cn
通信地址: 上海市嘉定区和硕585号
邮政编码:

研究领域

柔性电子、可穿戴传感器、低维导电材料、电子皮肤、可拉伸导体、柔性电极

教育背景

2010-10--2012-06   加州大学洛杉矶分校   联合培养
2007-09--2013-01   中国科学院上海硅酸盐研究所   研究生/博士
学历
研究生学历

学位
工学博士

工作经历

   
工作简历
2015-10~现在, 中国科学院上海硅酸盐研究所, 副研究员
2013-03~2015-09,中国科学院上海硅酸盐研究所, 助理研究员
社会兼职
2019-01-01-今,硅酸盐学会青年委员,
2014-01-01-今,中科院青年创新促进会会员,

专利与奖励

   
奖励信息
(1) 中科院青年创新促进会优秀会员, 院级, 2018
(2) 中国科协青年人才托举工程, 专项, 2018
(3) 上海市青年科技启明星, 省级, 2017
(4) 上海市优秀毕业论文, 省级, 2015
(5) 中科院青年创新促进会会员, 院级, 2014
(6) 中科院院长优秀奖, 院级, 2013
专利成果
( 1 ) 一种超长银纳米线及其制备方法, 发明, 2017, 第 1 作者, 专利号: CN201510100785.4
( 2 ) 一种复合黑色二氧化钛薄膜及其制备方法, 发明, 2016, 第 3 作者, 专利号: ZL201510093753.6
( 3 ) 铜纳米线/聚丙烯酸酯复合材料及其制备方法, 发明, 2016, 第 3 作者, 专利号: ZL201410106692.8
( 4 ) 石墨烯-铜纳米线复合薄膜及其制备方法, 发明, 2017, 第 3 作者, 专利号: ZL201410172931.X
( 5 ) 一种铜银双金属纳米线及其制备方法, 发明, 2017, 第 3 作者, 专利号: ZL201510100808.1
( 6 ) 一种超长铜镍合金纳米线及其制备方法, 发明, 2017, 第 3 作者, 专利号: ZL201410153158.2
( 7 ) 一种高弹性导电纤维及其制备方法, 发明, 2017, 第 3 作者, 专利号: ZL201510019494.2
( 8 ) 一种可穿戴电加热系统, 发明, 2017, 第 3 作者, 专利号: ZL201620507932.X
( 9 ) 一种超长铜纳米线和铜纳米线导电薄膜的制备方法, 发明, 2015, 第 3 作者, 专利号: ZL201210323822.4
( 10 ) 一种分散碳纳米管用的分散剂及制备碳纳米管薄膜的方法, 发明, 2012, 第 2 作者, 专利号: ZL200910247866.1
( 11 ) 一种去除金属纳米线表面氧化层和有机物的方法, 发明, 2018, 第 1 作者, 专利号: ZL201410723389.2
( 12 ) 一种铜纳米线导电体的处理方法, 发明, 2019, 第 3 作者, 专利号: ZL201610417155.4
( 13 ) 一种柔性可穿戴柔性纤维传感器及其制备方法和应用, 发明, 2019, 第 3 作者, 专利号: 201510518867.0

出版信息

   
发表论文
[1] Guojian Zhu, Yi Zhou, Zeyu Si, Yin Cheng, Fei Wu, Huan Wang, Yaozong Pan, Jing Xie, Chaobo Li, Aiying Chen, Ranran Wang, Jing Sun. A multi-hole resonator enhanced acoustic energy harvester for ultra-high electrical output and machine-learning-assisted intelligent voice sensing. NANO ENERGY[J]. 2023, http://dx.doi.org/10.1016/j.nanoen.2023.108237.
[2] Yuxiang Li, Liangjing Shi, Yin Cheng, Ranran Wang, Jing Sun. Development of conductive materials and conductive networks for flexible force sensors. CHEMICAL ENGINEERING JOURNAL[J]. 2023, 455: http://dx.doi.org/10.1016/j.cej.2022.140763.
[3] Cheng Yin, Zhou Yi, Wang, Ranran. An Elastic and Damage-Tolerant Dry Epidermal Patch with Robust Skin Adhesion for Bioelectronic Interfacing. Acs Nano[J]. 2022, [4] Li, Yuxiang, Wang, Ranran, Wang, GuanE, Feng, Shiyang, Shi, Wenge, Cheng, Yin, Shi, Liangjing, Fu, Kaiyuan, Sun, Jing. Mutually Noninterfering Flexible Pressure-Temperature Dual-Modal Sensors Based on Conductive Metal-Organic Framework for Electronic Skin. ACS NANO[J]. 2022, 16(1): 473-484, http://dx.doi.org/10.1021/acsnano.1c07388.
[5] Tang, Luping, Liu, Yiwei, Wang, Xiao, Wang, Ranran, Sun, Jing, He, Longbing, Yin, Kuibo, Xu, Tao, Sun, Litao. Sculpting nanocavities via thermal stimulated Kirkendall effect oxidation. JOURNAL OF ALLOYS AND COMPOUNDS[J]. 2022, 914: http://dx.doi.org/10.1016/j.jallcom.2022.165250.
[6] Liu, Yan, Cheng, Yin, Shi, Liangjing, Wang, Ranran, Sun, Jing. Breathable, Self-Adhesive Dry Electrodes for Stable Electrophysiological Signal Monitoring During Exercise. ACSAPPLIEDMATERIALSINTERFACES[J]. 2022, 14(10): 12812-12823, http://dx.doi.org/10.1021/acsami.1c23322.
[7] Rodriguez, Raul D, Fatkullin, Maxim, Garcia, Aura, Petrov, Ilia, Averkiev, Andrey, Lipovka, Anna, Lu, Liliang, Shchadenko, Sergey, Wang, Ranran, Sun, Jing, Li, Qiu, Jia, Xin, Cheng, Chong, Kanoun, Olfa, Sheremet, Evgeniya. Laser-Engineered Multifunctional Graphene-Glass Electronics. ADVANCED MATERIALS[J]. 2022, 34(43): http://dx.doi.org/10.1002/adma.202206877.
[8] Yan, Qiuyang, Cheng, Yin, Wang, Ranran, Sun, Jing. Recent advances in 3D porous MXenes: structures, properties and applications. JOURNAL OF PHYSICS D-APPLIED PHYSICSnull. 2022, 55(9): [9] Lan, Binxu, Wu, Fei, Cheng, Yin, Zhou, Yi, Hossain, Gaffar, Grabher, Gunter, Shi, Liangjing, Wang, Ranran, Sun, Jing. Scalable, stretchable and washable triboelectric fibers for self-powering human-machine interaction and cardiopulmonary resuscitation training. NANO ENERGY[J]. 2022, 102: http://dx.doi.org/10.1016/j.nanoen.2022.107737.
[10] Wu, Fei, Lan, Binxu, Cheng, Yin, Zhou, Yi, Hossain, Gaffar, Grabher, Guenter, Shi, Liangjing, Wang, Ranran, Sun, Jing. A stretchable and helically structured fiber nanogenerator for multifunctional electronic textiles. NANO ENERGY[J]. 2022, 101: http://dx.doi.org/10.1016/j.nanoen.2022.107588.
[11] Feng, ShiYang, Lei, Jie, Li, YuXiang, Shi, WenGe, Wang, RanRan, Yap, Adrian Ujin, Wang, YiXiang, Fu, KaiYuan. Increased joint loading induces subchondral bone loss of the temporomandibular joint via the RANTES-CCRs-Akt2 axis. JCI INSIGHT[J]. 2022, 7(21): http://dx.doi.org/10.1172/jci.insight.158874.
[12] Hu, Ying, Yang, Lulu, Yan, Qiuyang, Ji, Qixiao, Chang, Longfei, Zhang, Chenchu, Yan, Jian, Wang, Ranran, Zhang, Lei, Wu, Guan, Sun, Jing, Zi, Bin, Chen, Wei, Wu, Yucheng. Self-Locomotive Soft Actuator Based on Asymmetric Microstructural Ti3C2Tx MXene Film Driven by Natural Sunlight Fluctuation. ACS NANO[J]. 2021, 15(3): 5294-5306, http://dx.doi.org/10.1021/acsnano.0c10797.
[13] Tang, Hao, Wang, Ranran, Shi, Liangjing, Sheremet, Evgeniya, Rodriguez, Raul D, Sun, Jing. Post-processing strategies for improving the electrical and mechanical properties of MXenes. CHEMICAL ENGINEERING JOURNAL[J]. 2021, 425: http://dx.doi.org/10.1016/j.cej.2021.131472.
[14] Tang, Hao, Nie, Pu, Wang, Ranran, Sun, Jing. Piezoresistive electronic skin based on diverse bionic microstructure. SENSORS AND ACTUATORS A-PHYSICAL[J]. 2021, 318: http://dx.doi.org/10.1016/j.sna.2020.112532.
[15] Zhang, Zichao, Yan, Qiuyang, Liu, Zhirong, Zhao, Xinyang, Wang, Zhuo, Sun, Jing, Wang, Zhong Lin, Wang, Ranran, Li, Linlin. Flexible MXene composed triboelectric nanogenerator via facile vacuum-assistant filtration method for self-powered biomechanical sensing. NANO ENERGY[J]. 2021, 88: http://dx.doi.org/10.1016/j.nanoen.2021.106257.
[16] Chen, Qianying, Tang, Hao, Liu, Jialin, Wang, Ranran, Sun, Jing, Yao, Jinrong, Shao, Zhengzhong, Chen, Xin. Silk-based pressure/temperature sensing bimodal ionotronic skin with stimulus discriminability and low temperature workability. CHEMICAL ENGINEERING JOURNAL[J]. 2021, 422: http://dx.doi.org/10.1016/j.cej.2021.130091.
[17] Shi, Bingchao, Wang, Tao, Shi, Liangjing, Li, Jing, Wang, Ranran, Sun, Jing. Highly stretchable and strain sensitive fibers based on braid -like structure and sliver nanowires. APPLIED MATERIALS TODAY[J]. 2020, 19: http://dx.doi.org/10.1016/j.apmt.2020.100610.
[18] Xu, Yifeng, Hu, Bingkun, Liu, Jining, Tao, Kai, Wang, Ranran, Ren, Yang, Zhao, Xiaofeng, Xu, Jijin, Song, Xuefeng. Visible light-activated degradation of microcystin-LR by ultrathin g-C3N4 nanosheets-based heterojunction photocatalyst. JOURNAL OF THE AMERICAN CERAMIC SOCIETY[J]. 2020, 103(2): 1281-1292, http://dx.doi.org/10.1111/jace.16773.
[19] Shi, Liangjing, Wang, Ranran, Liu, Yangqiao, Sun, Jing. A facile strategy for the preparation of hybrid copper nanowire-TiO2 film. THIN SOLID FILMS[J]. 2020, 693: http://dx.doi.org/10.1016/j.tsf.2019.137677.
[20] Li, Yuxiang, He, Tengyu, Shi, Liangjing, Wang, Ranran, Sun, Jing. Strain Sensor with Both a Wide Sensing Range and High Sensitivity Based on Braided Graphene Belts. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(15): 17691-17698, https://www.webofscience.com/wos/woscc/full-record/WOS:000526330900055.
[21] Yang YiNa, Wang RanRan, Sun Jing. MXenes in Flexible Force Sensitive Sensors: a Review. JOURNAL OF INORGANIC MATERIALS[J]. 2020, 35(1): 8-18, https://www.webofscience.com/wos/woscc/full-record/WOS:000505199800003.
[22] Wang, Xiao, Yang, Yina, Lu, Guanhong, Shi, Gansheng, Wang, Yan, Wang, Ranran, Xie, Xiaofeng, Sun, Jing. In-situ preparation of Ti3C2/Ti3+-TiO2 composites with mosaic structures for the adsorption and Photo-degradation of flowing acetaldehyde under visible light. APPLIED SURFACE SCIENCE[J]. 2020, 531: http://dx.doi.org/10.1016/j.apsusc.2020.147101.
[23] 杨以娜, 王冉冉, 孙静. MXenes在柔性力敏传感器中的应用研究进展. 无机材料学报. 2020, 8-18, https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2020&filename=WGCL202001003&v=MDU4MjZHNEhOSE1ybzlGWjRSOGVYMUx1eFlTN0RoMVQzcVRyV00xRnJDVVI3cWVaK2R2RmlqZ1Y3L0lNaXJJWXI=.
[24] Tang, Hao, Yang, Yina, Wang, Ranran, Sun, Jing. Improving the properties of 2D titanium carbide films by thermal treatment. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2020, 8(18): 6214-6220, https://www.webofscience.com/wos/woscc/full-record/WOS:000535913600023.
[25] Yang, Yina, Cao, Zherui, Shi, Liangjing, Wang, Ranran, Sun, Jing. Enhancing the conductivity, stability and flexibility of Ti3C2Tx MXenes by regulating etching conditions. APPLIED SURFACE SCIENCE[J]. 2020, 533: http://dx.doi.org/10.1016/j.apsusc.2020.147475.
[26] Yang, Yina, Shi, Liangjing, Cao, Zherui, Wang, Ranran, Sun, Jing. Strain Sensors with a High Sensitivity and a Wide Sensing Range Based on a Ti3C2Tx (MXene) Nanoparticle-Nanosheet Hybrid Network. ADVANCED FUNCTIONAL MATERIALS[J]. 2019, 29(14): https://www.webofscience.com/wos/woscc/full-record/WOS:000467109100008.
[27] Chen, Chen, Wang, Zeyu, Li, Wei, Chen, Hongyu, Mei, Zhenning, Yuan, Wei, Tao, Linkai, Zhao, Yuting, Huang, Gaoshan, Mei, Yongfeng, Cao, Zherui, Wang, Ranran, Chen, Wei. Novel Flexible Material-Based Unobtrusive and Wearable Body Sensor Networks for Vital Sign Monitoring. IEEE SENSORS JOURNAL[J]. 2019, 19(19): 8502-8513, [28] Yang, Yina, Cao, Zherui, He, Peng, Shi, Liangjing, Ding, Guqiao, Wang, Ranran, Sun, Jing. Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. NANO ENERGY[J]. 2019, 66: http://dx.doi.org/10.1016/j.nanoen.2019.104134.
[29] Wang Xiao, Wang RanRan, Shi LiangJing, Sun Jing. Synthesis, Optimization of Cu Nanowires and Application of Its Transparent Electrodes. JOURNAL OF INORGANIC MATERIALS[J]. 2019, 34(1): 49-59, [30] Huang, Tao, He, Peng, Wang, Ranran, Yang, Siwei, Sun, Jing, Xie, Xiaoming, Ding, Guqiao. Porous Fibers Composed of Polymer Nanoball Decorated Graphene for Wearable and Highly Sensitive Strain Sensors. ADVANCED FUNCTIONAL MATERIALS[J]. 2019, 29(45): http://dx.doi.org/10.1002/adfm.201903732.
[31] Cao, Zherui, Yang, Yina, Zheng, Yinghui, Wu, Wei, Xu, Fangfang, Wang, Ranran, Sun, Jing. Highly flexible and sensitive temperature sensors based on Ti3C2Tx (MXene) for electronic skin. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2019, 7(44): 25314-25323, [32] 王晓, 王冉冉, 施良晶, 孙静. 铜纳米线的合成、优化及其透明电极的应用. 无机材料学报[J]. 2019, 34(1): 49-59, http://lib.cqvip.com/Qikan/Article/Detail?id=7001185379.
[33] Zhai, Haitao, Li, Yang, Chen, Liwei, Wang, Xiao, Shi, Liangjing, Wang, Ranran, Sun, Jing. Semi-transparent polymer solar cells with all-copper nanowire electrodes. NANO RESEARCH[J]. 2018, 11(4): 1956-1966, http://lib.cqvip.com/Qikan/Article/Detail?id=674998915.
[34] Liu, Jialin, He, Tengyu, Fang, Guangqiang, Wang, Ranran, Kamoun, Elbadawy A, Yao, Jinrong, Shao, Zhengzhong, Chen, Xin. Environmentally responsive composite films fabricated using silk nanofibrils and silver nanowires. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2018, 6(47): 12940-12947, https://www.webofscience.com/wos/woscc/full-record/WOS:000452777500021.
[35] He, Tengyu, Lin, Chucheng, Shi, Liangjing, Wang, Ranran, Sun, Jing. Through-Layer Buckle Wavelength-Gradient Design for the Coupling of High Sensitivity and Stretchability in a Single Strain Sensor. ACS APPLIED MATERIALS & INTERFACES[J]. 2018, 10(11): 9653-9662, http://ir.sic.ac.cn/handle/331005/25082.
[36] Zhai, Haitao, Li, Yang, Chen, Liwei, Wang, Xiao, Shi, Liangjing, Wang, Ranran, Sun, Jing. Copper nanowire-TiO2-polyacrylate composite electrodes with high conductivity and smoothness for flexible polymer solar cells. NANO RESEARCH[J]. 2018, 11(4): 1895-1904, http://lib.cqvip.com/Qikan/Article/Detail?id=674998909.
[37] Wang, Xiao, Wang, Ranran, Zhai, Haitao, Shi, Liangjing, Sun, Jing. 'Leaf vein' inspired structural design of Cu nanowire electrodes for the optimization of organic solar cells. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2018, 6(21): 5738-5745, http://ir.sic.ac.cn/handle/331005/24872.
[38] Cheng, Yin, Wang, Ranran, Chan, Kwok Hoe, Lu, Xin, Sun, Jing, Ho, Ghim Wei. A Biomimetic Conductive Tendril for Ultrastretchable and Integratable Electronics, Muscles, and Sensors. ACS NANO[J]. 2018, 12(4): 3898-3907, http://ir.sic.ac.cn/handle/331005/25031.
[39] 王冉冉. Semitransparent Polymer Solar Cells with All-Copper Nanowire Based Electrodes. Nano Research. 2018, [40] Cao, Zherui, Wang, Ranran, He, Tengyu, Xu, Fangfang, Sun, Jing. Interface-Controlled Conductive Fibers for Wearable Strain Sensors and Stretchable Conducting Wires. ACS APPLIED MATERIALS & INTERFACES[J]. 2018, 10(16): 14087-14096, http://ir.sic.ac.cn/handle/331005/24973.
[41] Wang, Xiao, Wang, Ranran, Shi, Liangjing, Sun, Jing. Kinetically controlled synthesis of Cu nanowires with tunable diameters and their applications in transparent electrodes. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2018, 6(5): 1048-1056, http://ir.sic.ac.cn/handle/331005/24496.
[42] Zhai Haitao, Li Yang, Chen Liwei, Wang Xiao, Shi Liangjing, Wang Ranran, Sun Jing. Copper nanowire-TiO2-polyacrylate composite electrodes with high conductivity and smoothness for flexible polymer solar cells. 纳米研究:英文版[J]. 2018, 11(4): 1895-1904, http://lib.cqvip.com/Qikan/Article/Detail?id=674998909.
[43] Zhai Haitao, Li Yang, Chen Liwei, Wang Xiao, Shi Liangjing, Wang Ranran, Sun Jing. Semi-transparent polymer solar cells with all-copper nanowire electrodes. 纳米研究:英文版[J]. 2018, 11(4): 1956-1966, http://lib.cqvip.com/Qikan/Article/Detail?id=674998915.
[44] Xu, Xiaojuan, Wang, Ranran, Nie, Pu, Cheng, Yin, Lu, Xiaoyu, Shi, Liangjing, Sun, Jing. Copper Nanowire-Based Aerogel with Tunable Pore Structure and Its Application as Flexible Pressure Sensor. ACS APPLIED MATERIALS & INTERFACES[J]. 2017, 9(16): 14273-14280, https://www.webofscience.com/wos/woscc/full-record/WOS:000400321800052.
[45] Nie, Pu, Wang, Ranran, Xu, Xiaojuan, Cheng, Yin, Wang, Xiao, Shi, Liangjing, Sun, Jing. High-Performance Piezoresistive Electronic Skin with Bionic Hierarchical Microstructure and Microcracks. ACSAPPLIEDMATERIALSINTERFACES[J]. 2017, 9(17): 14911-14919, https://www.webofscience.com/wos/woscc/full-record/WOS:000400802700038.
[46] Nie, Pu, Wang, Ranran, Xu, Xiaojuan, Cheng, Yin, Wang, Xiao, Shi, Liangjing, Sun, Jing. High-Performance Piezoresistive Electronic Skin with Bionic Hierarchical Microstructure and Microcracks. ACS APPLIED MATERIALS AND INTERFACES[J]. 2017, 9(17): 14911-14919, http://ir.sic.ac.cn/handle/331005/25993.
[47] Xu, Xiaojuan, Wang, Ranran, Nie, Pu, Cheng, Yin, Lu, Xiaoyu, Shi, Liangjing, Sun, Jing. Copper Nanowire-Based Aerogel with Tunable Pore Structure and Its Application as Flexible Pressure Sensor. ACS APPLIED MATERIALS AND INTERFACES[J]. 2017, 9(16): 14273-14280, http://ir.sic.ac.cn/handle/331005/25998.
[48] Cheng, Yin, Wang, Ranran, Zhai, Haitao, Sun, Jing. Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain. NANOSCALE[J]. 2017, 9(11): 3834-3842, http://www.irgrid.ac.cn/handle/1471x/1790983.
[49] Cheng, Yin, Lu, Xin, Chan, Kwok Hoe, Wang, Ranran, Cao, Zherui, Sun, Jing, Ho, Ghim Wei. A stretchable fiber nanogenerator for versatile mechanical energy harvesting and self-powered full-range personal healthcare monitoring. NANO ENERGY[J]. 2017, 41: 511-518, http://dx.doi.org/10.1016/j.nanoen.2017.10.010.
[50] Lu, Xiaoyu, Bai, Yang, Wang, Ranran, Sun, Jing. A high-performance flexible and weavable asymmetric fiber-shaped solid-state supercapacitor enhanced by surface modifications of carbon fibers with carbon nanotubes. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2016, 4(46): 18164-18173, http://www.irgrid.ac.cn/handle/1471x/1161579.
[51] Wang, Ranran, Zhai, Haitao, Wang, Tao, Wang, Xiao, Cheng, Yin, Shi, Liangjing, Sun, Jing. Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors. NANO RESEARCH[J]. 2016, 9(7): 2138-2148, http://www.irgrid.ac.cn/handle/1471x/1176920.
[52] Wang, Tao, Wang, Ranran, Cheng, Yin, Sun, Jing. Quasi In Situ Polymerization To Fabricate Copper Nanowire-Based Stretchable Conductor and Its Applications. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 8(14): 9297-9304, http://www.irgrid.ac.cn/handle/1471x/1176970.
[53] Cheng, Yin, Zhang, Hange, Wang, Ranran, Wang, Xiao, Zhai, Haitao, Wang, Tao, Jin, Qinghui, Sun, Jing. Highly Stretchable and Conductive Copper Nanowire Based Fibers with Hierarchical Structure for Wearable Heaters. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 8(48): 32925-32933, http://www.irgrid.ac.cn/handle/1471x/1161574.
[54] Wang, Xiao, Wang, Ranran, Zhai, Haitao, Shen, Xi, Wang, Tao, Shi, Liangjing, Yu, Richeng, Sun, Jing. Room-Temperature Surface Modification of Cu Nanowires and Their Applications in Transparent Electrodes, SERS-Based Sensors, and Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 8(42): 28831-28837, https://www.webofscience.com/wos/woscc/full-record/WOS:000386540300065.
[55] Zhai, Haitao, Wang, Ranran, Wang, Xiao, Cheng, Yin, Shi, Liangjing, Sun, Jing. Transparent heaters based on highly stable Cu nanowire films. NANO RESEARCH[J]. 2016, 9(12): 3924-3936, http://www.irgrid.ac.cn/handle/1471x/1161582.
[56] Bai, Yang, Wang, Ranran, Lu, Xiaoyu, Sun, Jing, Gao, Lian. Template method to controllable synthesis 3D porous NiCo2O4 with enhanced capacitance and stability for supercapacitors. JOURNAL OF COLLOID AND INTERFACE SCIENCE[J]. 2016, 468: 1-9, http://dx.doi.org/10.1016/j.jcis.2016.01.020.
[57] Zhai, Haitao, Wang, Ranran, Wang, Weiqi, Wang, Xiao, Cheng, Yin, Shi, Liangjing, Liu, Yangqiao, Sun, Jing. Novel fabrication of copper nanowire/cuprous oxidebased semiconductor-liquid junction solar cells. NANO RESEARCH[J]. 2015, 8(10): 3205-3215, https://www.webofscience.com/wos/woscc/full-record/WOS:000362588100009.
[58] Bai, Yang, Wang, Weiqi, Wang, Ranran, Sun, Jing, Gao, Lian. Controllable synthesis of 3D binary nickel-cobalt hydroxide/graphene/nickel foam as a binder-free electrode for high-performance supercapacitors. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2015, 3(23): 12530-12538, https://www.webofscience.com/wos/woscc/full-record/WOS:000355736700050.
[59] Cheng, Yin, Wang, Ranran, Sun, Jing, Gao, Lian. A Stretchable and Highly Sensitive Graphene-Based Fiber for Sensing Tensile Strain, Bending, and Torsion. ADVANCED MATERIALS[J]. 2015, 27(45): 7365-+, http://www.irgrid.ac.cn/handle/1471x/1110730.
[60] Cheng, Yin, Wang, Ranran, Sun, Jing, Gao, Lian. Highly Conductive and Ultrastretchable Electric Circuits from Covered Yarns and Silver Nanowires. ACS NANO[J]. 2015, 9(4): 3887-3895, [61] Wang, Xiao, Wang, Ranran, Shi, Liangjing, Sun, Jing. Synthesis of Metal/Bimetal Nanowires and Their Applications as Flexible Transparent Electrodes. SMALL[J]. 2015, 11(36): 4737-4744, https://www.webofscience.com/wos/woscc/full-record/WOS:000362819300015.
[62] Shi, Liangjing, Wang, Ranran, Zhai, Haitao, Liu, Yangqiao, Gao, Lian, Sun, Jing. A long-term oxidation barrier for copper nanowires: graphene says yes. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2015, 17(6): 4231-4236, https://www.webofscience.com/wos/woscc/full-record/WOS:000349005900032.
[63] Cheng, Yin, Wang, Shouling, Wang, Ranran, Sun, Jing, Gao, Lian. Copper nanowire based transparent conductive films with high stability and superior stretchability. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2014, 2(27): 5309-5316, https://www.webofscience.com/wos/woscc/full-record/WOS:000338601800008.
[64] Wang, Shouling, Cheng, Yin, Wang, Ranran, Sun, Jing, Gao, Lim. Highly Thermal Conductive Copper Nanowire Composites with Ultralow Loading: Toward Applications as Thermal Interface Materials. ACS APPLIED MATERIALS & INTERFACES[J]. 2014, 6(9): 6481-6486, https://www.webofscience.com/wos/woscc/full-record/WOS:000336075300059.
[65] Wang, Ranran, Chen, Zheng, Yu, Hang, Jia, Xilai, Gao, Lian, Sun, Jing, Hicks, Robert F, Lu, Yunfeng. A novel method to enhance the conductance of transitional metal oxide electrodes. NANOSCALE[J]. 2014, 6(7): 3791-3795, https://www.webofscience.com/wos/woscc/full-record/WOS:000333042500047.
[66] Zhang, Dieqing, Wang, Ranran, Wen, Meicheng, Weng, Ding, Cui, Xia, Sun, Jing, Li, Hexing, Lu, Yunfeng. Synthesis of Ultralong Copper Nanowires for High-Performance Transparent Electrodes. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2012, 134(35): 14283-14286, http://www.irgrid.ac.cn/handle/1471x/659123.
[67] Wang, Ranran, Sun, Jing, Gao, Lian, Xu, Chaohe, Zhang, Jing. Fibrous nanocomposites of carbon nanotubes and graphene-oxide with synergetic mechanical and actuative performance. CHEMICAL COMMUNICATIONS[J]. 2011, 47(30): 8650-8652, https://www.webofscience.com/wos/woscc/full-record/WOS:000292986800052.
[68] Wang, Ranran, Sun, Jing, Gao, Lian, Xu, Chaohe, Zhang, Jing, Liu, Yangqiao. Effective post treatment for preparing highly conductive carbon nanotube/reduced graphite oxide hybrid films. NANOSCALE[J]. 2011, 3(3): 904-906, https://www.webofscience.com/wos/woscc/full-record/WOS:000288218300012.
[69] 王冉冉, 孙静, 高濂, 徐朝和, 张婧. Fibrous nanocomposites of carbon nanotubes and graphene-oxide with synergetic mechanical. CHEM. COMMUN.[J]. 2011, 8650-8652, http://www.irgrid.ac.cn/handle/1471x/635868.
[70] Wang, Ranran, Sun, Jing, Gao, Lian, Zhang, Jing. Base and Acid Treatment of SWCNT-RNA Transparent Conductive Films. ACS NANO[J]. 2010, 4(8): 4890-4896, https://www.webofscience.com/wos/woscc/full-record/WOS:000281052700067.
[71] Wang, Ranran, Sun, Jing, Gao, Lian. Liquid-Crystal Phase Reinforced Carbon Nanotube Fibers. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2010, 114(11): 4923-4928, https://www.webofscience.com/wos/woscc/full-record/WOS:000275708600024.
[72] Wang, Ranran, Sun, Jing, Gao, Lian, Zhang, Jing. Dispersion of single-walled carbon nanotubes by DNA for preparing transparent conductive films. JOURNAL OF MATERIALS CHEMISTRY[J]. 2010, 20(33): 6903-6909, https://www.webofscience.com/wos/woscc/full-record/WOS:000280818000010.

科研活动

   
科研项目
( 1 ) 基于低维柔性导电材料的多功能纤维 及智能织物研究, 主持, 省级, 2017-01--2019-12
( 2 ) 面向航天用金属纳米线适形性加热器件的结构设计与精确调控, 主持, 市地级, 2017-07--2019-06
( 3 ) 金属纳米线基仿生微结构柔性触觉传感器的构筑和响应机理研究, 参与, 省级, 2016-07--2019-06
( 4 ) Ti3C2多维杂化导电网络及其应变感应机理研究, 主持, 国家级, 2019-01--2022-12
( 5 ) 大尺寸柔性电子皮肤近圆式拉制一体仪, 主持, 部委级, 2019-01--2020-12
( 6 ) 中科院青年创新促进会优秀会员, 主持, 部委级, 2019-01--2021-12
( 7 ) 中国科协青年人才托举工程, 主持, 研究所(学校), 2018-06--2021-05
( 8 ) 发电纤维与织物的研制及其在能量采集和传感中的应用, 主持, 部委级, 2020-01--2022-12
( 9 ) xxx, 主持, 国家级, 2018-07--2019-06
( 10 ) xxx传感技术, 主持, 国家级, 2019-06--2020-12
( 11 ) 等离子体增强高性能铜纳米 线/石墨烯透明导电薄膜研究, 主持, 国家级, 2014-01--2016-12
( 12 ) 铜纳米线/石墨烯柔性、透 明、导电薄膜的制备与性能 研究, 主持, 省级, 2013-10--2016-09
( 13 ) 金属纳米线的可控合成与应 用研究, 主持, 部委级, 2014-01--2017-12

合作情况


项目协作单位
中科院北京纳米能源所、微电子所、苏州医工所、合肥工业大学、复旦大学


指导学生

现指导学生

闫秋阳  硕士研究生  080501-材料物理与化学