基本信息
刘雪峰  男  硕导  中国科学院国家空间科学中心
电子邮件: liuxuefeng@nssc.ac.cn
通信地址: 北京市海淀区中关村南二条1号
邮政编码: 100190

研究领域

光电探测与成像;图像处理,计算成像;单光子成像

招生信息

   
招生专业
081203-计算机应用技术
招生方向
数字信号与图像处理
光电成像

教育背景

2008-09--2013-07   中国科学院国家空间科学中心   博士学位
2004-09--2008-06   北京理工大学   学士学位

工作经历

   
工作简历
2017-09~2018-08,美国亚利桑那大学, 访问学者
2015-12~现在, 中国科学院国家空间科学中心, 副研究员
2013-07~2015-12,中国科学院国家空间科学中心, 助理研究员
社会兼职
2019-05-01-今,中国空间科学学会微重力青年委员会, 委员

专利与奖励

   
专利成果
[1] 刘璠, 刘雪峰, 姚旭日, 翟光杰. 基于随机抖动的高动态范围压缩感知成像系统及方法. CN: CN113890997A, 2022-01-04.
[2] 赵清, 张伟, 姚旭日, 刘雪峰, 翟光杰. 单像素光子计数成像设备. CN: CN215003939U, 2021-12-03.
[3] 李虎, 刘雪峰, 姚旭日, 翟光杰, 岳钦崟, 窦申成, 刘璠. 一种并行压缩感知GPU加速实时成像系统与方法. CN: CN113365014A, 2021-09-07.
[4] 翁建宏, 翟光杰, 姚旭日, 刘雪峰. 一种抑制红外吸收的太赫兹超材料吸波器. CN: CN113224540A, 2021-08-06.
[5] 刘璠, 刘雪峰, 姚旭日, 翟光杰. 基于空间频域多尺度调制与重建的压缩成像系统及方法. CN: CN111640063A, 2020-09-08.
[6] 姚旭日, 刘帅, 刘雪峰, 翟光杰, 赵清. 一种氧饱和度分布检测仪及检测方法. CN: CN110604582A, 2019-12-24.
[7] 刘雪峰, 姚旭日, 王小庆, 翟光杰. 一种多尺度调制压缩感知成像系统及其成像方法. CN: CN110213467A, 2019-09-06.
[8] 刘雪峰, 姚旭日, 郑福, 翟光杰. 一种真热光关联成像系统. CN: CN110187498A, 2019-08-30.
[9] 俞文凯, 赵清, 葛墨林, 翟光杰, 姚旭日, 刘雪峰. 基于压缩感知的双波长温度场成像设备及系统. CN: CN205642634U, 2016-10-12.
[10] 俞文凯, 赵清, 葛墨林, 翟光杰, 姚旭日, 刘雪峰. 基于压缩感知的双波长三维温度场成像设备及系统. CN: CN205642635U, 2016-10-12.
[11] 俞文凯, 赵清, 葛墨林, 翟光杰, 刘雪峰, 姚旭日. 基于编码变换的双波长温度场成像设备及系统. CN: CN205642623U, 2016-10-12.
[12] 俞文凯, 赵清, 葛墨林, 翟光杰, 刘雪峰, 姚旭日. 基于光辐射的测温设备及系统. CN: CN205642633U, 2016-10-12.
[13] 俞文凯, 赵清, 葛墨林, 翟光杰, 姚旭日, 刘雪峰. 基于压缩感知的双波长温度场成像设备、系统及方法. CN: CN105737992A, 2016-07-06.
[14] 俞文凯, 赵清, 葛墨林, 翟光杰, 姚旭日, 刘雪峰. 基于压缩感知的双波长三维温度场成像设备、系统及方法. CN: CN105675146A, 2016-06-15.
[15] 俞文凯, 赵清, 葛墨林, 翟光杰, 刘雪峰, 姚旭日. 基于编码变换的双波长温度场成像设备、系统及方法. CN: CN105606228A, 2016-05-25.
[16] 俞文凯, 赵清, 葛墨林, 翟光杰, 刘雪峰, 姚旭日. 基于光辐射的测温设备、系统及方法. CN: CN105527024A, 2016-04-27.

出版信息

   
发表论文
[1] Jin, XiaoPeng, Xiong, AnDong, Wang, XiaoQing, Yao, XuRi, Liu, XueFeng, Zhao, Qing. Long-distance mid-wave infrared super-resolution compressive imaging. OPTICS AND LASER TECHNOLOGY[J]. 2023, 157: http://dx.doi.org/10.1016/j.optlastec.2022.108740.
[2] Fan Liu, Xue-Feng Liu, Xu-Ri Yao, Shen-Cheng Dou, Hu Li, 翟光杰. High-quality compressed sensing imaging with limited detector bits using sparse measurements and multiple dithers. Optics Express[J]. 2022, 30(13): 22608-22623, [3] Lan, RuoMing, Liu, XueFeng, Yao, XuRi, Bai, ChengJie, Zhao, YueFeng, Zhao, LiNa. High-resolution and wide-range compressed sensing spectrometer based on two-position rotating grating. OPTICS COMMUNICATIONS[J]. 2021, 479: http://dx.doi.org/10.1016/j.optcom.2020.126447.
[4] Liu, Fan, Liu, XueFeng, Lan, RuoMing, Yao, XuRi, Dou, ShenCheng, Wang, XiaoQing, Zhai, GuangJie. Compressive imaging based on multi-scale modulation and reconstruction in spatial frequency domain*. CHINESE PHYSICS B[J]. 2021, 30(1): 275-282, http://lib.cqvip.com/Qikan/Article/Detail?id=7104285655.
[5] Chen, Ying, Liu, Shuai, Yao, XuRi, Zhao, Qing, Liu, XueFeng, Liu, Bing, Zhai, GuangJie. Discrete cosine single-pixel microscopic compressive imaging via fast binary modulation. OPTICS COMMUNICATIONS[J]. 2020, 454: http://dx.doi.org/10.1016/j.optcom.2019.124512.
[6] Liu Xuefeng. Discrete cosine signle-pixel microscopic compressive imaging via fast binary modulation. Optics Communications. 2020, [7] Li, MingQian, Lan, RuoMing, Liu, XueFeng, Yao, XuRi, Zhai, GuangJie. Acoustical ghost imaging. APPLIED PHYSICS LETTERS[J]. 2020, 117(8): http://dx.doi.org/10.1063/5.0015810.
[8] Liu, Shuai, Yao, XuRi, Liu, XueFeng, Xu, DaZhi, Wang, XingDa, Liu, Bing, Wang, Chao, Zhai, GuangJie, Zhao, Qing. Pile-up effect in an infrared single-pixel compressive LiDAR system. OPTICS EXPRESS[J]. 2019, 27(16): 22138-22146, [9] 王兴达, 刘雪峰. Spark平台在单光子成像测量矩阵生成与评估中的应用. 计算机应用与软件[J]. 2019, 36(8): 55-59, http://lib.cqvip.com/Qikan/Article/Detail?id=7002621444.
[10] Chen, Ying, Yao, XuRi, Zhao, Qing, Liu, Shuai, Liu, XueFeng, Wang, Chao, Zhai, GuangJie. Single-pixel compressive imaging based on the transformation of discrete orthogonal Krawtchouk moments. OPTICS EXPRESS[J]. 2019, 27(21): 29838-29853, https://www.webofscience.com/wos/woscc/full-record/WOS:000489954500034.
[11] Lan, RuoMing, Liu, XueFeng, Zhao, LiNa, Zhao, YueFeng, Bai, ChengJie. Compressed sensing method for measuring absorption spectrum of liquid samples. OPTIK[J]. 2019, 189: 60-65, http://dx.doi.org/10.1016/j.ijleo.2019.05.075.
[12] Yao, XuRi, Lan, RuoMing, Liu, XueFeng, Zhu, Ge, Zheng, Fu, Yu, WenKai, Zhai, GuangJie. High throughput dual-wavelength temperature distribution imaging via compressive imaging. OPTICS COMMUNICATIONS[J]. 2018, 410: 287-291, http://dx.doi.org/10.1016/j.optcom.2017.10.028.
[13] Liu, XueFeng, Yao, XuRi, Wang, Chao, Guo, XiaoYong, Zhai, GuangJie. Quantum limit of photon-counting imaging based on compressed sensing. OPTICS EXPRESS[J]. 2017, 25(4): 3286-3296, http://ir.nssc.ac.cn/handle/122/5747.
[14] Xue, ChangBin, Yao, XuRi, Li, LongZhen, Liu, XueFeng, Yu, WenKai, Guo, XiaoYong, Zhai, GuangJie, Zhao, Qing. Sub-Rayleigh imaging via undersampling scanning based on sparsity constraints. CHINESE PHYSICS B[J]. 2017, 26(2): http://ir.nssc.ac.cn/handle/122/5746.
[15] Dong Qian, Zheng Fu, Yao Xuri, Yu Wenkai, Liu Xuefeng, Wang Chao, Zhao Qing, Zhai Guangjie, Sun Zhibin, Lan Ruoming. Computational Spectral Imaging Based on Compressive Sensing. 中国物理快报[J]. 2017, 34(10): 104203-, http://lib.cqvip.com/Qikan/Article/Detail?id=673442630.
[16] Xue, ChangBin, Yao, XuRi, Liu, XueFeng, Zhai, GuangJie, Zhao, Qing, Guo, XiaoYong. Improving the signal-to-noise ratio of complementary compressive imaging with a threshold. OPTICS COMMUNICATIONS[J]. 2017, 393: 118-122, http://dx.doi.org/10.1016/j.optcom.2017.02.046.
[17] Wang, Chao, Liu, XueFeng, Yu, WenKai, Yao, XuRi, Zheng, Fu, Dong, Qian, Lan, RuoMing, Sun, ZhiBin, Zhai, GuangJie, Zhao, Qing. Computational Spectral Imaging Based on Compressive Sensing. CHINESE PHYSICS LETTERS[J]. 2017, 34(10): 44-48, http://lib.cqvip.com/Qikan/Article/Detail?id=673442630.
[18] Wang PanPan, Yao XuRi, Liu XueFeng, Yu WenKai, Qiu Peng, Zhai GuangJie. Moving target compressive imaging based on improved row scanning measurement matrix. ACTA PHYSICA SINICA[J]. 2017, 66(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000397085000008.
[19] Wang PanPan, Yao XuRi, Liu XueFeng, Yu WenKai, Qiu Peng, Zhai GuangJie. Moving target compressive imaging based on improved row scanning measurement matrix. ACTA PHYSICA SINICA[J]. 2017, 66(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000397085000008.
[20] Liu XueFeng, Yao XuRi, Lan RuoMing, Wang Chao, Zhai GuangJie. Edge detection based on gradient ghost imaging. 2016, http://www.chinaxiv.org/abs/201605.01626.
[21] Liu, XueFeng, Yu, WenKai, Yao, XuRi, Dai, Bin, Li, LongZhen, Wang, Chao, Zhai, GuangJie. Measurement dimensions compressed spectral imaging with a single point detector. OPTICS COMMUNICATIONS[J]. 2016, 365: 173-179, http://dx.doi.org/10.1016/j.optcom.2015.12.020.
[22] Lan, RuoMing, Liu, XueFeng, Yao, XuRi, Yu, Wen Kai, Zhai, GuangJie. Single-pixel complementary compressive sampling spectrometer. OPTICS COMMUNICATIONS[J]. 2016, 366: 349-353, http://dx.doi.org/10.1016/j.optcom.2016.01.016.
[23] Yu, WenKai, Yao, XuRi, Liu, XueFeng, Lan, RuoMing, Wu, LingAn, Zhai, GuangJie, Zhao, Qing. Compressive microscopic imaging with "positive-negative" light modulation. OPTICS COMMUNICATIONS[J]. 2016, 371: 105-111, http://dx.doi.org/10.1016/j.optcom.2016.03.067.
[24] 蓝若明, 刘雪峰, 姚旭日, 俞文凯, 翟光杰. 弱光条件下的高分辨光谱测量. 光电子·激光[J]. 2015, 26(11): 2175-2179, http://ir.nssc.ac.cn/handle/122/5297.
[25] Wang, Chao, Liu, XueFeng, Yu, WenKai, Yao, XuRi, Li, LongZhen, Zhao, Qing, Zhai, GuangJie. Compressed spectral imaging with a spectrometer. OPTICS COMMUNICATIONS[J]. 2015, 352: 45-48, http://dx.doi.org/10.1016/j.optcom.2015.04.081.
[26] Liu, XueFeng, Yao, XuRi, Lan, RuoMing, Wang, Chao, Zhai, GuangJie. Edge detection based on gradient ghost imaging. OPTICS EXPRESS[J]. 2015, 23(26): 33802-33811, http://ir.nssc.ac.cn/handle/122/5340.
[27] Yao, Xuri, Liu, Xuefeng, Yu, Wenkai, Zhai, Guangjie. Correspondence imaging based on correlation coefficients. CHINESE OPTICS LETTERS[J]. 2015, 13(1): http://www.irgrid.ac.cn/handle/1471x/1010994.
[28] 叶蔚然, 孙志斌, 刘雪峰, 翟光杰, 张勇, 张寿山, 肖刚, 冯少辉. 大气散射衰减定标系统设计. 激光与红外[J]. 2014, 44(11): 1197-1201, http://lib.cqvip.com/Qikan/Article/Detail?id=663111368.
[29] Liu, XueFeng, Chen, XiHao, Yao, XuRi, Yu, WenKai, Zhai, GuangJie, Wu, LingAn. Lensless ghost imaging with sunlight. OPTICS LETTERS[J]. 2014, 39(8): 2314-2317, http://ir.iphy.ac.cn/handle/311004/59427.
[30] Yu, WenKai, Li, Shen, Yao, XuRi, Liu, XueFeng, Wu, LingAn, Zhai, GuangJie. Protocol based on compressed sensing for high-speed authentication and cryptographic key distribution over a multiparty optical network. APPLIED OPTICS[J]. 2013, 52(33): 7882-7888, http://ir.iphy.ac.cn/handle/311004/57362.
[31] 俞文凯, 姚旭日, 刘雪峰, 翟光杰, 赵清. 压缩传感用于极弱光计数成像. 光学精密工程[J]. 2012, 20(10): 2283-2292, http://lib.cqvip.com/Qikan/Article/Detail?id=43698276.
[32] 孙志斌, 刘雪峰, 王超, 叶经纬, 蒋远大, 赵清, 翟光杰. 交变电场清除介电颗粒的作用. 空间科学学报[J]. 2011, 31(6): 808-813, http://lib.cqvip.com/Qikan/Article/Detail?id=39764722.

科研活动

   
科研项目
( 1 ) 基于散斑测量和精确重建的真热光关联成像研究, 主持, 国家级, 2017-01--2019-12
( 2 ) 基于压缩感知理论的双波长温度场成像方法研究, 主持, 部委级, 2016-01--2017-12
( 3 ) 单光子时间分辨成像光谱仪研发与应用, 参与, 国家级, 2013-10--2018-09
( 4 ) 基于XX的高分辨率红外成像技术研究, 主持, 国家级, 2016-01--2020-12
( 5 ) 中国科协青年人才托举工程, 主持, 国家级, 2018-01--2020-12

合作情况

   
项目协作单位

北京理工大学

中国科学院上海光学精密机械研究所

中国科学院物理研究所