基本信息

刘生忠  男  博导  中国科学院大连化学物理研究所
电子邮件: szliu@dicp.ac.cn
通信地址:辽宁省大连市沙河口区457号


部门/实验室:研究生部

研究领域

纳米材料、薄膜材料、太阳能光伏材料、电光薄膜的电化学沉积、激光表面处理和光伏技术的开发、放大和生产。

招生信息

   
招生专业
070304-物理化学(含:化学物理)
招生方向
高效薄膜太阳电池

教育背景

1989-09--1992-07 美国西北大学 博士学位
1983-09--1986-07 兰州大学 硕士
1979-09--1983-07 陕西师范大学 学士
学历及学位
1983年获陕西师范大学理学学士学位
1986年获兰州大学理学硕士学位
1992年获美国西北大学工学博士学

工作经历

1.大连化学物理研究所/陕西师范大学,特聘教授 (2011–present)
2.United Solar Ovonic LLC, Manager, Senior Scientist (2003 – 2011)
3.BP Solar, Senior Scientist/Laser Process/Safety Officer (1998 – 2003)
4.SI Diamond Technology, Inc., Projector Manager (1997 – 1998)
5.QQC, Senior Scientist, Director of Applied Sciences Department (1994-1997)
6.Argonne National Laboratory, Postdoctoral Fellow (1992 – 1994)
7.Northwestern University, Research and Teaching Assistant (1989 – 1992)
8.Research and Teaching Faculty, Lanzhou University, China (1986 – 1989)

社会兼职
   

教授课程

太阳能电池的发展与进程

专利与奖励

已经产业化的专利发明:
PowerViewTM - 半透明太阳能光伏发电板 (BP 注册商标:PowerViewTM)
使用专利:
(1) 7259321 Method of Manufacturing Thin Film Photovoltaic Modules
(2) 6858461 Partially Transparent Photovoltaic Modules
2. 金刚石薄膜
使用专利:
(1)5849079 Diamond Film Growth Argon-Carbon Plasmas
(2) 5620512 Diamond Film Growth From Fullerene Precursors
3.超轻太阳能光伏发电薄膜电池
使用专利:
(1)GB2435170 Ultra Lightweight Photovoltaic Device and Method For Its Manufacture
(2)7517465 Ultra Lightweight Photovoltaic Device and Method For Its Manufacture
4. 低温激光焊接材料
使用专利:
5964963 Brazing Paste
5. 超低成本、高光电性能(高透光,高导电)ZnO 薄膜的电化学制造工艺

所获奖励:
世界最佳发明奖 - R&D 100 award (2002) – “Oscars of Invention”.
BP (英国石油公司)最佳成果奖,BP Helios award 2002 commended.

专利成果
(1) 一种太阳能电池与轻便储能设备的集成组件及其控制方法,发明,2003,第1作者,专利号:201310167645.X
(2) 一种碲化镉/硫化镉太阳能电池,发明,2012,第1作者,专利号:CN201210166397.2
(3) 一种叠层太阳能电池,发明,2014,第1作者,专利号:201410145563.X
(4) 一种硅系太阳能电池和其制备方法与制备装置以及其表面结构,发明,2014,第1作者,专利号:CN201410182303.X
(5) 一种柔性薄膜太阳能电池的结构和制备工艺,发明,2003,第1作者,专利号:CN201310425551.8

发表论文

 

最近代表性论文:

Perovskite Solar cells and Solar cells:

1.        Effective light trapping by hybrid nanostructure for crystalline silicon solar cells, Solar Energy Materials and Solar Cells, 140,180-186 (2015)

2.        High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy & Environmental Science. 00, 1-7. (2015)

3.        Topology and texture controlled ZnO thin film electrodepositon for superior solar cell efficiency, Solar Energy Materials and Solar Cells, 134,54–59, (2015)

4.        Hysteresis-Suppressed High-Efficiency Flexible Perovskite Solar Cells Using Solid-State Ionic-Liquids for Effective Electron Transport. Adv. Mater. 28, 52065213(2016)
5.        Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci. 9, 3071—3078 (2016)

6.        High efficiency organic/a-Si hybrid tandem solar cells with complementary light absorptionJournal of Materials Chemistry A, 2, 15303 (2014)

7.        Perovskite CH3NH3Pb (BrxI1-x)3 single crystals with controlled composition for fine-tuned bandgap towards optimized optoelectronic applications. Journal of Materials Chemistry C. J. Name., DOI: 10.1039/x0xx00000x (2016)
8.        Effective solvent-additive enhanced crystallization and coverage of absorber layers for high efficiency formamidinium perovskite solar cells. RSC Adv., 6, 56807–56811(2016)
Nano materials and technology:
9.        Millimeter-long multilayer graphene nanoribbons prepared by wet chemical processing. Carbon, 71,120126 (2014)
10.    20-mm-Large Single-Crystalline Formamidinium-Perovskite Wafer for Mass Production of Integrated Photodetectors. Adv. Optical Mater. DOI: 10.1002/adom.201600327 (2016)
11.    Superior texture-controlled ZnO thin film using electrochemical deposition. Solar Energy.125, 192–197(2016)
12.    Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature. Nanoscale, 8, 3816–3822(2016)
13.    Improved PEDOT:PSS/c-Si hybrid solar cell using inverted structure and effective passivation. Scientific Reports, 6:35091, DOI:10.1038/srep35091(2016)
14.    Thinness- and Shape-Controlled Growth for Ultrathin Single-Crystalline Perovskite Wafers for Mass Production of Superior Photoelectronic Devices. Adv. Mater. 28, 9204–9209 (2016)
Electrochemical catalysis and photoelectrochemical catalysis for water splitting:
15.    One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, Advance Article, 3, 10693–10697 (2015)
16.    Facile Synthesis of Iron Doped Rutile TiO2 Photocatalyst for Enhanced Visible-light-driven Water Oxidation. Journal of Materials Chemistry A.3, 21434-21438 (2015)
17.    One-step preparation of optically transparent Ni-Fe oxide film electrocatalyst for oxygen evolution reaction. Electrochimica Acta.169. 402-408(2015)
18.    A Se-doped MoS2 nanosheet for improved hydrogen evolution reaction. Chemical Communications. 51 (88):15997-6000 (2015)

指导学生

已指导学生

贾玉帅  博士研究生  070304-物理化学  

现指导学生

朱剑  博士研究生  070304-物理化学  

王旺银  博士研究生  070304-物理化学  

陈政  博士研究生  070304-物理化学  

李政  博士研究生  070304-物理化学  

秦炜  博士研究生  070304-物理化学  

张丽晓  硕士研究生  070304-物理化学  

张旭  硕士研究生  070304-物理化学  

张静  博士研究生  070304-物理化学