基本信息

程荫  男   中国科学院上海硅酸盐研究所
电子邮件: chengyin@mail.sic.ac.cn
通信地址: 上海市嘉定区和硕路585号
邮政编码:

研究领域

​1. 柔性传感材料的开发与应用:具有信号感知功能的柔性材料与器件合成开发,包括人体电生理信号、环境交互信号(力学、温湿度、化学试剂等)。

2. 柔性驱动材料与软体机器人:面向柔性驱动的柔性/软体聚合物材料开发、驱动性能设计;智能操纵、感知、反馈以及系统集成;智能软体机器人与智能算法分析的现实场景结合应用。

3. 功能聚合物材料的开发与应用:具有优异力学、电学等性能的柔性聚合物材料开发以及在人机交互领域的应用。

研究生招生信息

1. 有材料、物理、化学、高分子等相关专业背景。

2. 有基本英文读写能力;英文过四六级优先。

3. 具有团队合作精神,有较强学习能力与科研兴趣,有科研工作参与经历优先。

招生专业
080501-材料物理与化学
080502-材料学
0805J1-纳米科学与技术
招生方向
高可拉伸电极,功能聚合物材料
柔性可穿戴传感,电生理监测
智能软体机器人,3D打印

教育背景

2017-03--2021-06   新加坡国立大学,电气与计算机工程系   博士后
2011-09--2017-03   中国科学院大学,材料物理与化学专业   博士学位

工作经历

2017年于中国科学院上海硅酸盐研究所,获得材料物理与化学专业博士学位。后加入新加坡国立大学,进入Ho Ghim Wei(新加坡国立大学工学院教授、副院长,英国皇家化学学会会士,FRSC)课题组,进行博士后研究工作。 2021年全职加入中国科学院上海硅酸盐研究所,高性能陶瓷与超微结构国家重点实验室,任副研究员。入选上海市浦江人才计划A类,上海市海外高层次人才计划,中科院人才计划。长期从事人机交互中的柔性传感与驱动研究工作,关注柔性功能材料的开发与器件应用创新。研制了一系列高可拉伸电极、柔性传感器、人体电生理监测电极以及智能软体机器人等。发表论文37篇,其中第一作者/通讯作者论文16篇(包括Advanced Materials,Advanced Functional Materials,Advanced Science,ACS Nano,Nano Energy等)。Google Scholar论文总引用 3400余次,单篇最高他引730余次(ESI高被引论文),H-index为23,在柔性电子相关领域获中国发明专利授权6项。承担国家自然科学基金、国防科技项目、中科院人才项目基金、上海市科委基金、上海市国际合作项目、中科院上海硅酸盐研究所青年基金等9项科研项目。受邀在国际功能材料进展大会(International conference on Advances in Functional Materials,2016,韩国)、国际仿生工程学会青年委员会2021年学术年会(IYCBSE, 2021,深圳)、中国微米纳米技术学会柔性电子技术与应用创新论坛(2023,苏州)等国内外学术会议在柔性传感与智能机器人领域作口头报告。

工作简历
2021-09~现在, 中国科学院上海硅酸盐研究所, 副研究员
2017-02~2021-06,新加坡国立大学,电气与计算机工程系, 博士后
社会兼职
2021-12-31-今,《无机材料学报》, 青年编委

专利与奖励

   
奖励信息
(1) 上海市长宁区青年岗位能手, 市地级, 2022
(2) 上海市浦江人才计划(A类), , 省级, 2021
(3) 上海市海外高层次人才引进计划, , 省级, 2021
(4) 宝钢优秀学生奖学金, , 国家级, 2016
(5) 严东生奖学金特等奖, , 院级, 2015
(6) 中国科学院大学三好学生, , 院级, 2015
(7) 北京市优秀毕业生, , 省级, 2011
(8) 国家奖学金, 国家级, 2010
(9) 全国大学生英语竞赛一等奖, , 国家级, 2010
专利成果
[1] 程荫, 王冉冉, 郝云娜, 孙静. 一种自粘附多功能传感电极贴片及其制备方法. 2023106612157, 2023-06-06.
[2] 王冉冉, 孙静, 程荫. 一种超高弹性导线及其制备方法. CN: CN108520795A, 2018-09-11.
[3] 孙静, 程荫, 王冉冉, 王焱. 一种高弹性电加热纤维及其制备方法和应用. CN: CN107447539A, 2017-12-08.
[4] 孙静, 程荫, 王冉冉, 王焱. 一种可穿戴电加热系统. CN: CN206214260U, 2017-06-06.
[5] 孙静, 程荫, 王冉冉, 王焱. 一种柔性可穿戴导电纤维传感器及其制备方法和应用. CN: CN106705829A, 2017-05-24.
[6] 孙静, 程荫, 王冉冉, 高濂. 一种高弹性导电纤维及其制备方法. 中国: CN104499272A, 2015-04-08.
[7] 孙静, 王守玲, 王冉冉, 程荫, 高濂. 铜纳米线/聚丙烯酸酯复合材料及其制备方法. CN: CN103819591A, 2014-05-28.

出版信息

   
发表论文
[1] Qiuyang Yan, Cheng Yin. Lithographic printing inspired in-situ transfer of MXene-based films with localized topo-electro tunability for high-performance flexible pressure sensors. Nano Research[J]. 2023, [2] Yi Zhou, Tianpeng Ding, Cheng Yin. Non-planar dielectrics derived thermal and electrostatic field inhomogeneity for boosted weather-adaptive energy harvesting. National Science Review[J]. 2023, [3] Yunna Hao, Cheng Yin. A Stretchable, Breathable, And Self‐Adhesive Electronic Skin with Multimodal Sensing Capabilities for Human‐Centered Healthcare. Advanced Functional Materials[J]. 2023, [4] Huiting Lai, 程荫. Temperature‐Triggered Adhesive Bioelectric Electrodes with Long‐Term Dynamic Stability and Reusability. Advanced Science[J]. 2023, [5] Guojian Zhu, Yi Zhou, Zeyu Si, Yin Cheng, Fei Wu, Huan Wang, Yaozong Pan, Jing Xie, Chaobo Li, Aiying Chen, Ranran Wang, Jing Sun. A multi-hole resonator enhanced acoustic energy harvester for ultra-high electrical output and machine-learning-assisted intelligent voice sensing. NANO ENERGY[J]. 2023, http://dx.doi.org/10.1016/j.nanoen.2023.108237.
[6] Yuxiang Li, Liangjing Shi, Yin Cheng, Ranran Wang, Jing Sun. Development of conductive materials and conductive networks for flexible force sensors. CHEMICAL ENGINEERING JOURNAL[J]. 2023, 455: http://dx.doi.org/10.1016/j.cej.2022.140763.
[7] Cheng Yin, Zhou Yi, Wang, Ranran. An Elastic and Damage-Tolerant Dry Epidermal Patch with Robust Skin Adhesion for Bioelectronic Interfacing. Acs Nano[J]. 2022, [8] 程荫. Breathable, Self-AdhesiDry Electrodes for Stable Electrophysiological Signal Monitoring During Exercise. ACS Applied Materials & Interfaces[J]. 2022, [9] Yan, Qiuyang, Cheng, Yin, Wang, Ranran, Sun, Jing. Recent advances in 3D porous MXenes: structures, properties and applications. JOURNAL OF PHYSICS D-APPLIED PHYSICSnull. 2022, 55(9): [10] []. Development of conductive materials and conductive networks for flexible force sensors. Chemical Engineering Journal[J]. 2022, [11] Lan, Binxu, Wu, Fei, Cheng, Yin, Zhou, Yi, Hossain, Gaffar, Grabher, Gunter, Shi, Liangjing, Wang, Ranran, Sun, Jing. Scalable, stretchable and washable triboelectric fibers for self-powering human-machine interaction and cardiopulmonary resuscitation training. NANO ENERGY[J]. 2022, 102: http://dx.doi.org/10.1016/j.nanoen.2022.107737.
[12] Wu, Fei, Lan, Binxu, Cheng, Yin, Zhou, Yi, Hossain, Gaffar, Grabher, Guenter, Shi, Liangjing, Wang, Ranran, Sun, Jing. A stretchable and helically structured fiber nanogenerator for multifunctional electronic textiles. NANO ENERGY[J]. 2022, 101: http://dx.doi.org/10.1016/j.nanoen.2022.107588.
[13] Wang, XiaoQiao, Chan, Kwok Hoe, Lu, Wanheng, Ding, Tianpeng, Ng, Serene Wen Ling, Cheng, Yin, Li, Tongtao, Hong, Minghui, Tee, Benjamin C K, Ho, Ghim Wei. Macromolecule conformational shaping for extreme mechanical programming of polymorphic hydrogel fibers. NATURE COMMUNICATIONS[J]. 2022, 13(1): https://doaj.org/article/0224ece152c041e6bd5d99e3e56061ad.
[14] Zhang, Tianxi, Meng, Fanlu, Cheng, Yin, Dewangan, Nikita, Ho, Ghim Wei, Kawi, Sibudjing. Z-scheme transition metal bridge of Co9S8/Cd/CdS tubular heterostructure for enhanced photocatalytic hydrogen evolution. APPLIED CATALYSIS B-ENVIRONMENTAL[J]. 2021, 286: http://dx.doi.org/10.1016/j.apcatb.2020.119853.
[15] Cheng, Yin, Chan, Kwok Hoe, Wang, XiaoQiao, Ding, Tianpeng, Li, Tongtao, Zhang, Chen, Lu, Wanheng, Zhou, Yi, Ho, Ghim Wei. A Fast Autonomous Healing Magnetic Elastomer for Instantly Recoverable, Modularly Programmable, and Thermorecyclable Soft Robots. ADVANCED FUNCTIONAL MATERIALS[J]. 2021, 31(32): http://dx.doi.org/10.1002/adfm.202101825.
[16] Ding, Tianpeng, Zhou, Yi, Wang, XiaoQiao, Zhang, Chen, Li, Tongtao, Cheng, Yin, Lu, Wanheng, He, Jiaqing, Ho, Ghim Wei. All-Soft and Stretchable Thermogalvanic Gel Fabric for Antideformity Body Heat Harvesting Wearable. ADVANCED ENERGY MATERIALS[J]. 2021, 11(44): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000707875900001.
[17] 程荫. Mutually Noninterfering Flexible Pressure–Temperature Dual-Modal Sensors Based on Conductive Metal–Organic Framework for Electronic Skin. ACS nano[J]. 2021, [18] Li, Tongtao, Chan, Kwok Hoe, Ding, Tianpeng, Wang, XiaoQiao, Cheng, Yin, Zhang, Chen, Lu, Wanheng, Yilmaz, Gamze, Qiu, ChengWei, Ho, Ghim Wei. Dynamic thermal trapping enables cross-species smart nanoparticle swarms. SCIENCE ADVANCES[J]. 2021, 7(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000606331400040.
[19] Tianpeng Ding, Kwok Hoe Chan, Yi Zhou, XiaoQiao Wang, Yin Cheng, Tongtao Li, Ghim Wei Ho. Scalable thermoelectric fibers for multifunctional textile-electronics. NATURE COMMUNICATIONS[J]. 2020, 11(1): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693281/.
[20] 程荫. Somatosensory, light‐driven, thin‐film robots capable of integrated perception and. Advanced materials[J]. 2020, [21] Zhou, Yi, Ding, Tianpeng, Gao, Minmin, Chan, Kwok Hoe, Cheng, Yin, He, Jiaqing, Ho, Ghim Wei. Controlled heterogeneous water distribution and evaporation towards enhanced photothermal water-electricity-hydrogen production. NANO ENERGY[J]. 2020, 77: http://dx.doi.org/10.1016/j.nanoen.2020.105102.
[22] Cheng, Yin, Chan, Kwok Hoe, Wang, XiaoQao, Ding, Tianpeng, Li, Tongtao, Lu, Xin, Ho, Ghim Wei. Direct-Ink-Write 3D Printing of Hydrogels into Biomimetic Soft Robots. ACS NANO[J]. 2019, 13(11): 13176-13184, http://dx.doi.org/10.1021/acsnano.9b06144.
[23] []. A Biomimetic Conductive Tendril for Ultrastretchable and Integratable Electronics, Muscles, and. ACS NANO[J]. 2018, [24] 程荫. Smart fibers based on low dimensional conductive materials. 2018, [25] Ding, Tianpeng, Zhu, Liangliang, Wang, XiaoQiao, Chan, Kwok Hoe, Lu, Xin, Cheng, Yin, Ho, Ghim Wei. Hybrid Photothermal Pyroelectric and Thermogalvanic Generator for Multisituation Low Grade Heat Harvesting. ADVANCED ENERGY MATERIALS[J]. 2018, 8(33): https://www.webofscience.com/wos/woscc/full-record/WOS:000451181900018.
[26] Nie, Pu, Wang, Ranran, Xu, Xiaojuan, Cheng, Yin, Wang, Xiao, Shi, Liangjing, Sun, Jing. High-Performance Piezoresistive Electronic Skin with Bionic Hierarchical Microstructure and Microcracks. ACS APPLIED MATERIALS AND INTERFACES[J]. 2017, 9(17): 14911-14919, http://ir.sic.ac.cn/handle/331005/25993.
[27] Xu, Xiaojuan, Wang, Ranran, Nie, Pu, Cheng, Yin, Lu, Xiaoyu, Shi, Liangjing, Sun, Jing. Copper Nanowire-Based Aerogel with Tunable Pore Structure and Its Application as Flexible Pressure Sensor. ACS APPLIED MATERIALS AND INTERFACES[J]. 2017, 9(16): 14273-14280, http://ir.sic.ac.cn/handle/331005/25998.
[28] 程荫. A stretchable fiber nanogenerator for versatile mechanical energy harvesting and self-powered full-range personal healthcare monito. Nano Energy[J]. 2017, [29] Cheng, Yin, Wang, Ranran, Zhai, Haitao, Sun, Jing. Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain. NANOSCALE[J]. 2017, 9(11): 3834-3842, http://www.irgrid.ac.cn/handle/1471x/1790983.
[30] Wang, Ranran, Zhai, Haitao, Wang, Tao, Wang, Xiao, Cheng, Yin, Shi, Liangjing, Sun, Jing. Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors. NANO RESEARCH[J]. 2016, 9(7): 2138-2148, http://www.irgrid.ac.cn/handle/1471x/1176920.
[31] Wang, Tao, Wang, Ranran, Cheng, Yin, Sun, Jing. Quasi In Situ Polymerization To Fabricate Copper Nanowire-Based Stretchable Conductor and Its Applications. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 8(14): 9297-9304, http://www.irgrid.ac.cn/handle/1471x/1176970.
[32] Cheng, Yin, Zhang, Hange, Wang, Ranran, Wang, Xiao, Zhai, Haitao, Wang, Tao, Jin, Qinghui, Sun, Jing. Highly Stretchable and Conductive Copper Nanowire Based Fibers with Hierarchical Structure for Wearable Heaters. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 8(48): 32925-32933, http://www.irgrid.ac.cn/handle/1471x/1161574.
[33] Zhai, Haitao, Wang, Ranran, Wang, Xiao, Cheng, Yin, Shi, Liangjing, Sun, Jing. Transparent heaters based on highly stable Cu nanowire films. NANO RESEARCH[J]. 2016, 9(12): 3924-3936, http://www.irgrid.ac.cn/handle/1471x/1161582.
[34] Zhai, Haitao, Wang, Ranran, Wang, Weiqi, Wang, Xiao, Cheng, Yin, Shi, Liangjing, Liu, Yangqiao, Sun, Jing. Novel fabrication of copper nanowire/cuprous oxidebased semiconductor-liquid junction solar cells. NANO RESEARCH[J]. 2015, 8(10): 3205-3215, https://www.webofscience.com/wos/woscc/full-record/WOS:000362588100009.
[35] Cheng, Yin, Wang, Ranran, Sun, Jing, Gao, Lian. Highly Conductive and Ultrastretchable Electric Circuits from Covered Yarns and Silver Nanowires. ACS NANO[J]. 2015, 9(4): 3887-3895, [36] 程荫. A stretchable and highly sensitive graphene‐based fiber for sensing tensile strain, bending and. Advanced materials[J]. 2015, [37] Cheng, Yin, Wang, Shouling, Wang, Ranran, Sun, Jing, Gao, Lian. Copper nanowire based transparent conductive films with high stability and superior stretchability. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2014, 2(27): 5309-5316, https://www.webofscience.com/wos/woscc/full-record/WOS:000338601800008.
[38] Wang, Shouling, Cheng, Yin, Wang, Ranran, Sun, Jing, Gao, Lim. Highly Thermal Conductive Copper Nanowire Composites with Ultralow Loading: Toward Applications as Thermal Interface Materials. ACS APPLIED MATERIALS & INTERFACES[J]. 2014, 6(9): 6481-6486, https://www.webofscience.com/wos/woscc/full-record/WOS:000336075300059.

科研活动

   
承担科研项目
( 1 ) 中国科学院上海硅酸盐研究所创新青年基础基金, 负责人, 研究所自主部署, 2021-12--2022-11
( 2 ) 上海市浦江人才计划A类, 负责人, 地方任务, 2021-10--2023-09
( 3 ) 中科院人才项目计划, 负责人, 中国科学院计划, 2021-10--2024-10
( 4 ) 国家自然科学基金青年科学基金, 负责人, 国家任务, 2023-01--2025-12
( 5 ) 国家重点实验室主任基金青年项目, 负责人, 研究所自主部署, 2022-10--2024-09
( 6 ) 中国科学院上海硅酸盐研究所高技术处青年提前启动基金, 负责人, 研究所自主部署, 2022-12--2024-12
( 7 ) 上海市长宁区“科技之星”团队项目, 负责人, 地方任务, 2022-12--2023-12
( 8 ) 上海市“科技创新行动计划”国际科技合作项目, 负责人, 地方任务, 2023-09--2026-09
( 9 ) 国防科技173计划, 参与, 国家任务, 2023-11--2025-11