基本信息

李伟  女  博导  中国科学院数学与系统科学研究院
电子邮件: liwei@mmrc.iss.ac.cn
通信地址: 北京市海淀区中关村东路55号思源楼
邮政编码: 100190

研究领域

构造性代数几何、微分代数几何、差分代数、符号计算

招生信息

   
招生专业
070104-应用数学
070101-基础数学
招生方向
构造性微分代数几何,差分代数

教育背景

2007-09--2012-06   中国科学院数学与系统科学研究院   理学博士
2003-09--2007-06   山东大学   理学学士

工作经历

2019.4~现在,  中国科学院数学与系统科学研究院,  副研究员

2014.8-2015.11  UC Berkeley,  访问学者

2012.7~2019.3, 中国科学院数学与系统科学研究院,  助理研究员


教授课程

线性代数习题课

发表论文

[1] Xiao-Shan Gao, Wei Li, Chun-Ming Yuan, Intersection Theory in Differential Algebraic Geometry: Generic Intersections and the Differential Chow Form, Trans. Amer. Math. Soc., 365,  4575–4632, 2013.  

[2]  Wei Li, Xiao-Shan Gao, Chun-Ming Yuan, Sparse Differential Resultant, In Proc. ISSAC 2011, San Jose, USA, 225–232, 2011 (ACM SIGSAM ISSAC Distinguished Paper Award). 

[3]  Wei Li and Xiao-Shan Gao, Differential Chow Form for Projective Differential Variety, Journal of Algebra, 370, 344–360, 2012.  

[4]  Wei Li, Chun-Ming Yuan, Xiao-Shan Gao, Sparse Differential Resultant for Laurent Differential Polynomials., Found. Comput. Math.,Volume 15, Issue 2, 451–517, 2015.  

[5] Wei Li, Chun-Ming Yuan, Xiao-Shan Gao, Sparse Difference Resultant, In Proc. ISSAC 2013, Boston, MA, USA, 275–282, 2013.  

[6] Wei Li, Differential Chow form and sparse differential resultant, Sci. Sin. Math., 44: 211–220, 2014. (in Chinese, written on invitation of Sci. Sin. Math, a brief introduction of my thesis which won the Outstanding Doctoral Dissertation Award of Chinese Academy of Sciences.) 

[7] Wei Li, Chun-Ming Yuan, Xiao-Shan Gao, Sparse Difference Resultant, J. Symb. Comput., 68, 169–203, 2015. [8] Wei Li,Yinghong Li, Difference Chow Form, J. Algebra, 428, 67–90, 2015.  

[9] Wei Li,Yinghong Li, The Computation of Differential Chow Form, Advances in Applied Mathematics, 72, 77–112, 2016.  

[10] James Freitag, Wei Li, Tom Scanlon, Differential Chow Varieties Exist, Journal of the London Mathematical Society, 95(2), 128–156, 2017.) 

[11] James Freitag, Wei Li, Embeddings of Differential Fields and Effective Bounds, Proc. of MACIS 2015, LNCS, 2015.

[12] Wei Li, Partial Differential Chow Forms and a Type of Partial Differential Chow varieties, arXiv:1709.02358, 2017. 

[13] J. Freitag, O. Leon-Sanchez and W. Li.  Effective definability of Kolchin polynomials.  ArXiv: 1806.02060v1, 1-11, 2018. Submitted. 

[14] W. Li, A. Ovchinnikov,  G.   Pogudin, and T. Scanlon. Elimination of unknowns for systems of   algebraic differential-difference equations. ArXiv:1812.11390v1, 1-23, 2018. Submitted. 

科研活动

   
科研项目
( 1 ) 微分、差分周形式与稀疏结式的理论与高效算法, 主持, 国家级, 2014-01--2016-12