基本信息
汪伟  男  硕导  中国科学院宁波材料技术与工程研究所
电子邮件: wangwei@nimte.ac.cn
通信地址: 浙江省宁波市镇海区庄市大道519号宁波材料所C423
邮政编码: 315201

招生信息

   
招生专业
080501-材料物理与化学
080501-材料物理与化学
招生方向
高比能锂电池负极材料
石墨烯薄膜

教育背景

2003-09--2008-06 中国科学技术大学 博士
1999-09--2003-06 中国科学技术大学 本科

工作经历

   
工作简历
2013-10--今 中国科学院宁波材料技术与工程研究所 副研究员
2008-08--2012-06 美国科罗拉多大学 博士后

专利与奖励

   
奖励信息
(1) 安徽省自然科学二等奖,二等奖,省级,2012
专利成果
[1] 鲁淑芬, 汪伟, 刘兆平. 一种发热膜及其制备方法. CN: CN112888097A, 2021-06-01.
[2] 鲁淑芬, 汪伟, 刘兆平. 一种局部可擦除的液晶手写板及其使用方法. CN: CN112462544A, 2021-03-09.
[3] 张志坤, 夏连连, 王作智, 汪伟, 刘兆平. 一种高强度功能化石墨烯防水增透薄膜及其应用. CN: CN111762776A, 2020-10-13.
[4] 欧阳奕, 汪伟, 刘兆平. 一种测定单晶石墨烯取向的方法. CN: CN111624219A, 2020-09-04.
[5] 林景晓, 汪伟, 刘兆平. 一种基于管式炉的快速卷对卷气相沉积制备装置. CN: CN210620935U, 2020-05-26.
[6] 鲁淑芬, 汪伟, 刘兆平. 一种液晶显示器及其制备方法. CN: CN110865494A, 2020-03-06.
[7] 张志坤, 王作智, 夏连连, 汪伟, 刘兆平. 一种石墨烯透明导电薄膜、其制备方法及应用. CN: CN110517809A, 2019-11-29.
[8] 鲁淑芬, 汪伟, 刘兆平. 一种液晶显示装置,制备方法及其使用方法. CN: CN109884834A, 2019-06-14.
[9] 陈黎, 汪伟, 刘兆平. 一种石墨烯/金属复合薄膜及其制备方法. CN: CN105239061B, 2019-04-12.
[10] 杨广元, 汪伟, 刘兆平. 三维石墨烯及其复合材料的制备方法. CN: CN106185896B, 2019-02-19.
[11] 王大可, 汪伟, 刘兆平. 一种基于石墨烯薄膜的柔性显示器件. CN: CN208478385U, 2019-02-05.
[12] 孙栋芸, 鲁淑芬, 汪伟, 刘兆平. 一种柔性LCD的制备方法. 中国: CN107957638A, 2018-04-24.
[13] 许林峰, 汪伟, 刘兆平. 一种保护基底上石墨烯层的方法和石墨烯复合材料. 中国: CN104890312B, 2018-02-23.
[14] 范旭, 汪伟, 刘兆平. 一种锂离子电池负极材料、其制备方法及锂离子电池. 中国: CN105489868B, 2018-02-02.
[15] 白晓航, 汪伟, 刘兆平. 化学气相沉积设备. 中国: CN106756895A, 2017-05-31.
[16] 陈黎, 白晓航, 汪伟, 刘兆平. 用于洁净材料的产品包装. 中国: CN206087840U, 2017-04-12.
[17] 陈黎, 白晓航, 汪伟, 刘兆平. 用于洁净材料的产品包装. 中国: CN106275830A, 2017-01-04.
[18] 王姣霞, 汪伟, 刘兆平. 一种石墨烯复合电极. 中国: CN205140537U, 2016-04-06.
[19] 徐伟, 汪伟, 刘兆平. 一种石墨烯阵列的制备方法. 中国: CN104743552A, 2015-07-01.
[20] 许林峰, 汪伟, 刘兆平. 石墨烯复合材料及其制备方法. 中国: CN104485157A, 2015-04-01.
[21] 王姣霞, 许林峰, 汪伟, 刘兆平. 一种转移石墨烯的方法. 中国: CN104477894A, 2015-04-01.
[22] 许林峰, 汪伟, 刘兆平. 一种石墨烯的保护装置. 中国: CN104445176A, 2015-03-25.
[23] 汪伟, 刘兆平. 基于管式炉的卷对卷气相沉积装置. 中国: CN204198848U, 2015-03-11.
[24] 庄华杰, 汪伟, 刘兆平, 陈黎. 一种石墨烯的转移方法. 中国: CN104261402A, 2015-01-07.
[25] 王姣霞, 汪伟, 刘兆平. 一种连续快速生长石墨烯的气相沉积装置. 中国: CN203890440U, 2014-10-22.
[26] 张方君, 汪伟, 刘兆平. 一种石墨烯薄膜的转移方法. 中国: CN104015463A, 2014-09-03.
[27] 汪伟, 刘兆平. 基于管式炉的卷对卷气相沉积装置. 中国: CN103993296A, 2014-08-20.
[28] 王姣霞, 汪伟, 刘兆平. 一种连续快速生长石墨烯的气相沉积装置. 中国: CN103993297A, 2014-08-20.

出版信息

   
发表论文
[1] Yao, Lingze, Ying, Zhiqin, Wang, Wei, Yang, Zhenhai, Sun, Juanjuan, Wang, Xinlong, Yang, Xi, Zeng, Yuheng, Yan, Baojie, Xu, Xiaoliang, Ye, Jichun. Solution-processed and annealing-free zirconium acetylacetonate electron-selective contacts for efficient crystalline silicon solar cells. SOLAR ENERGY[J]. 2021, 215: 410-415, http://dx.doi.org/10.1016/j.solener.2020.12.048.
[2] Lou, Qiang, Lou, Gang, Peng, Ruixiang, Liu, Zhaoping, Wang, Wei, Ji, Mingxing, Chen, Chong, Zhang, Xiaoli, Liu, Chang, Ge, Ziyi. Synergistic Effect of Lewis Base Polymers and Graphene in Enhancing the Efficiency of Perovskite Solar Cells. ACS APPLIED ENERGY MATERIALS[J]. 2021, 4(4): 3928-3936, http://dx.doi.org/10.1021/acsaem.1c00299.
[3] Zhang, Zhikun, Xia, Lianlian, Liu, Lizhao, Chen, Yuwen, Wang, Zuozhi, Wang, Wei, Ma, Dongge, Liu, Zhaoping. Ultra-smooth and robust graphene-based hybrid anode for high-performance flexible organic light-emitting diodes. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2021, 9(6): 2106-2114, https://www.webofscience.com/wos/woscc/full-record/WOS:000620730700023.
[4] Alam, Md Kamrul, Niu, Chao, Wang, Yanan, Wang, Wei, Li, Yang, Dai, Chong, Tong, Tian, Shan, Xiaonan, Charlson, Earl, Pei, Steven, Kong, XiangTian, Hu, Yandi, Belyanin, Alexey, Stein, Gila, Liu, Zhaoping, Hu, Jonathan, Wang, Zhiming, Bao, Jiming. Large graphene-induced shift of surface-plasmon resonances of gold films: Effective-medium theory for atomically thin materials. PHYSICAL REVIEW RESEARCH[J]. 2020, 2(1): http://dx.doi.org/10.1103/PhysRevResearch.2.013008.
[5] 王作智, 张剑锋, 张志坤, 汪伟, 刘兆平. 基于石墨烯透明导电薄膜的OLED研究进展. 表面技术[J]. 2019, 48(6): 30-45, http://lib.cqvip.com/Qikan/Article/Detail?id=7002234530.
[6] Wu, Jiao, Qiu, Dong, Zhang, Hongliang, Cao, Hongtao, Wang, Wei, Liu, Zhaoping, Tian, Tian, Liang, Lingyan, Gao, Junhua, Zhuge, Fei. Flexible Electrochromic V2O5 Thin Films with Ultrahigh Coloration Efficiency on Graphene Electrodes. JOURNAL OF THE ELECTROCHEMICAL SOCIETY[J]. 2018, 165(5): D183-D189, http://ir.nimte.ac.cn/handle/174433/16909.
[7] Sun, Dongyun, Wang, Wei, Liu, Zhaoping. Establishment of a reliable transfer process for fabricating chemical vapor deposition-grown graphene films with advanced and repeatable electrical properties. RSC ADVANCES[J]. 2018, 8(35): 19846-19851, http://ir.nimte.ac.cn/handle/174433/16901.
[8] 王国华, 刘兆平, 周旭峰, 汪伟, 韩雪, 马经博. 2018全球石墨烯技术专利分析. 新材料产业. 2018, 11-16, http://lib.cqvip.com/Qikan/Article/Detail?id=676763946.
[9] Wen, Rongfu, Li, Qian, Wu, Jiafeng, Wu, Gensheng, Wang, Wei, Chen, Yunfei, Ma, Xuehu, Zhao, Dongliang, Yang, Ronggui. Hydrophobic copper nanowires for enhancing condensation heat transfer. NANO ENERGY[J]. 2017, 33: 177-183, http://dx.doi.org/10.1016/j.nanoen.2017.01.018.
[10] Xu, Wei, Wang, Wei, Guo, Zhiyong, Liu, Zhaoping. Fabrication of submillimeter-sized single-crystalline graphene arrays by a commercial printing- assisted CVD method. RSC ADVANCES[J]. 2017, 7(29): 17800-17805, https://www.webofscience.com/wos/woscc/full-record/WOS:000399005200030.
[11] Chen, Qing, Du, YuYu, Li, KaiMin, Xiao, HuiFang, Wang, Wei, Zhang, WeiMing. Graphene enhances the proton selectivity of porous membrane in vanadium flow batteries. MATERIALS & DESIGN[J]. 2017, 113: 149-156, http://dx.doi.org/10.1016/j.matdes.2016.10.019.
[12] Zhuang, Huajie, Deng, Wei, Wang, Wei, Liu, Zhaoping. Facile fabrication of nanoporous graphene powder for high-rate lithium-sulfur batteries. RSC ADVANCES[J]. 2017, 7(9): 5177-5182, http://ir.nimte.ac.cn/handle/174433/14112.
[13] Wen, Rongfu, Li, Qian, Wang, Wei, Latour, Benoit, Li, Calvin H, Li, Chen, Lee, YungCheng, Yang, Ronggui. Enhanced bubble nucleation and liquid rewetting for highly efficient boiling heat transfer on two-level hierarchical surfaces with patterned copper nanowire arrays. NANO ENERGY[J]. 2017, 38: 59-65, http://dx.doi.org/10.1016/j.nanoen.2017.05.028.
[14] Liu, Rui, Zhu, Li Qiang, Wang, Wei, Hui, Xiao, Liu, Zhao Ping, Wan, Qing. Biodegradable oxide synaptic transistors gated by a biopolymer electrolyte. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2016, 4(33): 7744-7750, https://www.webofscience.com/wos/woscc/full-record/WOS:000382020800005.
[15] Fan, Xu, Ji, Jingjing, Jiang, Xiangping, Wang, Wei, Liu, Zhaoping. Facile fabrication of stable and high-rate Si/ NiSix/CNTs Li-ion anodes with a buffering interface. RSC ADVANCES[J]. 2016, 6(82): 78559-78563, https://www.webofscience.com/wos/woscc/full-record/WOS:000382539300038.
[16] Fan, Xu, Jiang, Xiangping, Wang, Wei, Liu, Zhaoping. Green synthesis of nanoporous Si/C anode using NaCl template with improved cycle life. MATERIALS LETTERS[J]. 2016, 180: 109-113, http://dx.doi.org/10.1016/j.matlet.2016.05.092.
[17] Wan, Chang Jin, Liu, Yang Hui, Feng, Ping, Wang, Wei, Zhu, Li Qiang, Liu, Zhao Ping, Shi, Yi, Wan, Qing. Flexible Metal Oxide/Graphene Oxide Hybrid Neuromorphic Transistors on Flexible Conducting Graphene Substrates. ADVANCED MATERIALS[J]. 2016, 28(28): 5878-+, https://www.webofscience.com/wos/woscc/full-record/WOS:000382400900011.
[18] Yang, G Y, Chen, L, Jiang, P, Guo, Z Y, Wang, W, Liu, Z P. Fabrication of tunable 3D graphene mesh network with enhanced electrical and thermal properties for high-rate aluminum-ion battery application. RSC ADVANCES[J]. 2016, 6(53): 47655-47660, https://www.webofscience.com/wos/woscc/full-record/WOS:000377253400056.
[19] Li, Zhenzhen, Wang, Wei, Li, Zhihu, Qin, Zhihong, Wang, Jun, Liu, Zhaoping. Bridging porous Si-C composites with conducting agents for improving battery cycle life. JOURNAL OF POWER SOURCES[J]. 2015, 286: 534-539, http://dx.doi.org/10.1016/j.jpowsour.2015.04.036.
[20] Tian, Miao, Wang, Wei, Liu, Yang, Jungjohann, Katherine L, Harris, C Thomas, Lee, YungCheng, Yang, Ronggui. A three-dimensional carbon nano-network for high performance lithium ion batteries. NANO ENERGY[J]. 2015, 11: 500-509, http://dx.doi.org/10.1016/j.nanoen.2014.11.006.
[21] Wang, Wei, Tian, Miao, Wei, Yujie, Lee, SeHee, Lee, YungCheng, Yang, Ronggui. Binder-free three-dimensional silicon/carbon nanowire networks for high performance lithium-ion battery anodes. NANO ENERGY[J]. 2013, 2(5): 943-950, http://dx.doi.org/10.1016/j.nanoen.2013.03.015.
[22] Tian, Miao, Wang, Wei, Wei, Yujie, Yang, Ronggui. Stable high areal capacity lithium-ion battery anodes based on three-dimensional Ni-Sn nanowire networks. JOURNAL OF POWER SOURCES[J]. 2012, 211: 46-51, http://dx.doi.org/10.1016/j.jpowsour.2012.03.084.
[23] Wang, Wei, Li, Dan, Tian, Miao, Lee, YungCheng, Yang, Ronggui. Wafer-scale fabrication of silicon nanowire arrays with controllable dimensions. APPLIED SURFACE SCIENCE[J]. 2012, 258(22): 8649-8655, http://dx.doi.org/10.1016/j.apsusc.2012.05.067.
[24] Wang, Wei, Tian, Miao, Abdulagatov, Aziz, George, Steven M, Lee, YungCheng, Yang, Ronggui. Three-Dimensional Ni/TiO2 Nanowire Network for High Areal Capacity Lithium Ion Microbattery Applications. NANO LETTERS[J]. 2012, 12(2): 655-660, https://www.webofscience.com/wos/woscc/full-record/WOS:000299967800021.
[25] Li, D, Wu, G S, Wang, W, Wang, Y D, Liu, Dong, Zhang, D C, Chen, Y F, Peterson, G P, Yang, Ronggui. Enhancing Flow Boiling Heat Transfer in Microchannels for Thermal Management with Monolithically-Integrated Silicon Nanowires. NANO LETTERS[J]. 2012, 12(7): 3385-3390, https://www.webofscience.com/wos/woscc/full-record/WOS:000306296200006.
[26] Tian, Miao, Wang, Wei, Lee, SeHee, Lee, YungCheng, Yang, Ronggui. Enhancing Ni-Sn nanowire lithium-ion anode performance by tailoring active/inactive material interfaces. JOURNAL OF POWER SOURCES[J]. 2011, 196(23): 10207-10212, http://dx.doi.org/10.1016/j.jpowsour.2011.08.062.

科研活动

   
科研项目
(1) 三维硅碳复合负极材料的界面稳定性研究,主持,省级,2013-01--2015-12
(2) 春蕾人才,主持,研究所(学校)级,2012-10--2016-10