基本信息

许晶禹  博士  力学研究所  研究员 / 博士生导师
电子邮件: xujingyu@imech.ac.cn
通信地址: 北京市
邮政编码:100190

研究领域

主要研究领域为多相流体力学、石油流变学、海洋工程、油气储运理论与技术等。截止到目前已发表学术论文200余篇, 出版学术专著《管道式油气水分离技术》,已获得国家授权的发明专利20余项,国际PCT专利2项。

作为主要研发人员发明的管道式油气水分离装置成功应用于我国的辽河油田、南海油田等。承担并完成了国家重大仪器开发专项《水下油气水高效分离与计量装置》、院重大项目课题、863课题,国家自然科学基金,以及中海油、中石化等企业委托项目等。

受聘担任《中国海洋平台》、《水动力学研究与进展》、《Journal of Hydrodynamics》、《石油钻探技术》等杂志编委,第十届中国流变学专业委员会委员、第八届《中国计量测试学会》理事会理事、国际60余期刊的审稿人等。

招生信息

中国科学院力学研究所 研究员/博士生导师

中国科学院大学 工程科学学院 岗位教授

招生专业:

   080104-工程力学

   080103-流体力学

   085800-能源动力

招生方向:

(1)多相流体力学、混合物流变学

(2)海洋工程、石油工程、油气储运

工作经历

2015-12~现在, 中国科学院力学研究所, 研究员

2010-12~2015-12,中国科学院力学研究所, 副研究员

2007-07~2010-12,中国科学院力学研究所, 助理研究员

社会兼职

l  《全国流变学专业委员》 第九届委员会委

l  《中国计量测试学会》 第八届理事会理

l  《水动力学研究与进展》杂志编

l  《中国海洋平台》杂志

l  《石油钻探技术》杂志编委

l  《Journal of Hydrodynamics 》,《Frontiers in Energy Research》,《FDMP-Fluid Dynamics & Materials Processing》etc., Editorial Board Member

l    International Journal of Multiphase Flow, Chemical Engineering Journal, Chemical Engineering Research & Design, Industrial & Engineering Chemistry Research, Oil & Gas Science and Technology等60余国际学术杂志审稿人

教授课程

非牛顿流与多相流体力学

专利与奖励

   
专利成果

  1. 一种管道式油气水分离与污水处理装置及应用方法, 专利授权, 2019, 第 5 作者, 专利号: CN110433571A
  2. 一种天然气除湿装置, 专利授权, 2019, 第 3 作者, 专利号: CN105861087B
  3. 两种不同密度介质的同向旋流分离器, 发明专利, 2017, 第 3 作者, 专利号: CN106693447A
  4. 一种螺旋片导流式相分离装置, 专利授权, 2017, 第 1 作者, 专利号: CN106391335A
  5. 油气水多相分离系统及其应用方法, 发明专利, 2015, 第 1 作者, 专利号: CN105031977A
  6. 一种含油污水旋流气浮分离装置, 发明专利, 2013, 第 3 作者, 专利号: CN103303992A
  7. 一种含气、水原油的除水系统及其应用方法, 发明专利, 2013, 第 1 作者, 专利号: CN103045295A
  8. 管道式两级导流片型油水分离器及其应用方法, 发明专利, 2012, 第 4 作者, 专利号: CN102743898A
  9. 一种旋流气浮油水分离装置及气浮发生器, 发明专利, 2012, 第 3 作者, 专利号: CN102626560A
  10. 一种管道式导流片型油水分离器及其除水装置, 发明专利, 2012, 第 2 作者, 专利号: CN102626561A
  11. 油水两相流部分分离在线计量的装置及其应用方法, 发明专利, 2012, 第 1 作者, 专利号: CN102628702A
  12. 一种组合式柱型油水旋流分离装置, 发明专利, 2012, 第 1 作者, 专利号: CN102500136A
  13. 一种管道式导流片型油水分离器的除水装置和油水旋流分离器, 发明专利, 2012, 第 2 作者, 专利号: CN102423549A
  14. 一种轴向式入口油水旋流分离器, 发明专利, 2011, 第 3 作者, 专利号: CN102251765A
  15. 新型管道式导流片型油水分离器起旋装置, 发明专利, 2011, 第 3 作者, 专利号: CN102251766A
  16. 一种完全分离型油、气、水多相流量计, 发明专利, 2011, 第 3 作者, 专利号: CN102128658A
  17. 一种油、水界面测量方法, 发明专利, 2011, 第 2 作者, 专利号: CN102109372A
  18. 动态气浮油水分离装置和方法, 发明专利, 2011, 第 3 作者, 专利号: CN102010021A
  19. 复合式油水分离系统, 发明专利, 2010, 第 4 作者, 专利号: CN101810941A
  20. 一种气固、液固、液液引射加料的系统及配比输运方法, 发明专利, 2008, 第 8 作者, 专利号: CN100443739C

出版信息

   
发表论文-国际期刊

2023年
[1].Three-dimensional interface structures and characteristics in a stratified gas–liquid pipe flow, Chemical Engineering Science,277, 2023,118861
[2].Oil-water two-phase flow-induced vibration of a cylindrical cyclone with vortex finder. PHYSICS OF FLUIDS, 4,2023,35:43317.
[3].Experimental investigation of film reversal evolution characteristics in gas liquid annular flow. AIP ADVANCES, 1,2023,13:15013.
2022年
[1].Prediction of the liquid film reversal of annular flow in vertical and inclined pipes. International Journal of Multiphase Flow,146 (2022): 103853
[2].Wall Slip and Flow Characteristics of Gas–Liquid–Solid Phase Coupling Flowing in Horizontal Pipelines. Industrial & Engineering Chemistry Research 2022, 61(14), 4951–4970
[3].Effects of pressure control on droplet size distribution and flow regimes in gas–liquid cylindrical cyclone. Journal of Natural Gas Science and Engineering,100 (2022) 104465
[4].Oil-water separation in a cylindrical cyclone with vortex finder, Physics of Fluids 34 (2022)  033314
[5].An investigation of a gas-liquid swirling flow with shear-thinning power-law liquids, Physics of Fluids 2022, 34(7), 073320
[6].Viscoelastic Behavior and Constitutive Relation of Heavy Crude Oils, ACS Omega, 2022, 7(35), 30816–30822
[7].Effect of oil properties on spilled oil recovery using a mechanism coupling surface vortices and cyclone separation, Ocean Engineering, 263, 2022, 112383
2021年
[1].Mechanism Investigation on a Novel Oil Recovery Skimmer Coupling Free Surface Vortex and Cyclone Separation. ACS OMEGA,2021,6(31):20483-20491.
[2].Investigation on the variation regularity of the characteristic droplet diameters in the swirling flow field. Chemical Engineering Science, 2021, 229, 116153. 
[3].Research on Critical Liquid-Carrying Model in Wellbore and Laboratory Experimental Verification. Processes, 2021, 9, 923. 
[4].Modeling Transient Flow in CO2 Injection Wells by Considering the Phase Change. Processes 2021, 9, 2164
2020年
[1].Separation mechanism and influential factor study on vane-type-associated petroleum gas separator, Separation and Purification Technology, 2020, 250, 117274.
[2].Evaluation of the Behavioral Characteristics in a Gas and Heavy Oil Stratified Flow According to the Herschel-Bulkley Fluid Model. ACS OMEGA, 2020, 5, 17787-17800.
[3].Investigation of the Gas–Liquid Two-Phase Flow and Separation Behaviors at Inclined T-Junction Pipelines. ACS Omega, 5, 21443–21450.
[4].Investigation on separation performance of vane-type gas-liquid tube separator. Chemical Industry & Chemical Engineering Quarterly, 2020,26(3):227−236.
[5].Coalescence, and Migration Regularity of Bubbles under Gas-Liquid Swirling Flow in Gas-Liquid Cylindrical Cyclone. Industrial & Engineering Chemistry Research, 2020, 59, 2068-2082.
[6].Experimental and numerical study of separation characteristics in gas-liquid cylindrical cyclone. Chemical Engineering Science, 2020, 214, 115362.
[7].Investigation into atomization spray blending property in heavy crude oil extraction under laboratory conditions. Journal of Petroleum Science and Engineering, 2020,184, 106494.
[8].Study on Breakage Mechanism in the Swirl Generating Stage of an Oil-Water Separator for Marine Oil Extraction and Its Verification. JOURNAL OF COASTAL RESEARCH,2020:417-420.
[9].Numerical and Experimental Studies of an Oil Slick Recovery Method That Uses a Free Surface Vortex. ACS Omega,2020,5(48):31332-31341.
[10].Experimental Investigation of the Flow Characteristics in Crude Oil Containing Sand and Gas Flowing Along Vertical Pipelines. ACS Omega,2020,5(48):31262-31271.
2019年
[1].Rheological characteristics of unstable heavy crude oil-water dispersed mixtures. Journal of Petroleum Science and Engineering, 2019, 182, 106299.
[2].Apparent viscosity characteristics and prediction model of an unstable oil-in-water or water-in-oil dispersion system. Journal of Dispersion Science and Technology, 2019, 40, 1645-1656.
[3].Viscoelastic characteristics of heavy crude oil-water two-phase dispersed mixtures. Journal of Petroleum Science and Engineering, 2019, 176:141-149.
2018年
[1].Separation characteristics of the gas and liquid phases in a vane-type swirling flow field. International Journal of Multiphase flow, 2018, 107, 131-145
[2].A Study of the Swirling Flow Field Induced by Guide Vanes Using Electrical Resistance Tomography and Numerical Simulations, Chemical Engineering Communications, 2018, 205, 1351-1364
[3].Breakup and coalescence regularity of non-dilute oil drops in a vane-type swirling flow field. Chemical Engineering Research and Design 2018, 129, 35-54
[4].Characteristics of air-water upward intermittent flows with surfactant additive in a pipeline-riser system. Journal of Hydrodynamics 2018, 30, 287-295
[5].Gas-liquid flow splitting in T-junction with inclined lateral arm. Journal of Hydrodynamics 2018, 30, 173-176
2017年
[1].Rheological behavior and viscosity reduction of heavy crude oil and its blends from the Sui-zhong oilfield in China. Journal of Petroleum Science and Engineering. 2017, 156, 563-574
[2].Rheological properties of heavy crude oil containing sand from Bo-hai oilfield in China. Appl. Rheol. 27, 2 (2017) 24849-9
[3].An experimental study on gas and liquid separation at Y-junction tubes by pressure control. Separation Science and Technology 2017, 52, 1496-1503
[4].A study on pure IL VIV of a free spanning pipeline with general boundary conditions. China Ocean Engineering 2017, 31, 114-122
2016年
[1].Characteristics of water holdup for oil and water mixture flows in horizontal, vertical, and inclined pipes. The Canadian Journal of Chemical Engineering 2016, 94, 2417-2426
[2].Rheological behavior of oil and water emulsions and theirs flow characterization in horizontal pipes. The Canadian Journal of Chemical Engineering 2016, 94, 324-331
[3].A simple model for predicting the two-phase heavy crude oil horizontal flow with low gas fraction. Chemical Engineering Communications 2016, 203, 1131-1138
[4].Rheological study of mudflows at Lianyungang in China. International Journal of Sediment Research 2016, 31, 71-78
2015年
[1].A Study on Flow Characteristics of Heavy Crude Oil for Pipeline Transportation. Petroleum Science and Technology 2015, 33, 1425-1433
[2].Measurement of an oil-water flow via the correlation of turbine flow meter, gamma ray densitometry and drift-flux model. Journal of Hydrodynamics 2015, 27, 548- 555
[3].Flow field of continuous phase in a vane-type pipe oi-water separator. Experimental Thermal and Fluid Science 2015, 60, 208-212
2014年
[1].Pressure Drop Models for Gas/Non-Newtonian Power-Law Fluids Flow in Horizontal Pipes. Chemical Engineering & Technology 2014, 37, 717-722
[2].Experimental investigation on yield stress of water-in-heavy crude oil emulsions in order to improve pipeline flow. Journal of Dispersion Science and Technology 2014, 35, 593-598
2013年
[1].A simple correlation for prediction of the liquid slug holdup in gas/non-Newtonian fluids: horizontal to upward inclined flow. Experimental Thermal and Fluid Science 2013, 44, 893-896
[2].Experimental validation of the calculation of phase holdup for an oil-water two-phase vertical flow based on the measurement of pressure drops. Flow Measurement and Instrumentation. 2013, 31, 96-101
[3].Apparent viscosity of oil-water (coarse) emulsion and its rheological characterization during the phase inversion region. Journal of Dispersion Science and Technology 2013, 34, 1148-1160
2012年
[1].Oil-gas-water three-phase upward flow through a vertical pipe: influence of gas injection on the pressure gradient. International Journal of Multiphase Flow 2012, 46, 1-8
[2].Experimental study of a vane-type pipe separator for oil-water separation, Chemical Engineering Research and Design 2012, 90, 1652-1659
[3].Investigation on Oil-Water Separation in a Liquid-Liquid Cylindrical Cyclone. Journal of Hydrodynamics, 2012, 24,116-123
[4].Investigations of phase inversion and frictional pressure gradients in upward and downward oil-water flow in vertical pipes. International Journal of Multiphase flow 2012, 36, 930-939
2010年
[1].Investigation on average void fraction for air/non-Newtonian power-law fluids two-phase flow in downward inclined pipes. Experimental Thermal and Fluid Science 2010, 34, 1484-1487
2009年
[1].Influence of gas injection on in-situ oil fraction of an oil-water flow in horizontal pipes. Chemical Engineering and Technology 2009, 32, 1922-1928
[2].Correlation of electromagnetic flow Meter, electrical resistance tomography and mechanistic modelling for a new solution of solid slurry measurement. Journal of Hydrodynamics 2009, 21, 557-563
[3].Study of drag reduction by gas injection for power-law fluid flow in horizontal stratified and slug flow regimes. Chemical Engineering Journal 2009, 147, 235-244
[4].A simple model for predicting the void fraction of gas/non-Newtonian fluid intermittent flows in upward inclined pipes. Chemical Engineering Communications 2009, 196, 746-753
2008年
[1].Experimental investigation on the slip between oil and water in horizontal pipes. Experimental Thermal and Fluid Science 2008, 33, 178-183
[2].Experimental investigation on the holdup distribution of oil-water two-phase flow in horizontal parallel tubes. Chemical Engineering and Technology 2008, 31, 1536-1540
2007年
[1].Studies on two-phase co-current air/non-Newtonian shear-thinning fluid flows in inclined smooth pipes. International Journal of Multiphase flow 2007, 33, 948-969
[2].An experimental study of in-situ phase fraction in jet-pump using electrical resistance tomography technique. Chinese Physics Letters 2007, 24, 512-515
[3].Effects of non-Newtonian liquid properties on pressure drop during horizontal gas-liquid flow. Journal of Central South University of Technology. 2007, 14:112-115

发表论文-国内期刊

  1. 邢树宾,陈瑶瑶,杨乐乐,等. 基于气液分离的天然气双入口优化设计[J]. 天然气工业,2023,43(02):114-120.
  2. 吴奇霖,刘硕,许晶禹. 天然气引射器流场特性及有效工作区间研究[J]. 流体机械,2023,51(01):85-91.
  3. 张彦欢,刘硕,杨猛,等. 被动式轴向旋流除气装置性能研究[J]. 力学与实践,2022:9.
  4. 刘硕,柯文奇,杨猛,等. 稠油开采中新型井下混配器降黏携带特性研究[J]. 石油机械,2022,50(06):91-97.
  5. 朱沫,欧宇钧,吴辰,等. 柱型旋流器内油-水两相流的流场特征和分离性能[J]. 水动力学研究与进展A辑,2022,37(01):49-55.
  6. 刘小川,刘硕,顾成曦,等. 小型航煤储罐的吸瘪机理[J]. 油气储运,2021,40(01):33-38+65.
  7. 顾成曦,刘硕,侯林彤,等. 导流片型旋流场内油滴聚并影响因素研究[J]. 水动力学研究与进展. A,2020,35(4):420-427.
  8. 徐文凯,牛骏,柯文奇,等. 雾化液滴掺混稠油的实验和数值模拟研究[J]. 水动力学研究与进展. A辑,2019,34(01):45-52.
  9. 蔡亮,翟加钢,张栋,等. 旋流分离器在去除航空煤油固相杂质中的应用研究[J]. 水动力学研究与进展. A辑,2018,33(1):73-80.
  10. 王信鹏,邢树宾,马志涛,等. 高含气井下气液混合输送技术研究[J]. 水动力学研究与进展. A辑,2018,33(6):759-765.
  11. 侯林彤,顾成曦,刘硕,等. 气体/高黏液体两相间歇流动时液相含率的变化特性研究[J]. 水动力学研究与进展. A辑,2018,33(6):726-730.
  12. 陈小平,许晶禹. 稠油动力黏度预测研究[J]. 水动力学研究与进展. A辑,2017,32(1):11-18.
  13. 刘小川,许晶禹. 低温环境下管道法兰连接的应力分析[J]. 管道技术与设备,2017(1):32-35.
  14. 李永丰,刘敏,王晓飞,等. 海上油田含聚生产水旋流气浮装置试验研究[J]. 油气田地面工程,2016,35(10):22-25.
  15. 魏丛达,吴奇霖,史仕荧,等. 新型两级气浮旋流设备结构优化与性能研究[J]. 石油机械,2016,44(01):103-107.
  16. 高梦忱,刘硕,许晶禹. 乳化剂添加对气液垂直管流中压降影响的研究[J]. 水动力学研究与进展(A辑),2016,31(6):673-680.
  17. 刘硕,刘小川,邵伟光,等. 机坪管网输送低温介质时流固耦合分析[J]. 水动力学研究与进展(A辑),2016,31(6):739-744.
  18. 王成杰,梁斌,刘硕,等. 考虑管土耦合的机坪垂直管道应力分析[J]. 力学与实践,2016,38(6):624-630.
  19. 刘海俊,张军,许晶禹,等. 柱状气浮分离器处理含油污水实验研究[J]. 水动力学研究与进展. A辑,2016,31(3):334-340.
  20. 张栋,张健,刘硕,等. 超稠原油的流变学特性及流动特征研究[J]. 水动力学研究与进展. A辑,2016,31(2):145-150.
  21. 陈小平,张健,许晶禹. 稠油降黏减阻及其流变学性质[J]. 油气储运,2015,34(11):1171-1176.
  22. 吴应湘,许晶禹. 管道式油气水高效分离技术[J]. 科技促进发展,2015(3):374-379.
  23. 吴应湘,许晶禹. 油水分离技术现状及发展趋势[J]. 力学进展,2015,45:179-216.
  24. 高梦忱,张健,刘硕,等. 立管系统泡状流和段塞流的流动特性研究[J]. 水动力学研究与进展. A辑,2014,29(6):635-641.
  25. 魏 丽,高梦忱,许晶禹. 英国北海地区采油成本同业对标分析[J]. 石油化工技术与经济,2014,30(4):6-10.
  26. 吴奇霖,张健,许晶禹. 粗油水乳状液的流变特性[J]. 油气储运,2014,33(5):531-537.
  27. 翟加钢,刘海飞,许晶禹. 液-固旋流器分离过程的数值模拟[J]. 油气储运,2014,33(4):412-417.
  28. 高梦忱,吴军,刘小川,等. 垂直管道内油-水两相环状流的流动特征[J]. 水动力学研究与进展. A辑,2014,29(2):225-231.
  29. 陈颂阳,魏从达,吴奇霖,等. 管道式油水分离系统分离特性研究[J]. 水动力学研究与进展. A辑,2013,28(6):637-643.
  30. 徐万海,许晶禹,吴应湘. 圆柱结构顺流向第一不稳定区内涡激振动的研究[J]. 水动力学研究与进展. A辑,2013,28(2):123-127.
  31. 魏丛达,许晶禹,王立洋,等. T 型管内油水两相流动规律及其应用[J]. 油气储运,2012,31(12):923-926.
  32. 刘海飞,黄三平,许晶禹,等. 超稠油水在倾斜管路中两相流动的研究[J]. 水动力学研究与进展. A辑,2012,27(6):742-748.
  33. 许庆华, 孙焕强, 许晶禹, 邓晓辉, 吴应湘,xujingyu@imech.ac.cn(许晶禹). 低含水 W/O 乳化液电脱水实验研究[J]. 水动力学研究与进展(A辑),2012,27(4):436-441.
  34. 李志彪,许晶禹,吴应湘. 气液混输管线间歇流动压降研究[J]. 管道技术与设备,2011(1):4-8.
  35. 邓晓辉,许晶禹,吴应湘,等. 动态微气泡浮选除油技术研究[J]. 工业水处理,2011,31(4):89-90.
  36. 刘海飞,邓晓辉,罗东红,等. 柱型旋流器内单相流场压降的实验研究[J]. 水动力学研究与进展. A辑,2010,25(6):851-856.
  37. 崔斌,吴应湘,许晶禹. 油水井带压作业装置中环形密封胶芯的设计[J]. 石油化工高等学校学报,2009(3):79-82.
  38. 常英,许晶禹,吴应湘. 水平分支管路中油水两相流动研究[J]. 水动力学研究与进展. A辑,2008,23(6):702-708.
  39. 侯力群,吴应湘,许晶禹,等. 天然气水合物热激励法开采模型研究[J]. 西安石油大学学报(自然科学版),2008,23(2):44-47+118.
  40. 许晶禹,吴应湘,李东晖. 液相介质对水平气液间歇流动压降的影响[J]. 过程工程学报,2006,6(2):161-166.
  41. 许晶禹,吴应湘,李东晖. 利用射流泵输送油水两相管流的实验研究[J]. 实验流体力学,2005,19(4):49-55.

出版专著

《管道式油气水分离技术》, 科学出版社, 2017. ISBN: 978-7-03-051971-9.

科研活动

   
主持的项目

承担并完成了国家重大仪器开发专项子任务、院重大项目课题、863子课题,国家自然科学基金,以及中海油、中航油、中石油、中石化等企业委托项目等。目前正在承担中科院先导专项(B类)的课题研究,以及中海油、中航油等企业委托的科研项目。