基本信息
汪国雄  男  博导  中国科学院大连化学物理研究所
电子邮件: wanggx@dicp.ac.cn
通信地址: 大连市中山路457号,502组
邮政编码: 116023

招生信息

   
招生专业
070304-物理化学(含:化学物理)
招生方向
电催化,二氧化碳电还原,燃料电池,金属-空气电池

教育背景

2000-09--2006-05   中国科学院大连化学物理研究所   博士
1996-09--2000-06   武汉大学   学士
学历

研究生

学位

博士

出国学习工作
2007年9月-2010年12月 日本北海道大学

工作经历

2006年6月-2007年8月  中国科学院大连化学物理研究所 
2010年12月-现在            中国科学院大连化学物理研究所
工作简历
2016-07~现在, 中国科学院大连化学物理研究所, 博士生导师,碳基资源电催化转化研究组组长
2015-07~现在, 中国科学院大连化学物理研究所, 研究员
2010-12~2015-06,中国科学院大连化学物理研究所, 副研究员
2007-09~2010-12,日本北海道大学, 博士后
2006-06~2007-09,中国科学院大连化学物理研究所, 助理研究员

专利与奖励

   
奖励信息
(1) 全国创新争先奖牌, 特等奖, 国家级, 2017
专利成果
[1] 汪国雄, 姜晓乐, 包信和. 用于二氧化碳电催化还原的Bi/C催化剂制备方法. CN: CN109930165A, 2019-06-25.

[2] 汪国雄, 阎程程, 叶益凡, 包信和. 用于二氧化碳电还原反应的Ni-N-C催化剂及制备和应用. CN: CN109652821A, 2019-04-19.

[3] 汪国雄, 叶益凡, 阎程程, 包信和. 一种单原子铁基碳材料及制备方法和电催化应用. CN: CN109494381A, 2019-03-19.

[4] 傅强, 孙梦梦, 汪国雄. 一种抗毒化Pt基纳米催化剂及其制备方法和应用. CN: CN107732262A, 2018-02-23.

[5] 汪国雄, 高敦峰, 姜晓乐, 包信和. 金属-氧化铈催化剂的制备方法及其在二氧化碳电催化还原中的应用. CN: CN106268795A, 2017-01-04.

[6] 汪国雄, 王静, 武海华, 包信和. 一种氮掺杂碳纳米管封装钴纳米颗粒的制备方法. CN: CN105618789A, 2016-06-01.

[7] 汪国雄, 李佳媛, 王静, 包信和. Fe-N-C/C-SiC催化剂及其制备和应用. CN: CN105618096A, 2016-06-01.

[8] 汪国雄, 王静, 谭大力, 包信和. 一种氮掺杂的石墨化碳封装铁纳米颗粒的制备方法. CN: CN104607224A, 2015-05-13.

[9] 包信和, 王静, 汪国雄, 谭大力. 一种空心碳纳米笼材料的制备方法. CN: CN104118858A, 2014-10-29.

[10] 包信和, 王静, 汪国雄, 谭大力. 用于氧还原反应的非贵金属催化剂的制备方法. CN: CN104117356A, 2014-10-29.

[11] 汪国雄, 于良, 邓德会, 谭大力, 潘秀莲, 包信和. 一种用于电催化反应的同步辐射原位检测装置. CN: CN103884728A, 2014-06-25.

[12] 包信和, 李佳媛, 汪国雄, 谭大力. 用于质子交换膜燃料电池的PtFe/C催化剂的制备方法. CN: CN103706375A, 2014-04-09.

[13] 孙公权, 汪国雄, 樊小颖, 王素力, 赵新生, 孙 海, 辛 勤. 用于质子交换膜燃料电池的膜电极结构及其制备方法. CN: CN100521313C, 2009-07-29.

[14] 孙公权, 孙 海, 王素力, 刘建国, 汪国雄, 樊小颖, 赵新生, 徐恒泳, 侯守福, 辛 勤. 一种直接醇燃料电池的膜电极的制备方法. CN: CN100454634C, 2009-01-21.

[15] 孙公权, 王素力, 孙 海, 汪国雄, 毛 庆, 王 琪, 辛 勤. 一种质子交换膜燃料电池有序化膜电极及其制备和应用. CN: CN1983684A, 2007-06-20.

[16] 孙公权, 王素力, 孙海, 汪国雄, 毛庆, 王琪, 辛勤. 一种质子交换膜燃料电池的电极、膜电极及制法和应用. CN: CN1964111A, 2007-05-16.

[17] 孙公权, 汪国雄, 王素力, 王 琪, 孙 海, 毛 庆, 郑思静, 俞耀伦, 辛 勤. 一种燃料电池的膜电极阴极结构及其制备方法和应用. CN: CN1937290A, 2007-03-28.

[18] 孙公权, 王素力, 吴智谋, 孙 海, 汪国雄, 毛 庆, 王 琪, 辛 勤. 质子交换膜燃料电池电极和膜电极的制法. CN: CN1933224A, 2007-03-21.

[19] 孙公权, 王素力, 汪国雄, 孙 海, 赵新生, 樊小颖, 辛 勤. 质子交换膜燃料电池多层膜电极结构及其制备方法. CN: CN1744359A, 2006-03-08.

出版信息

   
发表论文
[1] Cheng, Pengfei, Zheng, Daoyuan, Feng, Lu, Liu, Yuefeng, Liu, Junxue, Li, Juntao, Yang, Yang, Wang, Guoxiong, Han, Keli. Doped all-inorganic cesium zirconium halide perovskites with high-efficiency and tunable emission. JOURNAL OF ENERGY CHEMISTRY[J]. 2022, 65(2): 600-604, http://dx.doi.org/10.1016/j.jechem.2021.06.033.
[2] 高敦峰, 李合肥, 魏鹏飞, 王毅, 汪国雄, 包信和. 能源催化材料的电化学合成. 催化学报[J]. 2022, 43(4): 1001-1016, http://lib.cqvip.com/Qikan/Article/Detail?id=7106696385.
[3] Zang, Yipeng, Liu, Tianfu, Li, Hefei, Wei, Pengfei, Song, Yanpeng, Cheng, Chunfeng, Gao, Dunfeng, Song, Yuefeng, Wang, Guoxiong, Bao, Xinhe. In situ reconstruction of defect-rich SnO2 through an analogous disproportionation process for CO2 electroreduction. CHEMICAL ENGINEERING JOURNAL[J]. 2022, 446: http://dx.doi.org/10.1016/j.cej.2022.137444.
[4] Cheng, Chunfeng, Shao, Jiaqi, Wei, Pengfei, Song, Yanpeng, Li, Hefei, Gao, Dunfeng, Wang, Guoxiong. Nitrogen and Boron Co-Doped Carbon Spheres for Carbon Dioxide Electroreduction. CHEMNANOMAT[J]. 2021, 7(6): 635-640, http://dx.doi.org/10.1002/cnma.202100110.
[5] Li, Hefei, Liu, Tianfu, Wei, Pengfei, Lin, Long, Gao, Dunfeng, Wang, Guoxiong, Bao, Xinhe. High-Rate CO2 Electroreduction to C2+ Products over a Copper-Copper Iodide Catalyst. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2021, 60(26): 14329-14333, http://dx.doi.org/10.1002/anie.202102657.
[6] Liu, Qingxue, Song, Yuefeng, Li, Rongtan, Lv, Houfu, Feng, Weicheng, Shen, Yuxiang, Zhang, Xiaomin, Wang, Guoxiong, Bao, Xinhe. A vanadium-doped BSCF perovskite for CO2 electrolysis in solid oxide electrolysis cells. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2021, 46(38): 19814-19821, http://dx.doi.org/10.1016/j.ijhydene.2021.03.134.
[7] 高敦峰, 魏鹏飞, 李合肥, 林龙, 汪国雄, 包信和. 用于二氧化碳电催化还原的电解器研究进展(英文). 物理化学学报. 2021, 126-140, https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDAUTO&filename=WLHX202105016&v=MTQ4NjRSN3VmWWVSdUZpN2tVNy9PTWlIRGRyRzRITkRNcW85RVlvUjhlWDFMdXhZUzdEaDFUM3FUcldNMUZyQ1U=.
[8] 高敦峰, 魏鹏飞, 李合肥, 林龙, 汪国雄, 包信和. 用于二氧化碳电催化还原的电解器研究进展. 物理化学学报[J]. 2021, 37(5): 118-132, http://lib.cqvip.com/Qikan/Article/Detail?id=7104998293.
[9] Gao, Dunfeng, Wei, Pengfei, Li, Hefei, Lin, Long, Wang, Guoxiong, Bao, Xinhe. Designing Electrolyzers for Electrocatalytic CO2 Reduction. ACTA PHYSICO-CHIMICA SINICAnull. 2021, 37(5): http://dx.doi.org/10.3866/PKU.WHXB202009021.
[10] Lin, Long, Li, Haobo, Wang, Yi, Li, Hefei, Wei, Pengfei, Nan, Bing, Si, Rui, Wang, Guoxiong, Bao, Xinhe. Temperature-Dependent CO2 Electroreduction over Fe-N-C and Ni-N-C Single-Atom Catalysts. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION. 2021, [11] Gao, Dunfeng, Liu, Tianfu, Wang, Guoxiong, Bao, Xinhe. Structure Sensitivity in Single-Atom Catalysis toward CO2 Electroreduction. ACS ENERGY LETTERSnull. 2021, 6(2): 713-727, http://dx.doi.org/10.1021/acsenergylett.0c02665.
[12] Liu, Tianfu, Wang, Qi, Wang, Guoxiong, Bao, Xinhe. Electrochemical CO2 reduction on graphdiyne: a DFT study. GREEN CHEMISTRY[J]. 2021, 23(3): 1212-1219, http://dx.doi.org/10.1039/d0gc03742g.
[13] Ye, Ke, Liu, Tianfu, Song, Yanpeng, Wang, Qi, Wang, Guoxiong. Tailoring the interactions of heterogeneous Ag2S/Ag interface for efficient CO2 electroreduction. APPLIED CATALYSIS B-ENVIRONMENTAL[J]. 2021, 296: http://dx.doi.org/10.1016/j.apcatb.2021.120342.
[14] Lv, Houfu, Lin, Le, Zhang, Xiaomin, Song, Yuefeng, Matsumoto, Hiroaki, Zeng, Chaobin, Ta, Na, Liu, Wei, Gao, Dunfeng, Wang, Guoxiong, Bao, Xinhe. In Situ Investigation of Reversible Exsolution/Dissolution of CoFe Alloy Nanoparticles in a Co-Doped Sr2Fe1.5Mo0.5O6-delta Cathode for CO2 Electrolysis. ADVANCED MATERIALS[J]. 2020, 32(6): [15] Ye, Ke, Zhou, Zhiwen, Shao, Jiaqi, Lin, Long, Gao, Dunfeng, Ta, Na, Si, Rui, Wang, Guoxiong, Bao, Xinhe. In Situ Reconstruction of a Hierarchical Sn-Cu/SnOx Core/Shell Catalyst for High-Performance CO2 Electroreduction. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2020, 59(12): 4814-4821, [16] Feng, Weicheng, Song, Yuefeng, Zhang, Xiaomin, Lv, Houfu, Liu, Qingxue, Wang, Guoxiong, Bao, Xinhe. Platinum-Decorated Ceria Enhances CO(2)Electroreduction in Solid Oxide Electrolysis Cells. CHEMSUSCHEM[J]. 2020, 13(23): 6290-6295, https://www.webofscience.com/wos/woscc/full-record/WOS:000543764600001.
[17] Lv, Houfu, Liu, Tianfu, Zhang, Xiaomin, Song, Yuefeng, Matsumoto, Hiroaki, Ta, Na, Zeng, Chaobin, Wang, Guoxiong, Bao, Xinhe. Atomic-Scale Insight into Exsolution of CoFe Alloy Nanoparticles in La(0.4)Sr(0.6)Co(0.2)Fe(0.7)Mo(0.1)O(3-delta)with Efficient CO(2)Electrolysis. ANGEWANDTECHEMIEINTERNATIONALEDITION[J]. 2020, 59(37): 15968-15973, https://www.webofscience.com/wos/woscc/full-record/WOS:000542836100001.
[18] Wei, Pengfei, Li, Hefei, Lin, Long, Gao, Dunfeng, Zhang, Xiaomin, Gong, Huimin, Qing, Guangyan, Cai, Rui, Wang, Guoxiong, Bao, Xinhe. CO(2)electrolysis at industrial current densities using anion exchange membrane based electrolyzers. SCIENCE CHINA-CHEMISTRY[J]. 2020, 63(12): 1711-1715, http://lib.cqvip.com/Qikan/Article/Detail?id=7103734648.
[19] Shao, Jiaqi, Wang, Yi, Gao, Dunfeng, Ye, Ke, Wang, Qi, Wang, Guoxiong. Copper-indium bimetallic catalysts for the selective electrochemical reduction of carbon dioxide. CHINESE JOURNAL OF CATALYSIS[J]. 2020, 41(9): 1393-1400, http://dx.doi.org/10.1016/S1872-2067(20)63577-X.
[20] Lin, Long, Liu, Tianfu, Xiao, Jianping, Li, Hefei, Wei, Pengfei, Gao, Dunfeng, Nan, Bing, Si, Rui, Wang, Guoxiong, Bao, Xinhe. Enhancing CO(2)Electroreduction to Methane with a Cobalt Phthalocyanine and Zinc-Nitrogen-Carbon Tandem Catalyst. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2020, 59(50): 22408-22413, http://dx.doi.org/10.1002/anie.202009191.
[21] Cheng, Pengfei, Feng, Lu, Liu, Yuefeng, Zheng, Daoyuan, Sang, Youbao, Zhao, Wenyuan, Yang, Yang, Yang, Songqiu, Wei, Donghui, Wang, Guoxiong, Han, Keli. Doped Zero-Dimensional Cesium Zinc Halides for High-Efficiency Blue Light Emission. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2020, 59(48): 21414-21418, http://dx.doi.org/10.1002/anie.202008098.
[22] Wang Guoxiong. A significant breakthrough in electrocatalytic reduction of CO2 to ethylene and ethanol. SCIENCE CHINA-CHEMISTRY[J]. 2020, 63(8): 1023-1024, http://lib.cqvip.com/Qikan/Article/Detail?id=7102387746.
[23] Zhou, Yingjie, Lin, Le, Song, Yuefeng, Zhang, Xiaomin, Lv, Houfu, Liu, Qingxue, Zhou, Zhiwen, Ta, Na, Wang, Guoxiong, Bao, Xinhe. Pd single site-anchored perovskite cathode for CO2 electrolysis in solid oxide electrolysis cells. NANO ENERGY[J]. 2020, 71: http://dx.doi.org/10.1016/j.nanoen.2020.104598.
[24] Wang, Qi, Tao, Hualong, Li, Zhiqiang, Wang, Guoxiong. Effect of iron precursor on the activity and stability of PtFe/C catalyst for oxygen reduction reaction. JOURNAL OF ALLOYS AND COMPOUNDS[J]. 2020, 814: http://dx.doi.org/10.1016/j.jallcom.2019.152212.
[25] Li, Xu, Li, Xingxing, Liu, Chunxiao, Huang, Hongwen, Gao, Pengfei, Ahmad, Fawad, Luo, Laihao, Ye, Yifan, Geng, Zhigang, Wang, Guoxiong, Si, Rui, Ma, Chao, Yang, Jinlong, Zeng, Jie. Atomic-Level Construction of Tensile-Strained PdFe Alloy Surface toward Highly Efficient Oxygen Reduction Electrocatalysis. NANO LETTERS[J]. 2020, 20(2): 1403-1409, https://www.webofscience.com/wos/woscc/full-record/WOS:000514255400073.
[26] 高敦峰, 魏鹏飞, 李合肥, 林龙, 汪国雄, 包信和. 用于二氧化碳电催化还原的电解器研究进展(英文). 物理化学学报. 2020, 1140K-, [27] 邵加奇, 王毅, 高敦峰, 叶克, 王琪, 汪国雄. Cu-In二元金属催化剂上CO2电化学还原. 催化学报[J]. 2020, 41(9): 1393-1400, http://lib.cqvip.com/Qikan/Article/Detail?id=7102450470.
[28] Ye, Ke, Cao, Ang, Shao, Jiaqi, Wang, Gang, Si, Rui, Ta, Na, Xiao, Jianping, Wang, Guoxiong. Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity. SCIENCE BULLETIN[J]. 2020, 65(9): 711-719, http://dx.doi.org/10.1016/j.scib.2020.01.020.
[29] Ye Ke, Wang GuoXiong, Bao XinHe. Electrodeposited Sn-based Catalysts for CO2 Electroreduction. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY[J]. 2020, 39(2): 206-213, http://lib.cqvip.com/Qikan/Article/Detail?id=7101349104.
[30] Wang, Guoxiong, Gao, Dunfeng, Yan, Chengcheng, Bao, Xinhe. Electrocatalytic reduction of carbon dioxide over nanostructured catalyst. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETYnull. 2019, 257: https://www.webofscience.com/wos/woscc/full-record/WOS:000478860505666.
[31] Lv, Houfu, Lin, Le, Zhang, Xiaomin, Gao, Dunfeng, Song, Yuefeng, Zhou, Yingjie, Liu, Qingxue, Wang, Guoxiong, Bao, Xinhe. In situ exsolved FeNi3 nanoparticles on nickel doped Sr2Fe1.5Mo0.5O6- perovskite for efficient electrochemical CO2 reduction reaction. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2019, 7(19): 11967-11975, https://www.webofscience.com/wos/woscc/full-record/WOS:000472465300033.
[32] 阎程程, 林龙, 汪国雄, 包信和. 过渡金属-氮活性位点在二氧化碳电化学还原反应中的应用. 催化学报[J]. 2019, 40(1): 23-37, http://lib.cqvip.com/Qikan/Article/Detail?id=7000900678.
[33] Wang, Guoxiong. Electrocatalytic reduction of carbon dioxide over nanostructured catalysts. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETYnull. 2019, 258: [34] Song, Yuefeng, Zhou, Si, Dong, Qiao, Li, Yangsheng, Zhang, Xiaomin, Ta, Na, Liu, Zhi, Zhao, Jijun, Yang, Fan, Wang, Guoxiong, Bao, Xinhe. Oxygen Evolution Reaction over the Au/YSZ Interface at High Temperature. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2019, 58(14): 4617-4621, http://www.corc.org.cn/handle/1471x/2372623.
[35] Lv, Houfu, Zhou, Yingjie, Zhang, Xiaomin, Song, Yuefeng, Liu, Qingxue, Wang, Guoxiong, Bao, Xinhe. Infiltration of Ce0.8Gd0.2O1.9 nanoparticles on Sr2Fe1.5Mo0.5O6-delta cathode for CO2 electroreduction in solid oxide electrolysis cell. JOURNAL OF ENERGY CHEMISTRY[J]. 2019, 35: 71-78, http://dx.doi.org/10.1016/j.jechem.2018.11.002.
[36] Gao, Jian, Wang, Yun, Wu, Haihua, Liu, Xi, Wang, Leilei, Yu, Qiaolin, Li, Aowen, Wang, Hong, Song, Chuqiao, Gao, Zirui, Peng, Mi, Zhang, Mengtao, Ma, Na, Wang, Jiaou, Zhou, Wu, Wang, Guoxiong, Yin, Zhen, Ma, Ding. Construction of a sp(3)/sp(2) Carbon Interface in 3D N-Doped Nanocarbons for the Oxygen Reduction Reaction. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2019, 58(42): 15089-15097, http://dx.doi.org/10.1002/anie.201907915.
[37] Song, Yuefeng, Lin, Le, Feng, Weicheng, Zhang, Xiaomin, Dong, Qiao, Li, Xiaobao, Lv, Houfu, Liu, Qingxue, Yang, Fan, Liu, Zhi, Wang, Guoxiong, Bao, Xinhe. Interfacial Enhancement by gamma-Al2O3 of Electrochemical Oxidative Dehydrogenation of Ethane to Ethylene in Solid Oxide Electrolysis Cells. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2019, 58(45): 16043-16046, https://www.webofscience.com/wos/woscc/full-record/WOS:000487780800001.
[38] Yuefeng Song, Xiaomin Zhang, Yingjie Zhou, Houfu Lv, Qingxue Liu, Weicheng Feng, Guoxiong Wang, Xinhe Bao. Improving the performance of solid oxide electrolysis cell with gold nanoparticles-modified LSM-YSZ anode. 能源化学:英文版[J]. 2019, 28(8): 181-187, http://lib.cqvip.com/Qikan/Article/Detail?id=7002791754.
[39] Song, Yuefeng, Zhang, Xiaomin, Xie, Kui, Wang, Guoxiong, Bao, Xinhe. High-Temperature CO2 Electrolysis in Solid Oxide Electrolysis Cells: Developments, Challenges, and Prospects. ADVANCED MATERIALS[J]. 2019, 31(50): [40] Yan, Chengcheng, Lin, Long, Wang, Guoxiong, Bao, Xinhe. Transition metal-nitrogen sites for electrochemical carbon dioxide reduction reaction. CHINESE JOURNAL OF CATALYSIS[J]. 2019, 40(1): 23-37, http://dx.doi.org/10.1016/S1872-2067(18)63161-4.
[41] Lin, Long, Li, Haobo, Yan, Chengcheng, Li, Hefei, Si, Rui, Li, Mingrun, Xiao, Jianping, Wang, Guoxiong, Bao, Xinhe. Synergistic Catalysis over Iron-Nitrogen Sites Anchored with Cobalt Phthalocyanine for Efficient CO2 Electroreduction. ADVANCED MATERIALS[J]. 2019, 31(41): [42] Yang, Deren, Wang, Guoxiong, Wang, Xun. Photo- and thermo-coupled electrocatalysis in carbon dioxide and methane conversion. SCIENCE CHINA-MATERIALS[J]. 2019, 62(10): 1369-1373, [43] Houfu Lv, Yingjie Zhou, Xiaomin Zhang, Yuefeng Song, Qingxue Liu, Guoxiong Wang, Xinhe Bao. Infiltration of Ce0.8Gd0.2O1.9 nanoparticles on Sr2Fe1.5Mo0.5O6-δ cathode for CO2 electroreduction in solid oxide electrolysis cell. 能源化学:英文版[J]. 2019, 28(8): 71-78, http://lib.cqvip.com/Qikan/Article/Detail?id=7002791743.
[44] Yan, Chengcheng, Ye, Yifan, Lin, Long, Wu, Haihua, Jiang, Qike, Wang, Guoxiong, Bao, Xinhe. Improving CO2 electroreduction over ZIF-derived carbon doped with Fe-N sites by an additional ammonia treatment. CATALYSIS TODAY[J]. 2019, 330: 252-258, http://cas-ir.dicp.ac.cn/handle/321008/165680.
[45] Song, Yuefeng, Zhang, Xiaomin, Zhou, Yingjie, Lv, Houfu, Liu, Qingxue, Feng, Weicheng, Wang, Guoxiong, Bao, Xinhe. Improving the performance of solid oxide electrolysis cell with gold nanoparticles-modified LSM-YSZ anode. JOURNALOFENERGYCHEMISTRY[J]. 2019, 35: 181-187, http://lib.cqvip.com/Qikan/Article/Detail?id=7002791754.
[46] Yan, Chengcheng, Lin, Long, Wang, Guoxiong, Bao, Xinhe. Transition metal-nitrogen sites for electrochemical carbon dioxide reduction reaction. CHINESE JOURNAL OF CATALYSIS[J]. 2019, 40(1): 23-37, http://dx.doi.org/10.1016/S1872-2067(18)63161-4.
[47] 阎程程, 林龙, 汪国雄, 包信和. 过渡金属-氮活性位点在二氧化碳电化学还原反应中的应用(英文). 催化学报. 2019, 23-37, https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2019&filename=CHUA201901004&v=MjcwNjc0SDlqTXJvOUZZSVI4ZVgxTHV4WVM3RGgxVDNxVHJXTTFGckNVUjdxZVorUnZGaTdsVzd6SkppWGViN0c=.
[48] Ye, Ke, Wang, Gang, Cao, Dianxue, Wang, Guoxiong. Recent Advances in the Electro-Oxidation of Urea for Direct Urea Fuel Cell and Urea Electrolysis. TOPICS IN CURRENT CHEMISTRYnull. 2018, 376(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000448487800002.
[49] Cao, Yun, Geng, Zhigang, Chen, Weiwei, Cai, Fan, Wang, Guoxiong, Wang, Zhengfei, Zeng, Jie. Introduction of carbon-boron atomic groups as an efficient strategy to boost formic acid production toward CO2 electrochemical reduction. CHEMICAL COMMUNICATIONS[J]. 2018, 54(27): 3367-3370, https://www.webofscience.com/wos/woscc/full-record/WOS:000431721000013.
[50] Yan, Chengcheng, Lin, Long, Gao, Dunfeng, Wang, Guoxiong, Bao, Xinhe. Selective CO2 electroreduction over an oxidederived gallium catalyst. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2018, 6(40): 19743-19749, http://dx.doi.org/10.1039/c8ta08613c.
[51] Guan Fang, Zhang Xiaomin, Song Yuefeng, Zhou Yingjie, Wang Guoxiong, Bao Xinhe. Gd0.2Ce0.8O1.9纳米颗粒对固体氧化物电解池La0.6Sr0.4Co0.2Fe0.8O3-δ阳极析氧反应的影响. 催化学报[J]. 2018, 39(9): 1484-1492, http://lib.cqvip.com/Qikan/Article/Detail?id=675982237.
[52] Mengmeng Sun, Jinchao Dong, Yang Lv, Siqin Zhao, Caixia Meng, Yujiang Song, Guoxiong Wang, Jianfeng Li, Qiang Fu, Zhongqun Tian, Xinhe Bao. Pt@h-BN core-shell fuel electrocatalysis confined cell electrocatalysts wit under outer shells. 纳米研究:英文版[J]. 2018, 11(6): 3490-3498, http://lib.cqvip.com/Qikan/Article/Detail?id=675560682.
[53] Gao, Dunfeng, Zhou, Hu, Cai, Fan, Wang, Jianguo, Wang, Guoxiong, Bao, Xinhe. Pd-Containing Nanostructures for Electrochemical CO2 Reduction Reaction. ACS CATALYSIS[J]. 2018, 8(2): 1510-1519, http://cas-ir.dicp.ac.cn/handle/321008/168816.
[54] Yan, Chengcheng, Li, Haobo, Ye, Yifan, Wu, Haihua, Cai, Fan, Si, Rui, Xiao, Jianping, Miao, Shu, Xie, Songhai, Yang, Fan, Li, Yanshuo, Wang, Guoxiong, Bao, Xinhe. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. ENERGY & ENVIRONMENTAL SCIENCE[J]. 2018, 11(5): 1204-1210, http://dx.doi.org/10.1039/c8ee00133b.
[55] Sun, Mengmeng, Dong, Jinchao, Lv, Yang, Zhao, Siqin, Meng, Caixia, Song, Yujiang, Wang, Guoxiong, Li, Jianfeng, Fu, Qiang, Tian, Zhongqun, Bao, Xinhe. Pt@h-BN core-shell fuel cell electrocatalysts with electrocatalysis confined under outer shells. NANO RESEARCH[J]. 2018, 11(6): 3490-3498, http://dx.doi.org/10.1007/s12274-018-2029-5.
[56] Xiaomin Zhang, Yuefeng Song, Fang Guan, Yingjie Zhou, Houfu Lv, Guoxiong Wang, Xinhe Bao. Enhancing electrocatalytic CO2 reduction in solid oxide electrolysis cell with Ce0.9Mn0.1O2−δ nanoparticles-modified LSCM-GDC cathode. JOURNAL OF CATALYSIS. 2018, 359: 8-16, http://dx.doi.org/10.1016/j.jcat.2017.12.027.
[57] Geng, Zhigang, Kong, Xiangdong, Chen, Weiwei, Su, Hongyang, Liu, Yan, Cai, Fan, Wang, Guoxiong, Zeng, Jie. Oxygen Vacancies in ZnO Nanosheets Enhance CO2 Electrochemical Reduction to CO. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2018, 57(21): 6054-6059, https://www.webofscience.com/wos/woscc/full-record/WOS:000432710100008.
[58] 关放, 张小敏, 宋月锋, 周莹杰, 汪国雄, 包信和. Gd0.2Ce0.8O1.9纳米颗粒对固体氧化物电解池La0.6Sr0.4Co0.2Fe0.8O3-δ阳极析氧反应的影响. 催化学报[J]. 2018, 39(9): 1484-1492, http://lib.cqvip.com/Qikan/Article/Detail?id=675982237.
[59] Gao Dunfeng, Yan Chengcheng, Wang Guoxiong, Bao Xinhe. Pd/C Catalysts for CO_2 Electroreduction to CO:Pd Loading Effect. JOURNAL OF ELECTROCHEMISTRY[J]. 2018, 24(6): 757-765, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=6417254&detailType=1.
[60] Jiang, Xiaole, Li, Haobo, Xiao, Jianping, Gao, Dunfeng, Si, Rui, Yang, Fan, Li, Yanshuo, Wang, Guoxiong, Bao, Xinhe. Carbon dioxide electroreduction over imidazolate ligands coordinated with Zn(II) center in ZIFs. NANO ENERGY[J]. 2018, 52: 345-350, http://cas-ir.dicp.ac.cn/handle/321008/167054.
[61] Song, Yuefeng, Zhou, Zhiwen, Zhang, Xiaomin, Zhou, Yingjie, Gong, Huimin, Lv, Houfu, Liu, Qingxue, Wang, Guoxiong, Bao, Xinhe. Pure CO2 electrolysis over an Ni/ YSZ cathode in a solid oxide electrolysis cell. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2018, 6(28): 13661-13667, http://dx.doi.org/10.1039/c8ta02858c.
[62] Dunfeng Gao. Selective CO2 electroreduction over oxide-derived gallium Catalyst. Journal of Materials Chemistry A. 2018, [63] Xiaomin Zhang, Yuefeng Song, Fang Guan, Yingjie Zhou, Houfu Lv, Qingxue Liu, Guoxiong Wang, Xinhe Bao. (La0.75Sr0.25)0.95(Cr0.5Mn0.5)O3-δ-Ce0.8Gd0.2O1.9 scaffolded composite cathode for high temperature CO2 electroreduction in solid oxide electrolysis cell. JOURNAL OF POWER SOURCES. 2018, 400: 104-113, http://dx.doi.org/10.1016/j.jpowsour.2018.08.017.
[64] Zhou, Yingjie, Zhou, Zhiwen, Song, Yuefeng, Zhang, Xiaomin, Guan, Fang, Lv, Houfu, Liu, Qingxue, Miao, Shu, Wang, Guoxiong, Bao, Xinhe. Enhancing CO2 electrolysis performance with vanadium-doped perovskite cathode in solid oxide electrolysis cell. NANO ENERGY[J]. 2018, 50: 43-51, http://dx.doi.org/10.1016/j.nanoen.2018.04.054.
[65] Zhang, Xiaomin, Song, Yuefeng, Guan, Fang, Zhou, Yingjie, Lv, Houfu, Wang, Guoxiong, Bao, Xinhe. Enhancing electrocatalytic CO2 reduction in solid oxide electrolysis cell with Ce0.9Mn0.1O2-delta nanoparticles-modified LSCM-GDC cathode. JOURNAL OF CATALYSIS[J]. 2018, 359: 8-16, http://cas-ir.dicp.ac.cn/handle/321008/168706.
[66] Song, Yuefeng, Zhang, Xiaomin, Zhou, Yingjie, Jiang, Qike, Guan, Fang, Lv, Houfu, Wang, Guoxiong, Bao, Xinhe. Promoting oxygen evolution reaction by RuO2 nanoparticles in solid oxide CO2 electrolyzer. ENERGY STORAGE MATERIALS[J]. 2018, 13: 207-214, http://dx.doi.org/10.1016/j.ensm.2018.01.013.
[67] Sun, Mengmeng, Lv, Yang, Song, Yujiang, Wu, Hao, Wang, Guoxiong, Zhang, Hong, Chen, Mingshu, Fu, Qiang, Bao, Xinhe. CO-tolerant PtRu@h-BN/C core-shell electrocatalysts for proton exchange membrane fuel cells. APPLIED SURFACE SCIENCE[J]. 2018, 450: 244-250, http://dx.doi.org/10.1016/j.apsusc.2018.04.170.
[68] 高敦峰, 阎程程, 汪国雄, 包信和. Pd/C催化剂用于CO2电化学还原生成CO:Pd载量的影响(英文). 电化学[J]. 2018, 24(6): 757-765, http://lib.cqvip.com/Qikan/Article/Detail?id=6100190966.
[69] Zhang, Xiaomin, Song, Yuefeng, Guan, Fang, Zhou, Yingjie, Lv, Houfu, Liu, Qingxue, Wang, Guoxiong, Bao, Xinhe. (La0.75Sr0.25)(0.95)(Cr0.5Mn0.5)O3-delta-Ce0.8Gd0.2O1.9 scaffolded composite cathode for high temperature CO2 electroreduction in solid oxide electrolysis cell. JOURNAL OF POWER SOURCES[J]. 2018, 400: 104-113, http://cas-ir.dicp.ac.cn/handle/321008/166908.
[70] Guan, Fang, Zhang, Xiaomin, Song, Yuefeng, Zhou, Yingjie, Wang, Guoxiong, Bao, Xinhe. Effect of Gd0.2Ce0.8O1.9 nanoparticles on the oxygen evolution reaction of La0.6Sr0.400.2Fe0.8O3-delta anode in solid oxide electrolysis cell. CHINESE JOURNAL OF CATALYSIS[J]. 2018, 39(9): 1484-1492, https://www.webofscience.com/wos/woscc/full-record/WOS:000443531000006.
[71] Xiaomin Zhang, Yuefeng Song, Guoxiong Wang, Xinhe Bao. Co-electrolysis of CO2 and H2O in high-temperature solid oxide electrolysis cells: Recent advance in cathodes. 能源化学:英文版[J]. 2017, 839-853, http://lib.cqvip.com/Qikan/Article/Detail?id=84828190504849554853484853.
[72] Yifan Ye, Fan Cai, Chengcheng Yan, Yanshuo Li, Guoxiong Wang, Xinhe Bao. Two-step pyrolysis of ZIF-8 functionalized with ammonium ferric citrate for efficient oxygen reduction reaction. 能源化学:英文版[J]. 2017, 1174-1180, http://lib.cqvip.com/Qikan/Article/Detail?id=84828190504849554854484953.
[73] Haihua Wu, Xiaole Jiang, Yifan Ye, Chengcheng Yan, Songhai Xie, Shu Miao, Guoxiong Wang, Xinhe Bao. Nitrogen-doped carbon nanotube encapsulating cobalt nanoparticles towards efficient oxygen reduction for zinc–air battery. 能源化学:英文版[J]. 2017, 1181-1186, http://lib.cqvip.com/Qikan/Article/Detail?id=84828190504849554854484954.
[74] Gao, Dunfeng, Cai, Fan, Wang, Guoxiong, Bao, Xinhe. Nanostructured heterogeneous catalysts for electrochemical reduction of CO2. CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRYnull. 2017, 3: 39-44, http://dx.doi.org/10.1016/j.cogsc.2016.10.004.
[75] Wu, Haihua, Jiang, Xiaole, Ye, Yifan, Yan, Chengcheng, Xie, Songhai, Miao, Shu, Wang, Guoxiong, Bao, Xinhe. Nitrogen-doped carbon nanotube encapsulating cobalt nanoparticles towards efficient oxygen reduction for zinc-air battery. JOURNAL OF ENERGY CHEMISTRY[J]. 2017, 26(6): 1181-1186, http://dx.doi.org/10.1016/j.jechem.2017.09.022.
[76] Jiang, Xiaole, Wu, Haihua, Chang, Sujie, Si, Rui, Miao, Shu, Huang, Weixin, Li, Yanshuo, Wang, Guoxiong, Bao, Xinhe. Boosting CO2 electroreduction over layered zeolitic imidazolate frameworks decorated with Ag2O nanoparticles. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2017, 5(36): 19371-19377, http://dx.doi.org/10.1039/c7ta06114e.
[77] Cai, Fan, Gao, Dunfeng, Zhou, Hu, Wang, Guoxiong, He, Ting, Gong, Huimin, Miao, Shu, Yang, Fan, Wang, Jianguo, Bao, Xinhe. Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction (vol 8, pg 2569, 2017). CHEMICAL SCIENCE. 2017, 8(4): 3277-3277, http://cas-ir.dicp.ac.cn/handle/321008/169388.
[78] Cai, Fan, Gao, Dunfeng, Zhou, Hu, Wang, Guoxiong, He, Ting, Gong, Huimin, Miao, Shu, Yang, Fan, Wang, Jianguo, Bao, Xinhe. Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction. CHEMICAL SCIENCE[J]. 2017, 8(4): 2569-2573, http://cas-ir.dicp.ac.cn/handle/321008/169460.
[79] Zhang, Xiaomin, Song, Yuefeng, Wang, Guoxiong, Bao, Xinhe. Co-electrolysis of CO2 and H2O in high-temperature solid oxide electrolysis cells: Recent advance in cathodes. JOURNAL OF ENERGY CHEMISTRY[J]. 2017, 26(5): 839-853, http://lib.cqvip.com/Qikan/Article/Detail?id=84828190504849554853484853.
[80] Gao, Dunfeng, Zhang, Yi, Zhou, Zhiwen, Cai, Fan, Zhao, Xinfei, Huang, Wugen, Li, Yangsheng, Zhu, Junfa, Liu, Ping, Yang, Fan, Wang, Guoxiong, Bao, Xinhe. Enhancing CO2 Electroreduction with the Metal-Oxide Interface. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2017, 139(16): 5652-5655, https://www.webofscience.com/wos/woscc/full-record/WOS:000400321500005.
[81] Ye, Yifan, Li, Haobo, Cai, Fan, Yan, Chengcheng, Si, Rui, Miao, Shu, Li, Yanshuo, Wang, Guoxiong, Bao, Xinhe. Two-Dimensional Mesoporous Carbon Doped with Fe-N Active Sites for Efficient Oxygen Reduction. ACS CATALYSIS[J]. 2017, 7(11): 7638-7646, http://dx.doi.org/10.1021/acscatal.7b02101.
[82] Ye, Yifan, Cai, Fan, Yan, Chengcheng, Li, Yanshuo, Wang, Guoxiong, Bao, Xinhe. Two-step pyrolysis of ZIF-8 functionalized with ammonium ferric citrate for efficient oxygen reduction reaction. JOURNAL OF ENERGY CHEMISTRY[J]. 2017, 26(6): 1174-1180, http://lib.cqvip.com/Qikan/Article/Detail?id=84828190504849554854484953.
[83] Ye, Yifan, Cai, Fan, Li, Haobo, Wu, Haihua, Wang, Guoxiong, Li, Yanshuo, Miao, Shu, Xie, Songhai, Si, Rui, Wang, Jian, Bao, Xinhe. Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe-N active sites for efficient oxygen and carbon dioxide electroreduction. NANO ENERGY[J]. 2017, 38(-): 281-289, http://dx.doi.org/10.1016/j.nanoen.2017.05.042.
[84] Gao, Dunfeng, Zhou, Hu, Cai, Fan, Wang, Dongniu, Hu, Yongfeng, Jiang, Bei, Cai, WenBin, Chen, Xiaoqi, Si, Rui, Yang, Fan, Miao, Shu, Wang, Jianguo, Wang, Guoxiong, Bao, Xinhe. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. NANO RESEARCH[J]. 2017, 10(6): 2181-2191, https://www.webofscience.com/wos/woscc/full-record/WOS:000401320700030.
[85] Cai, Fan, Gao, Dunfeng, Si, Rui, Ye, Yifan, He, Ting, Miao, Shu, Wang, Guoxiong, Bao, Xinhe. Effect of metal deposition sequence in carbon-supported Pd-Pt catalysts on activity towards CO2 electroreduction to formate. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2017, 76: 1-5, http://cas-ir.dicp.ac.cn/handle/321008/169404.
[86] Wang, Qi, Wang, Guoxiong, Tao, Hualong, Li, Zhiqiang, Han, Lei. Highly CO tolerant PtRu/PtNi/C catalyst for polymer electrolyte membrane fuel cell. RSCADVANCES[J]. 2017, 7(14): 8453-8459, http://cas-ir.dicp.ac.cn/handle/321008/169676.
[87] Wang Guoxiong. Two-demensional mesoporous carbon doped with Fe-N active sites for efficient oxygen reduction. ACS Catalysis. 2017, [88] 包信和. Electrocatalytic reduction of carbon dioxide over reduced nanoporous zinc oxide. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2016, 68: 67-70, http://cas-ir.dicp.ac.cn/handle/321008/170396.
[89] Wang Guoxiong. Highly doped and exposed Cu(I)-N active sites within graphene towards efficient oxygen reduction for zinc-air battery. ENERGY & ENVIRONMENT SCIENCE. 2016, [90] Yin, Zhen, Gao, Dunfeng, Yao, Siyu, Zhao, Bo, Cai, Fan, Lin, Lili, Tang, Pei, Zhai, Peng, Wang, Guoxiong, Ma, Ding, Bao, Xinhe. Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. NANO ENERGY[J]. 2016, 27: 35-43, http://cas-ir.dicp.ac.cn/handle/321008/169868.
[91] Zhang, Zhicheng, Luo, Zhimin, Chen, Bo, Wei, Chao, Zhao, Lion, Chen, Junze, Zhang, Xiao, Lai, Zhuangchai, Fan, Zhanxi, Tan, Chaoliang, Zhao, Meiting, Lu, Qipeng, Li, Bing, Zong, Yun, Yan, Chengcheng, Wang, Guoxiong, Xu, Zhichuan J, Zhang, Hua. One-Pot Synthesis of Highly Anisotropic Five-Fold-Twinned PtCu Nanoframes Used as a Bifunctional Electrocatalyst for Oxygen Reduction and Methanol Oxidation. ADVANCED MATERIALS[J]. 2016, 28(39): 8712-8717, http://cas-ir.dicp.ac.cn/handle/321008/169814.
[92] 包信和. Silicon carbide-supported iron nanoparticles encapsulated in nitrogen-doped carbon for oxygen reduction reaction. CATALYSIS SCIENCE & TECHNOLOGY[J]. 2016, 6(9): 2949-2954, http://dx.doi.org/10.1039/c5cy01539a.
[93] Yuan, Lizhi, Jiang, Luhua, Zhang, Tianran, Wang, Guoxiong, Wang, Suli, Bao, Xinhe, Sun, Gongquan. Electrochemically synthesized freestanding 3D nanoporous silver electrode with high electrocatalytic activity. CATALYSIS SCIENCE & TECHNOLOGY[J]. 2016, 6(19): 7163-7171, http://cas-ir.dicp.ac.cn/handle/321008/169860.
[94] Wu, Haihua, Li, Haobo, Zhao, Xinfei, Liu, Qingfei, Wang, Jing, Xiao, Jianping, Xie, Songhai, Si, Rui, Yang, Fan, Miao, Shu, Guo, Xiaoguang, Wang, Guoxiong, Bao, Xinhe. Highly doped and exposed Cu(I)-N active sites within graphene towards efficient oxygen reduction for zinc-air batteries. ENERGY & ENVIRONMENTAL SCIENCE[J]. 2016, 9(12): 3736-3745, http://dx.doi.org/10.1039/c6ee01867j.
[95] Wu, Haihua, Wang, Jing, Wang, Guoxiong, Cai, Fan, Ye, Yifan, Jiang, Qike, Sun, Shucheng, Miao, Shu, Bao, Xinhe. High-performance bifunctional oxygen electrocatalyst derived from iron and nickel substituted perfluorosulfonic acid/polytetrafluoroethylene copolymer. NANO ENERGY[J]. 2016, 30: 801-809, http://dx.doi.org/10.1016/j.nanoen.2016.09.016.
[96] Wang, Guoxiong. Electrocatalytic reduction of CO2 over Pd nanoparticles. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETYnull. 2015, 250: https://www.webofscience.com/wos/woscc/full-record/WOS:000432475504120.
[97] Gao, Dunfeng, Zhou, Hu, Wang, Jing, Miao, Shu, Yang, Fan, Wang, Guoxiong, Wang, Jianguo, Bao, Xinhe. Size-Dependent Electrocatalytic Reduction of CO2 over Pd Nanoparticles. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2015, 137(13): 4288-4291, http://dx.doi.org/10.1021/jacs.5b00046.
[98] Wang, Qi, Wang, Guoxiong, Lu, Xing, Chen, Chunhuan, Li, Zhiqiang, Sun, Gongquan. Investigation of Methanol Crossover and Water Flux in an Air-Breathing Direct Methanol Fuel Cell. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE[J]. 2015, 10(4): 2939-2949, http://cas-ir.dicp.ac.cn/handle/321008/146143.
[99] 包信和. Ball-milling MoS2/carbon black hybrid material for catalyzing hydrogen evolution reaction in acidic medium. JOURNAL OF ENERGY CHEMISTRY[J]. 2015, 24(5): 608-613, http://lib.cqvip.com/Qikan/Article/Detail?id=666516896.
[100] Wang, Jing, Wu, Haihua, Gao, Dunfeng, Miao, Shu, Wang, Guoxiong, Bao, Xinhe. High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc-air battery. NANO ENERGY[J]. 2015, 13: 387-396, http://dx.doi.org/10.1016/j.nanoen.2015.02.025.
[101] 包信和. pH effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2015, 55: 1-5, http://dx.doi.org/10.1016/j.elecom.2015.03.008.
[102] Jiayuan Li, Dunfeng Gao, Jing Wang, shu Miao, Guoxiong Wang, Xinhe Bao. Ball-milling MoS2/carbon black hybrid material for catalyzing hydrogen evolution reaction in acidic medium. 能源化学:英文版[J]. 2015, 24(5): 608-613, http://lib.cqvip.com/Qikan/Article/Detail?id=666516896.
[103] Wang, Jing, Wang, Guoxiong, Miao, Shu, Jiang, Xiaole, Li, Jiayuan, Bao, Xinhe. Synthesis of Fe/Fe3C nanoparticles encapsulated in nitrogen-doped carbon with single-source molecular precursor for the oxygen reduction reaction. CARBON[J]. 2014, 75(1): 381-389, http://dx.doi.org/10.1016/j.carbon.2014.04.017.
[104] Wang, Jing, Wang, Guoxiong, Miao, Shu, Li, Jiayuan, Bao, Xinhe. Graphene-supported iron-based nanoparticles encapsulated in nitrogen-doped carbon as a synergistic catalyst for hydrogen evolution and oxygen reduction reactions. FARADAY DISCUSSIONS[J]. 2014, 176: 135-151, http://dx.doi.org/10.1039/c4fd00123k.
[105] Gao, Dunfeng, Cai, Fan, Xu, Qinqin, Wang, Guoxiong, Pan, Xiulian, Bao, Xinhe. Gas-phase electrocatalytic reduction of carbon dioxide using electrolytic cell based on phosphoric acid-doped polybenzimidazole membrane. JOURNAL OF ENERGY CHEMISTRY[J]. 2014, 23(6): 694-700, http://lib.cqvip.com/Qikan/Article/Detail?id=663524951.
[106] Li, Jiayuan, Wang, Guoxiong, Wang, Jing, Miao, Shu, Wei, Mingming, Yang, Fan, Yu, Liang, Bao, Xinhe. Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. NANO RESEARCH[J]. 2014, 7(10): 1519-1527, http://dx.doi.org/10.1007/s12274-014-0513-0.
[107] Wang, Jing, Gao, Dunfeng, Wang, Guoxiong, Miao, Shu, Wu, Haihua, Li, Jiayuan, Bao, Xinhe. Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2014, 2(47): 20067-20074, http://dx.doi.org/10.1039/c4ta04337e.
[108] 王静, 汪国雄, 苗树, 姜晓乐, 李佳媛, 包信和. Synthesis of Fe/Fe3C nanoparticles encapsulated in nitrogen-doped carbon with single-source molecular precursor for oxygen reduction reaction. CARBON[J]. 2014, 75(1): 381-, http://cas-ir.dicp.ac.cn/handle/321008/144247.
[109] Deng, Dehui, Yu, Liang, Chen, Xiaoqi, Wang, Guoxiong, Jin, Li, Pan, Xiulian, Deng, Jiao, Sun, Gongquan, Bao, Xinhe. Iron encapsulated within Pod-like carbon nanotubes for oxygen reduction reaction. Angewandte Chemie International Edition[J]. 2013, 52(1): 371-375, http://dx.doi.org/10.1002/anie.201204958.
[110] Wang, Guoxiong, Sun, Gongquan, Wang, Qi, Wang, Suli, Sun, Hai, Xin, Qin. Effect of carbon black additive in Pt black cathode catalyst layer on direct methanol fuel cell performance. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2010, 35(20): 11245-11253, http://dx.doi.org/10.1016/j.ijhydene.2010.07.045.
[111] Jia Ziqi, Sun Gongquan, Cao Lei, Wang Guoxiong, Xin Qin. Hollow graphitic carbon as electrocatalyst support for direct ethanol fuel cells. CHINESE JOURNAL OF CATALYSIS[J]. 2008, 29(2): 197-201, http://159.226.238.44/handle/321008/140997.
[112] 王琪, 孙公权, 姜鲁华, 朱明远, 汪国雄, 辛勤, 孙世刚, 陈青松, 姜艳霞, 陈声培. 碳载PtSn催化剂上乙醇电氧化的原位时间分辨红外光谱研究. 光谱学与光谱分析[J]. 2008, 28(1): 47-50, http://lib.cqvip.com/Qikan/Article/Detail?id=26438075.
[113] Wang Qi, Sun GongQuan, Jiang Luhua, Zhu MingYuan, Wang GuoXiong, Xin Qin, Sun ShiGang, Chen QingSong, Jiang YanXia, Chen ShengPei. Ethanol electrooxidation on carbon supported PtSn catalyst: In situ TRFTIR study. SPECTROSCOPY AND SPECTRAL ANALYSIS[J]. 2008, 28(1): 47-50, http://159.226.238.44/handle/321008/140960.
[114] Wang, Guoxiong, Sun, Gongquan, Wang, Qi, Wang, Suli, Guo, Junsong, Gao, Yan, Xin, Qin. Improving the DMFC performance with Ketien Black EC 300J as the additive in the cathode catalyst layer. JOURNALOFPOWERSOURCES[J]. 2008, 180(1): 176-180, http://159.226.238.44/handle/321008/141144.
[115] 汪国雄, 孙公权, 王琪, 王素力, 郭军松, 高妍, 辛勤. Improving the DMFC performance with Ketjen Black EC 300J as the additive in the cathode catalyst layer. JOURNAL OF POWER SOURCES[J]. 2008, 180(1): 176-180, http://dx.doi.org/10.1016/j.jpowsour.2008.02.040.
[116] 贾子麒, 孙公权, 曹雷, 汪国雄, 辛勤. 中空石墨碳材料作为电催化剂载体在直接乙醇燃料电池中的应用. 催化学报[J]. 2008, 29(2): 197-201, http://lib.cqvip.com/Qikan/Article/Detail?id=26593009.
[117] 赵锋良, 孙公权, 陈利康, 秦兵, 汪国雄, 王素力. 印刷线路板在被动式DMFC中的研究. 电源技术[J]. 2007, 31(3): 201-204, http://lib.cqvip.com/Qikan/Article/Detail?id=24066162.
[118] 郑思静, 孙公权, 王素力, 孙海, 毛庆, 汪国雄, 俞耀伦, 辛勤. 催化层与扩散层热压结合对DMFCs性能的影响. 电源技术[J]. 2007, 31(3): 197-200, http://lib.cqvip.com/Qikan/Article/Detail?id=24066161.
[119] Mao, Qing, Sun, Gongquan, Wang, Suli, Sun, Hai, Wang, Guoxiong, Gao, Yan, Ye, Aiwei, Tian, Yang, Xin, Qin. Comparative studies of configurations and preparation methods for direct methanol fuel cell electrodes. ELECTROCHIMICAACTA[J]. 2007, 52(24): 6763-6770, http://dx.doi.org/10.1016/j.electacta.2007.04.120.
[120] 汪国雄, 孙公权, 王素力, 王琪, 孙海, 毛庆, 辛勤, 衣宝廉. 直接甲醇燃料电池双催化层阴极结构和性能. 电源技术[J]. 2006, 30(11): 876-879, http://159.226.238.44/handle/321008/97807.
[121] 王琪, 孙公权, 闫世友, 汪国雄, 辛勤, 陈青松, 李君涛, 姜艳霞, 孙世刚. PtRu/C电催化剂上甲醇吸附氧化过程的电化学原位红外光谱. 高等学校化学学报[J]. 2006, 27(11): 2123-2127, http://159.226.238.44/handle/321008/97723.
[122] 汪国雄. 直接甲醇燃料电池膜电极制备及阴极结构研究. 2006, http://159.226.238.44/handle/321008/105772.
[123] 孙公权, 闫世友, 汪国雄, 李焕巧, 唐水花, 田娟, 郭军松, 孙世国, 姜鲁华, 辛勤. Synthesis of Electrocatalysts with Desired Crystal Facets for Direct Alcohol Fuel Cell. the 3rd guangzhou fuel cell conferencenull. 2006, 33/2-, http://159.226.238.44/handle/321008/112428.
[124] 郭军松, 孙公权, 王琪, 汪国雄, 周振华, 唐水花, 姜鲁华, 周冰, 辛勤. Carbon nanofibers supported Pt-Ru electrocatalysts for direct methfanol fuel cells. CARBON[J]. 2006, 44: 152-157, http://159.226.238.44/handle/321008/93597.
[125] 赵新生, 樊小颖, 汪国雄, 王素力, 孙海, 衣宝廉, 辛勤, 孙公权. 直接甲醇燃料电池膜电极性能衰退原因的分析. 电源技术[J]. 2005, 29(4): 227-230, http://lib.cqvip.com/Qikan/Article/Detail?id=15395796.
[126] 孙海, 孙公权, 王素力, 刘建国, 赵新生, 汪国雄, 徐恒泳, 侯守福, 辛勤. Pd electroless plated Nafion® membrane for high concentration DMFCs. JOURNAL OF MEMBRANE SCIENCE[J]. 2005, 259: 27-33, http://159.226.238.44/handle/321008/92379.
[127] 孙公权, 唐水花, 王素力, 赵钢, 汪国雄, 姜鲁华, 杨少华, 辛勤. Direct Alcohol Fuel Cell: Recent Progresses in Electrocatalysts, MEAs and Stacks. the 3rd cas-samsung forumnull. 2005, 220/2-, http://159.226.238.44/handle/321008/112048.
[128] 王琪, 孙公权, 汪国雄, 王汉春, 孙世刚, 辛勤. 直接甲醇燃料电池阳极PtRu/C催化剂上甲醇吸附氧化过程的研究. 2005, http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=85&recid=&FileName=ZGHY200511002355&DbName=CPFD9908&DbCode=CPFD&yx=&pr=&URLID=&bsm=.
[129] 宋树芹, 汪国雄, 周卫江, 赵新生, 孙公权, 辛勤, SKontou, P Tsiakaras. The effect of the MEA preparation procedures on both ethanol crossover and DEFC performance. JOURNALOFPOWERSOURCES[J]. 2005, 140: 103-110, http://159.226.238.44/handle/321008/93299.
[130] 赵新生, 孙公权, 樊小颖, 汪国雄, 孙海, 毛庆, 王素力, 辛勤. 直接甲醇燃料电池双催化层阳极的稳定性研究. 电源技术[J]. 2005, 29(12): 791-794, http://lib.cqvip.com/Qikan/Article/Detail?id=20762284.
[131] 樊小颖, 赵新生, 孙海, 汪国雄, 王素力, 孙公权, 衣宝廉, 辛勤. 直接甲醇燃料电池高性能双催化层阳极的研究. 电源技术[J]. 2005, 29(4): 231-235, http://lib.cqvip.com/Qikan/Article/Detail?id=15395797.
[132] 赵新生, 孙公权, 王素力, 孙海, 汪国雄, 衣宝廉, 杨少华, 辛勤. DMFC阳极催化层离子电阻的测定和优化. 电源技术[J]. 2004, 28(12): 771-774, http://lib.cqvip.com/Qikan/Article/Detail?id=11503773.
[133] 周振华, 周卫江, 王素力, 汪国雄, 姜鲁华, 李焕巧, 孙公权, 辛勤. Preparation of highly active 40wt% Pt/C cathode electrocatalysts for DMFC via different routes. CATALYST TODAY[J]. 2004, 93: 523-528, http://159.226.238.44/handle/321008/81241.
[134] 姜鲁华, 周振华, 周卫江, 王素力, 汪国雄, 孙公权, 辛勤. 直接乙醇燃料电池PtSn/C电催化剂的合成表征和性能. 高等学校化学学报[J]. 2004, 25(8): 1511-1516, http://lib.cqvip.com/Qikan/Article/Detail?id=10256091.
[135] 孙公权, 刘建国, 王素力, 孙伟, 周振华, 唐水花, 汪国雄, 姜鲁华, 杨少华, 辛勤, 衣宝廉. Recent Advances in Researches of Direct Methanol Fuel Cell at DICP. Hyforum 2004 clean energies for the 21st centrynull. 2004, 1/1-, http://159.226.238.44/handle/321008/111754.
[136] 孙公权, 刘建国, 王素力, 孙伟, 周振华, 唐水花, 汪国雄, 姜鲁华, 杨少华, 辛勤, 衣宝廉. 中科院大连化物所直接甲醇燃料电池研究进展. hyforum 2004 clean energies for the 21st centrynull. 2004, 1/1-, http://159.226.238.44/handle/321008/111754.
[137] 汪国雄, 孙公权, 辛勤, 衣宝廉. 直接甲醇燃料电池. 物理[J]. 2004, 33(3): 165-169, http://lib.cqvip.com/Qikan/Article/Detail?id=9384674.
[138] 周振华, 周卫江, 姜鲁华, 王素力, 汪国雄, 孙公权, 辛勤. 高分散直接甲醇燃料电池Pt/C阴极电催化剂的制备过程机理与表征. 催化学报[J]. 2004, 25(1): 65-69, http://lib.cqvip.com/Qikan/Article/Detail?id=8995940.
[139] 李文震, 周振华, 周卫江, 李焕巧, 赵新生, 汪国雄, 孙公权, 辛勤. 直接甲醇燃料电池阴极Pt/C催化剂的制备与表征——制备及处理方法的影响. 催化学报[J]. 2003, 24(6): 465-470, http://lib.cqvip.com/Qikan/Article/Detail?id=8039174.
[140] 李文震, 周振华, 周卫江, 李焕巧, 赵新生, 汪国雄, 孙公权, 辛勤. 直接甲醇燃料电池阴极Pt/C催化剂的制备与表征——制备与处理方法的影响. 催化学报[J]. 2003, 24(6): 465-470, http://159.226.238.44/handle/321008/82847.
[141] 周振华, 周卫江, 王素力, 汪国雄, 李文震, 姜鲁华, 李焕巧, 孙公权, 辛勤. Preparation of Highly Active 40wt% Pt/C Cathode Electrocatalysts for DMFC. 3rd asia-pacific congress on catalysisnull. 2003, 92/2-, http://159.226.238.44/handle/321008/111458.
[142] 周振华, 周卫江, 王素力, 汪国雄, 李文震, 姜鲁华, 李焕巧, 孙公权, 辛勤. 直接甲醇燃料电池高活性的40wt% Pt/C 阴极催化剂的制备. 3rd asia-pacific congress on catalysisnull. 2003, 92/2-, http://159.226.238.44/handle/321008/111458.
[143] 李文震, 周卫江, 赵新生, 汪国雄, 周振华, 王素力, 宋树芹, 刘建国, 孙公权, 辛勤. 直接甲醇燃料电池阴极用Pt-Fe电催化剂. 第十一届全国催化学术会议期刊论文集 ISBN:7-308-03052-0/TQ.027[J]. 2002, 1323-1324, http://159.226.238.44/handle/321008/84833.
[144] 周卫江, 周振华, 李文震, 汪国雄, 王素力, 宋树芹, 刘建国, 陈立康, 孙公权, 辛勤. 直接醇类燃料电池阳极催化剂研究. 第十一届全国催化学术会议期刊论文集 ISBN:7-308-03052-0/TQ.027[J]. 2002, 1303-1304, http://159.226.238.44/handle/321008/84831.

科研活动

   
科研项目
( 1 ) 所****, 主持, 市地级, 2011-02--2014-02
( 2 ) CO2电催化还原活性和选择性调控研究, 主持, 国家级, 2016-07--2021-06
( 3 ) CO2电催化还原制高附加值化学品, 参与, 国家级, 2016-01--2019-12
( 4 ) 电-热耦合催化CO2和CH4制高附加值产物, 主持, 国家级, 2018-05--2023-04

指导学生

已指导学生

叶益凡  博士研究生  070304-物理化学  

高敦峰  博士研究生  070304-物理化学  

现指导学生

李帆  硕士研究生  070304-物理化学  

宋月锋  博士研究生  070304-物理化学  

冯炜程  硕士研究生  070304-物理化学  

吕厚甫  博士研究生  070304-物理化学  

研究领域

CO2电催化还原;燃料电池;金属-空气电池;电化学原位动态表征