基本信息
陈艳  女  博导  中国科学院深圳先进技术研究院
电子邮件: yan.chen@siat.ac.cn
通信地址: 广东省深圳市南山区西丽深圳大学城学苑大道1068号
邮政编码: 518055

研究领域

微流控生化分析芯片
微流控光学传感器件
便携化医学检验与快速诊断芯片
前沿微纳制造工艺研究

招生信息

   
招生专业
071010-生物化学与分子生物学
083100-生物医学工程
081102-检测技术与自动化装置
招生方向
微流控生化分析
微机电系统
光电传感技术

教育背景

2002-09--2008-07   美国加州理工学院   博士
1998-09--2002-07   清华大学   学士

工作经历

   
工作简历
2016-01~2023-12,中国科学院深圳先进技术研究院, 研究员
2010-10~2015-12,中国科学院深圳先进技术研究院, 副研究员
2009-03~2010-10,美国普林斯顿大学, 博士后
2008-08~2009-01,美国加州理工学院, 博士后

教授课程

生物医学先进制造

专利与奖励

   
奖励信息
(1) 深圳市科技进步奖, 一等奖, 市地级, 2018
(2) 中国科学院广州分院优秀青年科技工作者, , 部委级, 2017
(3) 中国科学院广州分院优秀青年科技工作者, 部委级, 2014
专利成果
[1] 陈艳, 彭瑞莲, 冯鸿涛. 一种捕获循环肿瘤细胞的微流控芯片及其制作方法. CN202111533804.4, 2021-12-15.

[2] 陈艳, 冯鸿涛, 高顺畅. 一种微纳米复合结构的制作方法. CN202111535460.0, 2021-12-15.

[3] 陈艳, 黄玉清. 一种利用数字PCR检测循环肿瘤细胞EGFR基因突变的方法及其应用. CN202111518982.X, 2021-12-13.

[4] 玄曙光, 陈艳. 一种磁性聚合物微球的表面修饰方法. CN: CN111013504B, 2021-11-26.

[5] 张宝月, 陈艳. 微流控芯片和制备细胞液滴的方法. CN: CN107475070B, 2021-05-04.

[6] 彭瑞莲, 冯鸿涛, 陈艳, 金宗文, 卫小元. 一种基于BRET生物发光技术的微流控液滴平台. CN: CN112657563A, 2021-04-16.

[7] 舒伟良, 陈艳. 用于单细胞磁珠配对的高通量微流控芯片、配对方法及液滴阵列形成方法. CN: CN112574853A, 2021-03-30.

[8] 黄玉清, 陈艳, 刘宗彬. 用于胎儿有核红细胞分离纯化的微流控芯片. CN: CN112553043A, 2021-03-26.

[9] 陈艳, 冯鸿涛. 基于液滴注入的生化发光检测系统. CN: CN112557379A, 2021-03-26.

[10] 黄斌, 陈艳. 一种细胞冻存载杆及其制备方法和应用. CN: CN108925549B, 2021-03-26.

[11] 夏贇, 顾大勇, 董瑞玲, 陈艳, 刘笔锋, 何建安, 徐云庆, 谢聪贤, 陈枝楠. 绝对定量方法、装置、计算机设备和存储介质. CN: CN109920474B, 2021-03-02.

[12] 张宝月, 陈艳. 液滴分裂微流控芯片及应用. CN: CN109289951B, 2021-01-05.

[13] 王晶晶, 陈艳. 声表面波微流控芯片及微米尺寸的声焦域形成方法. CN: CN108845026B, 2020-11-24.

[14] 黄玉清, 陈艳. 一种基于微流控芯片的细胞荧光原位杂交方法及其应用. CN: CN110951834A, 2020-04-03.

[15] 黄斌, 陈艳. 一种分离捕获单细胞的微流控芯片及其制备方法和应用. CN: CN110713900A, 2020-01-21.

[16] 吴天准, 蒋伯石, 舒伟良, 金宗文, 陈艳. 一种数字PCR分析装置及PCR分析方法. CN: CN110702588A, 2020-01-17.

[17] 陈艳, 门涌帆, 潘挺睿, 舒伟良, 吴碧珠. 一种微流液滴生成装置. CN: CN110339881A, 2019-10-18.

[18] 吴天准, 蒋伯石, 舒伟良, 金宗文, 陈艳. 一种数字PCR荧光检测装置. CN: CN209508217U, 2019-10-18.

[19] 门涌帆, 陈艳, 冯鸿涛, 敖婷婷. 基于微流控电喷雾的单细胞全基因组扩增系统和方法. CN: CN110317728A, 2019-10-11.

[20] 门涌帆, 潘挺睿, 敖婷婷, 李致昊, 吴碧珠, 陈艳. 基于微流控液滴打印系统的数字PCR检测方法及应用. CN: CN110295109A, 2019-10-01.

[21] 舒伟良, 陈艳. 微液滴式PCR芯片及其制造方法. CN: CN107090406B, 2019-07-16.

[22] 冯鸿涛, 张志诚, 陈艳, 谢耀钦. 一种图案化碳纳米管阴极的反射式X射线源结构. CN: CN106783486B, 2019-05-17.

[23] 舒伟良, 陈艳, 蒋伯石, 吴天准, 金宗文. 一种液滴数字PCR芯片及液滴数字PCR装置. CN: CN109370876A, 2019-02-22.

[24] 舒伟良, 陈艳, 蒋伯石, 吴天准, 金宗文. 一种液滴数字PCR芯片及液滴数字PCR装置. CN: CN109370876A, 2019-02-22.

[25] 冯鸿涛, 陈艳. 一种微流控液体波导电化学发光检测装置. CN: CN104697987B, 2019-01-22.

[26] 韩乙丁, 舒伟良, 陈艳. 一种用于肿瘤细胞分选的双层微流控芯片. CN: CN106190770B, 2018-07-24.

[27] 舒伟良, 陈艳. 一种构建细胞网络的三维微流控芯片及其制备方法. CN: CN104745445B, 2018-04-27.

[28] 冯鸿涛, 陈艳. 一种光纤耦合的全内反射荧光显微成像芯片. CN: CN104568883B, 2018-02-23.

[29] 刘宏伟, 陈艳. 一种固态量子点微阵列芯片传感器及其制造方法. CN: CN104515755B, 2017-08-25.

[30] 张宝月, 陈艳. 微流控芯片及微流控芯片控制方法. CN: CN107051599A, 2017-08-18.

[31] 舒伟良, 陈艳. 用于建立三类细胞体外共培养模型的微流控芯片及方法. CN: CN104630059B, 2017-07-25.

[32] 冯鸿涛, 张志诚, 陈艳, 谢耀钦. 一种图案化碳纳米管阴极的透射式X射线源结构. CN: CN106683963A, 2017-05-17.

[33] 徐洪, 陈艳. 一种聚合物微控芯片及其溶剂辅助热键合方法. CN: CN106179540A, 2016-12-07.

[34] 庞俊超, 陈艳. 一种滚筒式纳米压印设备. 中国: CN204116806U, 2015.01.21.

[35] Wang Hua, Hajimiri Seyed Ali, Chen Yan. Effective-inductance-change based magnetic particle sensing. 美国: US9176206(B2), 2015-11-03.

[36] 徐洪, 陈艳. 一种内嵌导轨的滑动数字PCR芯片及数字PCR方法. CN: CN104862224A, 2015-08-26.

[37] 张宝月, 陈艳. 制作环烯烃类聚合物微流控芯片中微纳结构的软压印方法. CN: CN104708800A, 2015-06-17.

[38] 庞俊超, 陈艳. 一种基于碳纳米管的冷阴极X射线管的制作工艺. CN: CN104576261A, 2015-04-29.

[39] 陈希, 陈艳. 用于细胞长时程培养的半透膜自动微渗透装置及系统. CN: CN104480008A, 2015-04-01.

[40] 冯鸿涛, 陈艳. 一种用于光感基因调控的微流控分光波导结构. CN: CN104232483A, 2014-12-24.

[41] 刘宗彬, 陈艳. 血液细胞快速分选装置及其制造方法. CN: CN103834558A, 2014-06-04.

[42] 冯鸿涛, 陈艳. 微流控芯片的连接器. CN: CN103769252A, 2014-05-07.

[43] Wang, Hua, Hajimiri, Seyed Ali, Chen, Yan. EFFECTIVE-INDUCTANCE-CHANGE BASED MAGNETIC PARTICLE SENSING. US: US20090267596(A1), 2009-10-29.

出版信息

   
发表论文
[1] Zixuan Zhou, Yan Chen, Xiang Qian. Target-Specific Exosome Isolation through Aptamer-Based Microfluidics. Biosensors[J]. 2022, 12(257): [2] Zhao, JiangLin, Xuan, Shuguang, Chen, Kai, Redshaw, Carl, Chen, Yan, Jin, Zongwen. Highly selective recognition of the Al(ClO4)(3) molecule by a mono-pyrene substituted thiacalix4arene chemosensor. CHEMICAL COMMUNICATIONS. 2022, [3] Jiang, Boshi, Huang, Bin, Cai, Guangyi, Chen, Yan, Wu, Tianzhun. Facile and highly efficient loading and freezing of cryoprotectants for oocyte vitrification based on planar microfluidics. MICROFLUIDICS AND NANOFLUIDICSnull. 2021, 25(8): [4] Feng, Hongtao, Liu, Lin, Chen, Yi, Shu, Weiliang, Huang, Yuqing, Zhang, Baoyue, Wu, Tianzhun, Jin, Zongwen, Chen, Yan. A compact fiber-integrated optofluidic platform for highly specific microRNA Forster resonance energy transfer detection. ANALYST[J]. 2021, 146(14): 4454-4460, http://dx.doi.org/10.1039/d1an00324k.
[5] Shen, Fengshan, Yu, Yan, Li, Yuexuan, Feng, Hongtao, Wu, Tianzhun, Chen, Yan. Microscale magnetic field modulation using rapidly patterned soft magnetic microstructures. RSC ADVANCES[J]. 2021, 11(55): 34660-34668, [6] Bu, Wenting, Li, Wen, Li, Jiannan, Ao, Tingting, Li, Zhihao, Wu, Bizhu, Wu, Shangtao, Kong, Weijun, Pan, Tingrui, Ding, Yi, Tan, Wen, Li, Baoqing, Chen, Yan, Men, Yongfan. A low-cost, programmable, and multi-functional droplet printing system for low copy number SARS-CoV-2 digital PCR determination. SENSORS AND ACTUATORS B-CHEMICAL[J]. 2021, 348: http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000700931400004.
[7] Liu, Zongbin, Huang, Yuqing, Liang, Wenli, Bai, Jing, Feng, Hongtao, Fang, Zhihao, Tian, Geng, Zhu, Yanjuan, Zhang, Haibo, Wang, Yuanxiang, Liu, Aixue, Chen, Yan. Cascaded filter deterministic lateral displacement microchips for isolation and molecular analysis of circulating tumor cells and fusion cells. LAB ON A CHIP[J]. 2021, 21(15): 2881-2891, http://dx.doi.org/10.1039/d1lc00360g.
[8] Qian, Siqi, Wu, Han, Huang, Bin, Liu, Qi, Chen, Yan, Zheng, Bo. Bead-free digital immunoassays on polydopamine patterned perfluorinated surfaces. SENSORS AND ACTUATORS B-CHEMICAL[J]. 2021, 345: http://dx.doi.org/10.1016/j.snb.2021.130341.
[9] 罗翰, 舒伟良, 蔡川, 陈艳, 褚晓凡. 基于双层光刻技术制备神经血管单元三细胞共培养微流控芯片. 暨南大学学报:自然科学与医学版[J]. 2020, 41(6): 560-568, http://lib.cqvip.com/Qikan/Article/Detail?id=7103306701.
[10] Li, Yunhui, Yan, Xueqing, Wei, Jindi, Zhang, Gengmin, Feng, Hongtao, Chen, Yan, Xie, Yaoqin. Dependence of Optimum Thickness of Ultrathin Diamond-like Carbon Coatings over Carbon Nanotubes on Geometric Field Enhancement Factor. ACS APPLIED ELECTRONIC MATERIALS[J]. 2020, 2(1): 84-92, https://www.webofscience.com/wos/woscc/full-record/WOS:000510530100011.
[11] Peng, Zhiting, Chen, Yan, Wu, Tianzhun. Ultrafast Microdroplet Generation and High-Density Microparticle Arraying Based on Biomimetic Nepenthes Peristome Surfaces. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(42): 47299-47308, https://www.webofscience.com/wos/woscc/full-record/WOS:000584489800015.
[12] Zhang, Baoyue, Xu, Hong, Huang, Yuqing, Shu, Weiliang, Feng, Hongtao, Cai, Jin, Zhong, Jiang F, Chen, Yan. Improving single-cell transcriptome sequencing efficiency with a microfluidic phase-switch device. ANALYST[J]. 2019, 144(24): 7185-7191, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925944/.
[13] Wang, Jingjing, Deng, Ka, Zhou, Chuqing, Fang, Zecong, Meyer, Conary, Deshpande, Kaustubh UmeshAnjali, Li, Zhihao, Mi, Xianqiang, Luo, Qian, Hammock, Bruce D, Tan, Cheemeng, Chen, Yan, Pan, Tingrui. Microfluidic cap-to-dispense (mu CD): a universal microfluidic-robotic interface for automated pipette-free high-precision liquid handling. LAB ON A CHIP[J]. 2019, 19(20): 3405-3415, [14] Li, Jiannan, Carney, Randy P, Liu, Ruiwu, Fan, Jinzhen, Zhao, Siwei, Chen, Yan, Lam, Kit S, Pan, Tingrui. Microfluidic Print-to-Synthesis Platform for Efficient Preparation and Screening of Combinatorial Peptide Microarrays. ANALYTICAL CHEMISTRY[J]. 2018, 90(9): 5833-5840, http://ir.siat.ac.cn:8080/handle/172644/14270.
[15] S C Li, Y Zeng, L Gao, X Luo, Y Chen, M H Kabeer, X Chen, A Stucky, W G Loudon, X Zhang, J F Zhong. Single Microfluidic enrichment of plasma cells improves treatment of multiple myeloma. Molecular Oncology[J]. 2018, http://ir.siat.ac.cn:8080/handle/172644/14301.
[16] Chen, Yan, Millstein, Joshua, Liu, Yao, Chen, Gina Y, Chen, Xuelian, Stucky, Andres, Qu, Cunye, Fan, JianBing, Chang, Xiao, Soleimany, Ava, Wang, Kai, Zhong, Jiangjian, Liu, Jie, Gilliland, Frank D, Li, Zhongjun, Zhang, Xi, Zhong, Jiang F. Single-Cell Digital Lysates Generated by Phase-Switch Microfluidic Device Reveal Transcriptome Perturbation of Cell Cycle. ACS NANO[J]. 2018, 12(5): 4687-4694, http://ir.siat.ac.cn:8080/handle/172644/14287.
[17] Luo, Qingying, Liu, Lin, Yang, Cai, Yuan, Jing, Feng, Hongtao, Chen, Yan, Zhao, Peng, Yu, Zhiqiang, Jin, Zongwen. A rapid, ratiometric, enzyme-free, and sensitive single-step miRNA detection using three-way junction based FRET probes. NANOTECHNOLOGY[J]. 2018, 29(11): http://ir.siat.ac.cn:8080/handle/172644/14272.
[18] Liu, Hongwei, Shu, Weiliang, Liu, Zongbin, Zhang, Baoyue, Feng, Hongtao, Chen, Yan. A simple method of constructing microfluidic solid-state quantum dot molecular beacon array for label-free DNA detection. MICROFLUIDICS AND NANOFLUIDICS[J]. 2017, 21(4): http://dx.doi.org/10.1007/s10404-017-1906-7.
[19] Feng, Hongtao, Shu, Weiliang, Xu, Hong, Zhang, Baoyue, Huang, Bin, Wang, Jingjing, Jin, Wei, Chen, Yan. Two-Directional Tuning of Distributed Feedback Film Dye Laser Devices. MICROMACHINES[J]. 2017, 8(12): http://dx.doi.org/10.3390/mi8120362.
[20] 陈艳. 构建用于无标记DNA检测的微流体固态量子点分子信标阵列的简单方法. Microfluidics and Nanofluidics. 2017, [21] Zhou, Wei, Wang, Jingjing, Wang, Kaiyue, Huang, Bin, Niu, Lili, Li, Fei, Cai, Feiyan, Chen, Yan, Liu, Xin, Zhang, Xiaoyan, Cheng, Hankui, Kang, Lijun, Meng, Long, Zheng, Hairong. Ultrasound neuro-modulation chip: activation of sensory neurons in Caenorhabditis elegans by surface acoustic waves. LAB ON A CHIP[J]. 2017, 17(10): 1725-1731, https://www.webofscience.com/wos/woscc/full-record/WOS:000401551300003.
[22] Yu, Cilong, Tang, Fei, Qian, Xiang, Chen, Yan, Yu, Quan, Ni, Kai, Wang, Xiaohao. Multi-channel microfluidic chip coupling with mass spectrometry for simultaneous electro-sprays and extraction. SCIENTIFIC REPORTS[J]. 2017, 7(1): https://doaj.org/article/8433035ee975404b9018ad64c2ecee07.
[23] 陈艳. 双向调控的分布反馈式薄膜染料激光器件. Micromachines. 2017, [24] 陈艳. 用于快速和高灵敏度分析循环肿瘤细胞的集成微流体装置. Scientific Reports. 2017, [25] Jiang, Jianing, Zhao, Hui, Shu, Weiliang, Tian, Jing, Huang, Yuqing, Song, Yongxin, Wang, Ruoyu, Li, Encheng, Slamon, Dennis, Hou, Dongmei, Du, Xiaohui, Zhang, Lichuan, Chen, Yan, Wang, Qi. An integrated microfluidic device for rapid and high-sensitivity analysis of circulating tumor cells. SCIENTIFIC REPORTS[J]. 2017, 7: http://www.chinair.org.cn/handle/1471x/1747469.
[26] Yu, Cilong, Qian, Xiang, Chen, Yan, Yu, Quan, Ni, Kai, Wang, Xiaohao. Microfluidic self-aspiration sonic-spray ionization chip with single and dual ionization channels for mass spectrometry. RSC ADVANCES[J]. 2016, 6(55): 50180-50189, https://www.webofscience.com/wos/woscc/full-record/WOS:000377577800104.
[27] 陈艳. 用于质谱的单双电离通道的微流体自吸式声波喷雾电离芯片. RSC Advances. 2016, [28] Yu, Cilong, Qian, Xiang, Chen, Yan, Yu, Quan, Ni, Kai, Wang, Xiaohao. Three-Dimensional Electro-Sonic Flow Focusing Ionization Microfluidic Chip for Mass Spectrometry. MICROMACHINES[J]. 2015, 6(12): 1890-1902, https://doaj.org/article/a93ce0540e4a4e8fb650c1c8290ad2da.
[29] Qian, Xiang, Xu, Jie, Yu, Cilong, Chen, Yan, Yu, Quan, Ni, Kai, Wang, Xiaohao. A Reliable and Simple Method for Fabricating a Poly(Dimethylsiloxane) Electrospray Ionization Chip with a Corner-Integrated Emitter. SENSORS[J]. 2015, 15(4): 8931-8944, https://doaj.org/article/d0826c9a09e84a80a07479eaba49a2dc.
[30] 陈艳. 用于神经细胞光感基因调控的微流控分光波导芯片. Biomedical Microdevices. 2015, [31] 陈艳. 用于质谱的三维电声流聚焦电离微流控芯片. Micromachines. 2015, [32] 陈艳. 一种简易的PDMS电喷雾电离芯片的制作方法. Sensors. 2015, [33] Feng, Hongtao, Shu, Weiliang, Chen, Xi, Zhang, Yuanyuan, Lu, Yi, Wang, Liping, Chen, Yan. Development of a microfluidic platform with integrated power splitting waveguides for optogenetic neural cell stimulation. BIOMEDICAL MICRODEVICES[J]. 2015, 17(5): https://www.webofscience.com/wos/woscc/full-record/WOS:000362281200018.
[34] 陈艳. 用于快速分离肿瘤细胞的微流控侧向位移结构. Biomicrofluidics. 2013, [35] 张望, 徐小平, 高菊逸, 杜晶辉, 张宝月, 陈艳. 阀控多通道微流控芯片高通量快速检测大肠埃希菌O_(157) :H_7. 临床检验杂志[J]. 2013, 31(11): 829-832, [36] Zongbin Liu, Wang Zhang, Fei Huang, Hongtao Feng, Weiliang Shu, Xiaoping Xu, Yan Chen. High throughput capture of circulating tumor cells using an integrated microfluidic system. Biosensors and Bioelectronics. 2013, 47: 113-119, http://dx.doi.org/10.1016/j.bios.2013.03.017.
[37] 陈艳. 快速分选富集循环肿瘤细胞的微流控芯片. 中国卫生检验杂志. 2013, [38] 陈艳. 应用于高通量循环肿瘤细胞捕获的集成化微流控芯片. Biosensors and Bioelectronics. 2013, [39] 邢磊, 陈艳, 辜嘉, 牛田野, 戎懿, 王乐晶, 温宁, 谢耀钦, 余绍德, 郑波, 郑国焱, 周寿军. 内照射放疗机器人的研究. 集成技术. 2012, 35-39, http://lib.cqvip.com/Qikan/Article/Detail?id=3000000067.
[40] 陈艳. 用于细胞基因稳定性分析的自动化微流控芯片. Lab on a chip. 2012, [41] Chen, Yan, Zhang, Baoyue, Feng, Hongtao, Shu, Weiliang, Chen, Gina Y, Zhong, Jiang F. An automated microfluidic device for assessment of mammalian cell genetic stability. LAB ON A CHIP[J]. 2012, 12(20): 3930-3935, https://www.webofscience.com/wos/woscc/full-record/WOS:000308894600013.
[42] 张宝月, 冯鸿涛, 舒伟良, 陈艳. 应用于肿瘤细胞基因表达水平分析的微流控芯片. 集成技术. 2012, 46-49, http://lib.cqvip.com/Qikan/Article/Detail?id=3000000069.
[43] Liu, John, Chen, Yan, Taylor, Clive R, Scherer, Axel, Kartalov, Emil P. Elastomeric microfluidic diode and rectifier work with Newtonian fluids. JOURNAL OF APPLIED PHYSICS[J]. 2009, 106(11): https://www.webofscience.com/wos/woscc/full-record/WOS:000272838600125.
[44] 陈艳. 基于微流控光学的圆形光栅分布反馈式染料激光芯片. Applied Physics Letters. 2009, [45] Chen, Yan, Li, Zhenyu, Henry, M David, Scherer, Axel. Optofluidic circular grating distributed feedback dye laser. APPLIED PHYSICS LETTERS[J]. 2009, 95(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000268405300009.
[46] 陈艳. 研究单个人类胚胎干细胞基因表达谱的微流控处理器. Lab on a Chip. 2008, [47] Zhong, Jiang F, Chen, Yan, Marcus, Joshua S, Scherer, Axel, Quake, Stephen R, Taylor, Clive R, Weiner, Leslie P. A microfluidic processor for gene expression profiling of single human embryonic stem cells. LAB ON A CHIP[J]. 2008, 8(1): 68-74, https://www.webofscience.com/wos/woscc/full-record/WOS:000251771000017.
[48] Chen, Yan, Li, Zhenyu, Zhang, Zhaoyu, Psaltis, Demetri, Scherer, Axel. Nanoimprinted circular grating distributed feedback dye laser. APPLIED PHYSICS LETTERS[J]. 2007, 91(5): https://www.webofscience.com/wos/woscc/full-record/WOS:000248595800009.
[49] 陈艳. 纳米压印技术制造的圆形光栅分布反馈式染料激光芯片. Applied Physics Letters. 2007, [50] []. 应用于肿瘤细胞基因表达水平分析的微流控芯片. http://ir.siat.ac.cn:8080/handle/172644/3932.
[51] []. 简易型微流控芯片捕获循环肿瘤细胞的研究. http://ir.siat.ac.cn:8080/handle/172644/5716.
发表著作
(1) 用于单个神经干细胞高通量基因表达谱分析的微流控芯片, Microfluidic Devices for High-Throughput Gene Expression Profiling of Single hESC-Derived Neural Stem Cells, Humana Press Inc., 2008-02, 第 1 作者
(2) 用于单细胞分析的微流控芯片, Microfluidic Devices for Single-cell Analysis, Horizon Scientific Press, 2009-08, 第 1 作者
(3) 单细胞分析的微流控技术, Microfluidic Technology for Single-cell Analysis, Wiley‐VCH., 2010-03, 第 1 作者
(4) 运用纳米压印技术的制造分布反馈式染料激光, Fabrication of Circular Grating Distributed Feedback Dye Laser by Nanoimprint Lithography, Intech, 2011-07, 第 1 作者

科研活动

   
科研项目
( 1 ) 中科院知识创新工程重要方向项目, 主持, 部委级, 2011-01--2013-12
( 2 ) 基于微流控光学的神经细胞微全分析系统研究, 主持, 国家级, 2012-01--2014-12
( 3 ) 广东省第三批创新科研团队-影像引导治疗技术团队, 主持, 省级, 2012-01--2016-12
( 4 ) 基于微流控芯片技术的肺癌单细胞分选及基因组测序分析, 主持, 国家级, 2015-01--2017-12
( 5 ) 微流控循环肿瘤细胞检测芯片技术, 主持, 省级, 2014-12--2016-12
( 6 ) 基于微液滴操作的细胞标准化培养与快速玻璃化冻融自动装置, 主持, 省级, 2016-01--2018-12
( 7 ) 中国科学院青年创新促进会项目, 主持, 部委级, 2016-01--2019-12
( 8 ) 基于微流控单细胞芯片的循环肿瘤细胞全基因组测序方法研究, 主持, 国家级, 2016-01--2019-12
( 9 ) 片上集成免疫荧光检测微机电系统关键技术研究, 主持, 省级, 2017-07--2019-06
( 10 ) 面向肿瘤细胞microRNA原位定量分析的微流控光学系统研究, 主持, 国家级, 2019-01--2022-12
( 11 ) 基于微流控技术的肿瘤微环境细胞间Wnt信号互作的研究, 参与, 省级, 2019-07--2022-06
( 12 ) 应用于循环肿瘤细胞高通量筛选及活细胞多色荧光原位分析的微流控检测系统研发, 主持, 省级, 2018-09--2020-08
( 13 ) 循环肿瘤细胞高效检测技术研究, 主持, 省级, 2021-01--2023-12
参与会议
(1)Responsive DNA Hydrogel Facilitates Isolation and Retrieval of Circulating Tumor Cells   微纳工程与分子系统国际会议   2021-04-25
(2)Fabrication of Soft Magnetic Microstructures for Modulation of the Magnetic Field Distribution on the Micrometer Scale   微纳工程与分子系统国际会议   2021-04-25
(3)A microfluidic magnetic extractor for magnetic bead separation in droplets   微全分析系统会议   2020-10-04
(4)Rapid fabrication of thermoplastic nanoforest substrates for high efficient capture of cancer cells   国际电子束、离子束、光子束及纳米制备会议   2019-05-28
(5)A multiplexed microfluidic single cell sample preparation device for transcriptome sequencing   微全分析系统会议   2017-10-22

指导学生

现指导学生

张诗昀  硕士研究生  085600-材料与化工