牟刚  男  硕导  中国科学院上海微系统与信息技术研究所

出生日期:1982年1月17日

出生地: 山东省

电子邮件: mugang@mail.sim.ac.cn

通信地址: 上海市长宁路865号3号楼

邮政编码: 200050

研究领域

超导材料和物理。

招生信息

招收物理学、材料学、化学等专业研究生。

招生专业
080501-材料物理与化学
招生方向
超导薄膜材料和物理
低维超导材料研究

教育背景

2005-09--2010-07   中国科学院物理研究所/中国科学院大学   理学博士学位
2001-09--2005-07   北京师范大学   学士学位

工作经历

2020年- 今,  中科院上海微系统所,研究员

2012年-2019年,  中科院上海微系统所,副研究员

2010年-2012年,日本东北大学(Tohoku University),JSPS博士后

教授课程

超导电子学-超导材料与物理基础

代表性论文

[1] Superconductivity above 30 K due to the introduction of oxygen in CaFeAsF. J. Mater. Chem. C 13, 1793 (2025).

[2] Coexistence of Ferromagnetism and Superconductivity at KTaO3 Heterointerfaces. Nano Lett. 24, 7134−7141 (2024) .

[3] Microwave loss and kinetic inductance of epitaxial TiN films. Supercond. Sci. Technol. 37, 115002 (2024) . 

[4] From weak to strong-coupling superconductivity tuned by substrate in TiN films. Supercond. Sci. Technol. 37, 105015 (2024) . 

[5] Size effect on the response of superconductivity in NbN nanowires to external magnetic field. Supercond. Sci. Technol. 37, 085009 (2024).

[6] Investigation of the Pauli paramagnetic effect in systematically tuned NbN thin films. Physica C 606, 1354223 (2023). 

[7] Robust quantum Griffiths singularity above 1.5 K in nitride thin films. Phys. Rev. B 107, 094509 (2023).

[8] Two-Dimensional Superconductivity at the Titanium Sesquioxide Heterointerface. ACS Nano 16, 16150 (2022). (IF: 18.027)

[9] Universal relation between doping content and normal-state resistance in gate voltage tuned ultrathin Bi2Sr2CaCu2O8+x flakes. Phys. Rev. B 106, 104509 (2022). 

[10] Evolution of the upper critical field and superconducting vortex phase with thickness in PLD-grown Ta films. Supercond. Sci. Technol. 35, 055010 (2022). 

[11] Topological frequency shift of quantum oscillation in CaFeAsF. npj Quantum Mater. 7, 25 (2022). 

[12] Anomalous high-field magnetotransport in CaFeAsF due to the quantum Hall effect. npj Quantum Mater. 7, 62 (2022). 

[13] Direct Observation of the Topological Surface State in the Topological Superconductor 2M-WS2. Nano Lett. 22, 8827 (2022). (IF: 12.262) 

[14] Discovery of Superconductivity in 2M WS2 with Possible Topological Surface States. Adv. Mater. 31, 1901942 (2019). (IF: 25.809)

[15] Structure Re-determination and Superconductivity Observation of Bulk 1T MoS2. Angew. Chem. Int. Ed. 57, 1232 (2018). (IF: 12.257)

[16] Low temperature specific heat of the hole-doped Ba0.6K0.4Fe2As2 single crystals. Phys. Rev. B 79, 174501 (2009). (Citations: 133)

[17] Nodal Gap in Fe-Based Layered Superconductor LaO0.9F0.1-δFeAs Probed by Specific Heat Measurements. Chin. Phys. Lett. 25, 2221 (2008).  (Citations: 135)

[18] Synthesis, structural, and transport properties of the hole-doped superconductor Pr1-xSrxFeAsO. Phys. Rev. B 79, 104501 (2009). (Citations: 30)

[19] Superconductivity at 25K in hole-doped (La1−xSrx)OFeAs. EPL, 82, 17009 (2008).  (Citations: 518)

[20] Strong Pauli paramagnetic effect in the upper critical field of KCa2Fe4As4F2. Sci. China-Phys. Mech. Astron. 63, 227412 (2020).

[21] Two-gap superconductivity in CaFe0.88Co0.12AsF revealed by temperature dependence of the lower critical field Hc1c (T). npj Quantum Mater. 4, 33 (2019).

[22] Single-Crystal Growth and Extremely High Hc2 of 12442-Type Fe-Based Superconductor KCa2Fe4As4F2. J. Phys. Chem. C 123, 13925 (2019).

[23] Growth and characterization of CaFe1-xCoxAsF single crystals by CaAs flux method. J. Cryst. Growth, 451, 161 (2016).

[24] Growth and characterization of millimetersized single crystals of CaFeAsF. Supercond. Sci. Technol. 28, 085008 (2015)

[25] Enhancement of superconductivity by Sb-doping in the hole-doped iron-pnictide superconductor Pr1-xSrxFeAsO. Physica C 498, 50–53 (2014) 

[26] Anisotropic structure of the order parameter in FeSe0.45Te0.55 revealed by angle-resolved specific heat. Nat. Commun. 1, 112 (2010) 

[27] High-Tc superconductivity in ultrathin Bi2Sr2CaCu2O8+x down to half-unit-cell thickness by protection with graphene. Nat. Commun. 5, 5708 (2014) 

[28] Absence of Superconductivity in LiCu2P2. J. Am. Chem. Soc. 133, 1751–1753 (2011) 


科研活动

主要研究领域为超导材料和物理,包括超导薄膜材料和物理、低维超导材料等方面的研究。作为项目负责人承担了国家自然科学基金项目,作为骨干研究人员参加了中科院知识创新工程重要方向项目和中科院战略性先导科技专项(B类)。于2015年入选中科院青年创新促进会,并担任2023国际前沿材料大会超导材料分会主席。到目前为止,在国内外期刊上共发表学术论文150余篇,被引用次数超过4400次, H因子为31


科研项目
( 1 ) 量子相滑移电流量子计量芯片, 负责人, 中国科学院计划, 2025-02--2027-01
( 2 ) 面向超导量子电路的低损耗超导薄膜材料研究, 负责人, 研究所自主部署, 2024-07--2026-06
( 3 ) 高温超导弱磁探测器件, 参与, 中国科学院计划, 2024-01--2030-12
( 4 ) 集成电路关键衬底材料研究, 参与, 中国科学院计划, 2023-12--2028-11
( 5 ) E02KJA1J01, 参与, 其他国际合作项目, 2020-05--2021-12
( 6 ) 铌超导材料的掺氮动力学研究, 参与, 研究所自主部署, 2019-06--2021-05
( 7 ) 12442体系KCa2Fe4As4F2的 量子调控和物性研究, 负责人, 其他国际合作项目, 2019-04--2021-03
( 8 ) 双FeAs层的12442铁基超导体系的调控研究, 负责人, 其他国际合作项目, 2018-04--2019-03
( 9 ) 低维超导材料中的磁场调控研究, 负责人, 研究所自主部署, 2017-09--2019-10
( 10 ) 中科院青年创新促进会项目, 负责人, 中国科学院计划, 2015-01--2018-12
( 11 ) 铁基超导体 1111 体系的单晶生长研究, 负责人, 国家任务, 2013-01--2015-12
( 12 ) 超导电子器件应用基础研究, 参与, 中国科学院计划, 2012-09--2016-12
参与会议
(1)退火处理在CaFeAsF中诱导的高达30 K的超导电性   第十七届全国超导学术研讨会   2023-10-20
(2)Superconductivity up to 30 K in annealed CaFeAsF   2023-10-13
(3)KCa2Fe4As4F2体系的临界电流密度和TAFF行为研究   第一届全国超导磁通物理会议   2023-08-02
(4)NbN薄膜中的泡利顺磁效应和量子格里菲斯奇异性研究   第十七届全国超导薄膜和超导电子器件学术研讨会   2023-04-07
(5)Strong Pauli Paramagnetic Effects in the Quasi-Two-Dimensional Superconductor Restacked TaS2 Nanosheets   2017-12-13
(6)Strong anisotropy effect in iron-based superconductor CaFe0.882Co0.118AsF   2017-08-09
(7)超导材料研究的新手段和面临的挑战   青促会化工才分会年会   2016-09-23
(8)Effects of electron correlation, electron-phonon coupling and spin-orbit coupling on the isovalent Pd substituted superconductor SrPt3P   2016-06-21
(9)Chemical Pressure Effect on the Superconductivity of Iron-based Superconductors   2016-05-08
(10)Growth and characterization of millimetersized single crystals of CaFeAsF   第28届国际超导研讨会   2015-11-16
(11)AeFeAsF(Ae=Ca,Sr):不同的1111体系   第十三届全国超导学术研讨会   2015-10-27
(12)Response of the Crystal Structure and Electronic Properties to Cr Substitution in BaTi_2As_2O   2015戈登系列超导国际研讨会   2015-05-24