牟刚  男  硕导  中国科学院上海微系统与信息技术研究所

出生日期:1982年1月17日

出生地: 山东省

电子邮件: mugang@mail.sim.ac.cn

通信地址: 上海市长宁路865号3号楼

邮政编码: 200050

研究领域

超导材料和物理。

招生信息

招收物理学、材料学、化学等专业研究生。

招生专业
080501-材料物理与化学
招生方向
超导薄膜材料和物理
低维超导材料研究

教育背景

2005-09--2010-07   中国科学院物理研究所/中国科学院大学   理学博士学位
2001-09--2005-07   北京师范大学   学士学位

工作经历

2020年- 今,  中科院上海微系统所,研究员

2012年-2019年,  中科院上海微系统所,副研究员

2010年-2012年,日本东北大学(Tohoku University),JSPS博士后

教授课程

超导电子学-超导材料与物理基础

代表性论文

[1] Superconductivity above 30 K due to the introduction of oxygen in CaFeAsF. J. Mater. Chem. C 13, 1793 (2025).

[2] Coexistence of Ferromagnetism and Superconductivity at KTaO3 Heterointerfaces. Nano Lett. 24, 7134−7141 (2024) .

[3] Microwave loss and kinetic inductance of epitaxial TiN films. Supercond. Sci. Technol. 37, 115002 (2024) . 

[4] From weak to strong-coupling superconductivity tuned by substrate in TiN films. Supercond. Sci. Technol. 37, 105015 (2024) . 

[5] Size effect on the response of superconductivity in NbN nanowires to external magnetic field. Supercond. Sci. Technol. 37, 085009 (2024).

[6] Investigation of the Pauli paramagnetic effect in systematically tuned NbN thin films. Physica C 606, 1354223 (2023). 

[7] Robust quantum Griffiths singularity above 1.5 K in nitride thin films. Phys. Rev. B 107, 094509 (2023).

[8] Two-Dimensional Superconductivity at the Titanium Sesquioxide Heterointerface. ACS Nano 16, 16150 (2022). (IF: 18.027)

[9] Universal relation between doping content and normal-state resistance in gate voltage tuned ultrathin Bi2Sr2CaCu2O8+x flakes. Phys. Rev. B 106, 104509 (2022). 

[10] Evolution of the upper critical field and superconducting vortex phase with thickness in PLD-grown Ta films. Supercond. Sci. Technol. 35, 055010 (2022). 

[11] Topological frequency shift of quantum oscillation in CaFeAsF. npj Quantum Mater. 7, 25 (2022). 

[12] Anomalous high-field magnetotransport in CaFeAsF due to the quantum Hall effect. npj Quantum Mater. 7, 62 (2022). 

[13] Direct Observation of the Topological Surface State in the Topological Superconductor 2M-WS2. Nano Lett. 22, 8827 (2022). (IF: 12.262) 

[14] Discovery of Superconductivity in 2M WS2 with Possible Topological Surface States. Adv. Mater. 31, 1901942 (2019). (IF: 25.809)

[15] Structure Re-determination and Superconductivity Observation of Bulk 1T MoS2. Angew. Chem. Int. Ed. 57, 1232 (2018). (IF: 12.257)

[16] Low temperature specific heat of the hole-doped Ba0.6K0.4Fe2As2 single crystals. Phys. Rev. B 79, 174501 (2009). (Citations: 133)

[17] Nodal Gap in Fe-Based Layered Superconductor LaO0.9F0.1-δFeAs Probed by Specific Heat Measurements. Chin. Phys. Lett. 25, 2221 (2008).  (Citations: 135)

[18] Synthesis, structural, and transport properties of the hole-doped superconductor Pr1-xSrxFeAsO. Phys. Rev. B 79, 104501 (2009). (Citations: 30)

[19] Superconductivity at 25K in hole-doped (La1−xSrx)OFeAs. EPL, 82, 17009 (2008).  (Citations: 518)

[20] Strong Pauli paramagnetic effect in the upper critical field of KCa2Fe4As4F2. Sci. China-Phys. Mech. Astron. 63, 227412 (2020).

[21] Two-gap superconductivity in CaFe0.88Co0.12AsF revealed by temperature dependence of the lower critical field Hc1c (T). npj Quantum Mater. 4, 33 (2019).

[22] Single-Crystal Growth and Extremely High Hc2 of 12442-Type Fe-Based Superconductor KCa2Fe4As4F2. J. Phys. Chem. C 123, 13925 (2019).

[23] Growth and characterization of CaFe1-xCoxAsF single crystals by CaAs flux method. J. Cryst. Growth, 451, 161 (2016).

[24] Growth and characterization of millimetersized single crystals of CaFeAsF. Supercond. Sci. Technol. 28, 085008 (2015)

[25] Enhancement of superconductivity by Sb-doping in the hole-doped iron-pnictide superconductor Pr1-xSrxFeAsO. Physica C 498, 50–53 (2014) 

[26] Anisotropic structure of the order parameter in FeSe0.45Te0.55 revealed by angle-resolved specific heat. Nat. Commun. 1, 112 (2010) 

[27] High-Tc superconductivity in ultrathin Bi2Sr2CaCu2O8+x down to half-unit-cell thickness by protection with graphene. Nat. Commun. 5, 5708 (2014) 

[28] Absence of Superconductivity in LiCu2P2. J. Am. Chem. Soc. 133, 1751–1753 (2011)