发表论文
[1] Jin, Yuankai, Xu, Wanghuai, Zhang, Huanhuan, Li, Ruirui, Sun, Jing, Yang, Siyan, Liu, Minjie, Mao, Haiyang, Wang, Zuankai. Electrostatic tweezer for droplet manipulation. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA[J]. 2022, 119(2): http://dx.doi.org/10.1073/pnas.2105459119.[2] Shaohang Xu, Meng Shi, Na Zhou, Yaqian Zhao, Haiyang Mao, 黄成军. A Performance Enhancement Method for MEMS Thermopile Pirani Sensors Through In-Situ Integration of Nanoforests. IEEE Electron Device Letter[J]. 2022, 43(10): 1752-1755, [3] Liu, Yang, Li, Ruirui, Zhou, Na, Li, Mao, Huang, Chengjun, Mao, Haiyang. Recyclable 3D SERS devices based on ZnO nanorod-grafted nanowire forests for biochemical sensing. APPLIED SURFACE SCIENCE[J]. 2022, 582: http://dx.doi.org/10.1016/j.apsusc.2021.152336.[4] Zeqing Xiang, Meng Shi, Na Zhou, Chenchen Zhang, Xuefeng Ding, Yue Ni, Dapeng Chen, Haiyang Mao. A Highly Accurate Method for Measuring Response Time of MEMS Thermopiles. MICROMACHINES[J]. 2022, 13: https://doaj.org/article/6a368647f6bb49c38d4fed39aad93001.[5] Xu, Shaohang, Zhou, Na, Shi, Meng, Zhang, Chenchen, Chen, Dapeng, Mao, Haiyang. Overview of the MEMS Pirani Sensors. MICROMACHINES[J]. 2022, 13(6): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000816140800001.[6] Li, Hongbo, Zhang, Chenchen, Xu, Gaobo, Ding, Xuefeng, Ni, Yue, Chen, Guidong, Chen, Dapeng, Zhou, Na, Mao, Haiyang. A Thermopile Infrared Sensor Array Pixel Monolithically Integrated with an NMOS Switch. MICROMACHINES[J]. 2022, 13(2): http://dx.doi.org/10.3390/mi13020258.[7] Chen, Guidong, Guan, Ruofei, Shi, Meng, Dai, Xin, Li, Hongbo, Zhou, Na, Chen, Dapeng, Mao, Haiyang. A nanoforest-based humidity sensor for respiration monitoring. MICROSYSTEMS & NANOENGINEERING[J]. 2022, 8(1): http://dx.doi.org/10.1038/s41378-022-00372-4.[8] Jin, Yuankai, Xu, Wanghuai, Zhang, Huanhuan, Li, Ruirui, Sun, Jing, Yang, Siyan, Liu, Minjie, Mao, Haiyang, Wang, Zuankai. Electrostatic tweezer for droplet manipulation. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA[J]. 2022, 119(2): http://dx.doi.org/10.1073/pnas.2105459119.[9] Shaohang Xu, Meng Shi, Na Zhou, Yaqian Zhao, Haiyang Mao, 黄成军. A Performance Enhancement Method for MEMS Thermopile Pirani Sensors Through In-Situ Integration of Nanoforests. IEEE Electron Device Letter[J]. 2022, 43(10): 1752-1755, [10] Liu, Yang, Li, Ruirui, Zhou, Na, Li, Mao, Huang, Chengjun, Mao, Haiyang. Recyclable 3D SERS devices based on ZnO nanorod-grafted nanowire forests for biochemical sensing. APPLIED SURFACE SCIENCE[J]. 2022, 582: http://dx.doi.org/10.1016/j.apsusc.2021.152336.[11] Zeqing Xiang, Meng Shi, Na Zhou, Chenchen Zhang, Xuefeng Ding, Yue Ni, Dapeng Chen, Haiyang Mao. A Highly Accurate Method for Measuring Response Time of MEMS Thermopiles. MICROMACHINES[J]. 2022, 13: https://doaj.org/article/6a368647f6bb49c38d4fed39aad93001.[12] Xu, Shaohang, Zhou, Na, Shi, Meng, Zhang, Chenchen, Chen, Dapeng, Mao, Haiyang. Overview of the MEMS Pirani Sensors. MICROMACHINES[J]. 2022, 13(6): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000816140800001.[13] Li, Hongbo, Zhang, Chenchen, Xu, Gaobo, Ding, Xuefeng, Ni, Yue, Chen, Guidong, Chen, Dapeng, Zhou, Na, Mao, Haiyang. A Thermopile Infrared Sensor Array Pixel Monolithically Integrated with an NMOS Switch. MICROMACHINES[J]. 2022, 13(2): http://dx.doi.org/10.3390/mi13020258.[14] Chen, Guidong, Guan, Ruofei, Shi, Meng, Dai, Xin, Li, Hongbo, Zhou, Na, Chen, Dapeng, Mao, Haiyang. A nanoforest-based humidity sensor for respiration monitoring. MICROSYSTEMS & NANOENGINEERING[J]. 2022, 8(1): http://dx.doi.org/10.1038/s41378-022-00372-4.[15] Na Zhou, Xuefeng Ding, Hongbo Li, Yue Ni, Yonglong Pu, Haiyang Mao. A Thermopile Detector Based on Micro-Bridges for Heat Transfer. MICROMACHINES[J]. 2021, 12: [16] Shi Meng, Dai Xin, Liu Yang, Zhou Na, zhang chenchen, Mao haiyang, chen dapeng. Infrared thermopile sensors with in-situ integration of composite nanoforests for enhanced optical. IEEE MEMS[J]. 2021, [17] 刘洋, 唐嫒尧, 毛海央, 周娜, 黄成军. Hierarchical ZnO Nanospikes on Rough Nanopillars for Gas Sensing with Self-Cleaning Properties. 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)[J]. 2021, [18] Du, Xiangbin, Kong, Jinlong, Liu, Yang, Xu, Qianmin, Wang, Kaiqun, Huang, Di, Wei, Yan, Chen, Weiyi, Mao, Haiyang. The Measurement and Analysis of Impedance Response of HeLa Cells to Distinct Chemotherapy Drugs. MICROMACHINES[J]. 2021, 12(2): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920318/.[19] 秦冲, 毛海央, 陈险峰, 李义. 28nm WLP封装中PBO结构对CPI可靠性的影响. 微电子学[J]. 2021, 51(1): 126-131, https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2021&filename=MINI202101024&v=MjI1NzNvOUhZSVI4ZVgxTHV4WVM3RGgxVDNxVHJXTTFGckNVUjd1ZlllZG5GeURrVTdyTktDVEZaN0c0SE5ETXI=.[20] Li, Mao, Shi, Meng, Wang, Bin, Zhang, Chenchen, Yang, Shuai, Yang, Yudong, Zhou, Na, Guo, Xin, Chen, Dapeng, Li, Shaojuan, Mao, Haiyang, Xiong, Jijun. Quasi-Ordered Nanoforests with Hybrid Plasmon Resonances for Broadband Absorption and Photodetection. ADVANCED FUNCTIONAL MATERIALS[J]. 2021, 31(38): http://dx.doi.org/10.1002/adfm.202102840.[21] Li, Hongbo, Xu, Gaobo, Zhang, Chenchen, Mao, Haiyang, Zhou, Na, Chen, Dapeng. A Sensitivity Controllable Thermopile Infrared Sensor by Monolithic Integration of a N-channel Metal Oxide Semiconductor. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY[J]. 2021, 10(9): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000701305300001.[22] Chen, Guidong, Liu, Yang, Shi, Meng, Zhou, Na, Dai, Xin, Mao, Haiyang, Chen, Dapeng. Performance Enhanced Humidity Sensor by In-Situ Integration of Nanoforests. IEEE ELECTRON DEVICE LETTERS[J]. 2021, 42(4): 585-588, http://dx.doi.org/10.1109/LED.2021.3062063.[23] 王新泽, 毛海央, 金海波, 龙克文. 静电注入对55nm MV/HV GGNMOS ESD性能的影响. 微电子学[J]. 2021, 51(1): 132-136, http://lib.cqvip.com/Qikan/Article/Detail?id=7104323976.[24] Kong, Jinlong, Liu, Yang, Du, Xiangbin, Wang, Kaiqun, Chen, Weiyi, Huang, Di, Wei, Yan, Mao, Haiyang. Effect of cell-nanostructured substrate interactions on the capture efficiency of HeLa cells. BIOMEDICAL MATERIALS[J]. 2021, 16(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000623857100001.[25] Liu, Yang, Li, Xin, Cheng, Jie, Zhou, Na, Zhang, Lingqian, Mao, Haiyang, Huang, Chengjun. SERS devices with "hedgehog-like" nanosphere arrays for detection of trace pesticides. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES[J]. 2021, 14(4): 72-81, http://dx.doi.org/10.1142/S1793545821410054.[26] Na Zhou, Xuefeng Ding, Hongbo Li, Yue Ni, Yonglong Pu, Haiyang Mao. A Thermopile Detector Based on Micro-Bridges for Heat Transfer. MICROMACHINES[J]. 2021, 12: [27] Shi Meng, Dai Xin, Liu Yang, Zhou Na, zhang chenchen, Mao haiyang, chen dapeng. Infrared thermopile sensors with in-situ integration of composite nanoforests for enhanced optical. IEEE MEMS[J]. 2021, [28] 刘洋, 唐嫒尧, 毛海央, 周娜, 黄成军. Hierarchical ZnO Nanospikes on Rough Nanopillars for Gas Sensing with Self-Cleaning Properties. 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)[J]. 2021, [29] Du, Xiangbin, Kong, Jinlong, Liu, Yang, Xu, Qianmin, Wang, Kaiqun, Huang, Di, Wei, Yan, Chen, Weiyi, Mao, Haiyang. The Measurement and Analysis of Impedance Response of HeLa Cells to Distinct Chemotherapy Drugs. MICROMACHINES[J]. 2021, 12(2): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920318/.[30] 秦冲, 毛海央, 陈险峰, 李义. 28nm WLP封装中PBO结构对CPI可靠性的影响. 微电子学[J]. 2021, 51(1): 126-131, https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2021&filename=MINI202101024&v=MjI1NzNvOUhZSVI4ZVgxTHV4WVM3RGgxVDNxVHJXTTFGckNVUjd1ZlllZG5GeURrVTdyTktDVEZaN0c0SE5ETXI=.[31] Li, Mao, Shi, Meng, Wang, Bin, Zhang, Chenchen, Yang, Shuai, Yang, Yudong, Zhou, Na, Guo, Xin, Chen, Dapeng, Li, Shaojuan, Mao, Haiyang, Xiong, Jijun. Quasi-Ordered Nanoforests with Hybrid Plasmon Resonances for Broadband Absorption and Photodetection. ADVANCED FUNCTIONAL MATERIALS[J]. 2021, 31(38): http://dx.doi.org/10.1002/adfm.202102840.[32] Li, Hongbo, Xu, Gaobo, Zhang, Chenchen, Mao, Haiyang, Zhou, Na, Chen, Dapeng. A Sensitivity Controllable Thermopile Infrared Sensor by Monolithic Integration of a N-channel Metal Oxide Semiconductor. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY[J]. 2021, 10(9): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000701305300001.[33] Chen, Guidong, Liu, Yang, Shi, Meng, Zhou, Na, Dai, Xin, Mao, Haiyang, Chen, Dapeng. Performance Enhanced Humidity Sensor by In-Situ Integration of Nanoforests. IEEE ELECTRON DEVICE LETTERS[J]. 2021, 42(4): 585-588, http://dx.doi.org/10.1109/LED.2021.3062063.[34] 王新泽, 毛海央, 金海波, 龙克文. 静电注入对55nm MV/HV GGNMOS ESD性能的影响. 微电子学[J]. 2021, 51(1): 132-136, http://lib.cqvip.com/Qikan/Article/Detail?id=7104323976.[35] Kong, Jinlong, Liu, Yang, Du, Xiangbin, Wang, Kaiqun, Chen, Weiyi, Huang, Di, Wei, Yan, Mao, Haiyang. Effect of cell-nanostructured substrate interactions on the capture efficiency of HeLa cells. BIOMEDICAL MATERIALS[J]. 2021, 16(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000623857100001.[36] Liu, Yang, Li, Xin, Cheng, Jie, Zhou, Na, Zhang, Lingqian, Mao, Haiyang, Huang, Chengjun. SERS devices with "hedgehog-like" nanosphere arrays for detection of trace pesticides. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES[J]. 2021, 14(4): 72-81, http://dx.doi.org/10.1142/S1793545821410054.[37] Cheng, Jie, Liu, Yang, Mao, Haiyang, Zhao, Wenjie, Ye, Yifei, Zhao, Yang, Zhang, Lingqian, Li, Mingxiao, Huang, Chengjun. Wafer-level fabrication of 3D nanoparticles assembled nanopillars and click chemistry modification for sensitive SERS detection of trace carbonyl compounds. NANOTECHNOLOGY[J]. 2020, 31(26): https://www.webofscience.com/wos/woscc/full-record/WOS:000529405300001.[38] Gui, Bo, Shi, Meng, Yang, Yudong, Mao, Haiyang, Long, Kewen, Chen, Dapeng, IEEE. A DROPLET PLATFORM BASED ON PARAHYDROPHOBIC NANOFORESTS FOR ON-SITE ION DETECTIONS. 2020 33RD IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2020)null. 2020, 1118-1121, [39] Cheng, Jie, Liu, Yang, Zhao, Yang, Zhang, Lina, Zhang, Lingqian, Mao, Haiyang, Huang, Chengjun. Nanotechnology-Assisted Isolation and Analysis of Circulating Tumor Cells on Microfluidic Devices. MICROMACHINES[J]. 2020, 11(8): https://doaj.org/article/25e25953f19b4f16a46d0f4ac2721c82.[40] 赵倩, 杨宇东, 桂博, 毛海央, 李锐锐, 陈大鹏. 基于纳米锥森林结构的表面增强拉曼散射透明器件研究. 光谱学与光谱分析[J]. 2020, 40(4): 1168-1173, http://lib.cqvip.com/Qikan/Article/Detail?id=7101516471.[41] 毛海央. 基于烛灰纳米颗粒层的高性能MEMS湿度传感器. 微纳电子技术. 2020, [42] 巩晨, 王新泽, 张荣跻, 刘敏, 马一楠, 刘轩, 阎海涛, 毛海央. 湿法刻蚀调节分裂栅存储器的浮栅层形貌研究. 微电子学[J]. 2020, 50(4): 574-578, http://lib.cqvip.com/Qikan/Article/Detail?id=7102817773.[43] Li, Ruirui, Gui, Bo, Mao, Haiyang, Yang, Yudong, Chen, Dapeng, Xiong, Jijun. Self-Concentrated Surface-Enhanced Raman Scattering-Active Droplet Sensor with Three-Dimensional Hot Spots for Highly Sensitive Molecular Detection in Complex Liquid Environments. ACS SENSORS[J]. 2020, 5(11): 3420-3431, https://www.webofscience.com/wos/woscc/full-record/WOS:000595550100012.[44] 陈贵东, 石梦, 毛海央, 熊继军, 陈大鹏. 基于纳米森林的电容式湿度传感器. 微纳电子技术[J]. 2020, 57(6): 462-467, http://lib.cqvip.com/Qikan/Article/Detail?id=7102102772.[45] Ruirui Li, Haiyang Mao, Meng Shi, Qian Zhao, Dapeng Chen, Jijun Xiong. Parahydrophobic 3D nanohybrid substrates with two pathways of molecular enrichment and multilevel plasmon hybridization. SENSORS AND ACTUATORS: B. CHEMICAL. 2020, 320: [46] Zhao Qian, Yang Yudong, Gui Bo, Mao Haiyang, Li Ruirui, Chen Dapeng. Surface-Enhanced Raman Scattering Transparent Devices Based on Nanocone Forests. SPECTROSCOPY AND SPECTRAL ANALYSIS[J]. 2020, 40(4): 1168-1173, https://www.webofscience.com/wos/woscc/full-record/WOS:000534352300030.[47] Qin, Chong, Li, Yi, Mao, Haiyang. Effect of Different PBO-Based RDL Structures on Chip-Package Interaction Reliability of Wafer Level Package. IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY[J]. 2020, 20(3): 524-529, https://www.webofscience.com/wos/woscc/full-record/WOS:000567396800008.[48] 毛海央. 基于纳米锥森林结构的表面增强拉曼散射透明器件研. 光谱学与光谱分析. 2020, [49] 陈贵东, 毛海央, 熊继军, 王玮冰, 陈大鹏. 基于烛灰纳米颗粒层的高灵敏度MEMS湿度传感器. 微纳电子技术[J]. 2020, 36-40, http://lib.cqvip.com/Qikan/Article/Detail?id=00002HGNKH5G7JP0MPDO8JP1MDR.[50] Cheng, Jie, Liu, Yang, Mao, Haiyang, Zhao, Wenjie, Ye, Yifei, Zhao, Yang, Zhang, Lingqian, Li, Mingxiao, Huang, Chengjun. Wafer-level fabrication of 3D nanoparticles assembled nanopillars and click chemistry modification for sensitive SERS detection of trace carbonyl compounds. NANOTECHNOLOGY[J]. 2020, 31(26): https://www.webofscience.com/wos/woscc/full-record/WOS:000529405300001.[51] Gui, Bo, Shi, Meng, Yang, Yudong, Mao, Haiyang, Long, Kewen, Chen, Dapeng, IEEE. A DROPLET PLATFORM BASED ON PARAHYDROPHOBIC NANOFORESTS FOR ON-SITE ION DETECTIONS. 2020 33RD IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2020)null. 2020, 1118-1121, [52] Cheng, Jie, Liu, Yang, Zhao, Yang, Zhang, Lina, Zhang, Lingqian, Mao, Haiyang, Huang, Chengjun. Nanotechnology-Assisted Isolation and Analysis of Circulating Tumor Cells on Microfluidic Devices. MICROMACHINES[J]. 2020, 11(8): https://doaj.org/article/25e25953f19b4f16a46d0f4ac2721c82.[53] 赵倩, 杨宇东, 桂博, 毛海央, 李锐锐, 陈大鹏. 基于纳米锥森林结构的表面增强拉曼散射透明器件研究. 光谱学与光谱分析[J]. 2020, 40(4): 1168-1173, http://lib.cqvip.com/Qikan/Article/Detail?id=7101516471.[54] 毛海央. 基于烛灰纳米颗粒层的高性能MEMS湿度传感器. 微纳电子技术. 2020, [55] 巩晨, 王新泽, 张荣跻, 刘敏, 马一楠, 刘轩, 阎海涛, 毛海央. 湿法刻蚀调节分裂栅存储器的浮栅层形貌研究. 微电子学[J]. 2020, 50(4): 574-578, http://lib.cqvip.com/Qikan/Article/Detail?id=7102817773.[56] Li, Ruirui, Gui, Bo, Mao, Haiyang, Yang, Yudong, Chen, Dapeng, Xiong, Jijun. Self-Concentrated Surface-Enhanced Raman Scattering-Active Droplet Sensor with Three-Dimensional Hot Spots for Highly Sensitive Molecular Detection in Complex Liquid Environments. ACS SENSORS[J]. 2020, 5(11): 3420-3431, https://www.webofscience.com/wos/woscc/full-record/WOS:000595550100012.[57] 陈贵东, 石梦, 毛海央, 熊继军, 陈大鹏. 基于纳米森林的电容式湿度传感器. 微纳电子技术[J]. 2020, 57(6): 462-467, http://lib.cqvip.com/Qikan/Article/Detail?id=7102102772.[58] Ruirui Li, Haiyang Mao, Meng Shi, Qian Zhao, Dapeng Chen, Jijun Xiong. Parahydrophobic 3D nanohybrid substrates with two pathways of molecular enrichment and multilevel plasmon hybridization. SENSORS AND ACTUATORS: B. CHEMICAL. 2020, 320: [59] Zhao Qian, Yang Yudong, Gui Bo, Mao Haiyang, Li Ruirui, Chen Dapeng. Surface-Enhanced Raman Scattering Transparent Devices Based on Nanocone Forests. SPECTROSCOPY AND SPECTRAL ANALYSIS[J]. 2020, 40(4): 1168-1173, https://www.webofscience.com/wos/woscc/full-record/WOS:000534352300030.[60] Qin, Chong, Li, Yi, Mao, Haiyang. Effect of Different PBO-Based RDL Structures on Chip-Package Interaction Reliability of Wafer Level Package. IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY[J]. 2020, 20(3): 524-529, https://www.webofscience.com/wos/woscc/full-record/WOS:000567396800008.[61] 毛海央. 基于纳米锥森林结构的表面增强拉曼散射透明器件研. 光谱学与光谱分析. 2020, [62] 陈贵东, 毛海央, 熊继军, 王玮冰, 陈大鹏. 基于烛灰纳米颗粒层的高灵敏度MEMS湿度传感器. 微纳电子技术[J]. 2020, 36-40, http://lib.cqvip.com/Qikan/Article/Detail?id=00002HGNKH5G7JP0MPDO8JP1MDR.[63] Zhou, Jie, Liu, Bin, Qi, Baojin, Wei, Jinjia, Mao, Haiyang. Experimental investigations of bubble behaviors and heat transfer performance on micro/nanostructure surfaces. INTERNATIONAL JOURNAL OF THERMAL SCIENCES[J]. 2019, 135: 133-147, http://dx.doi.org/10.1016/j.ijthermalsci.2018.09.013.[64] 刘洋, 毛海央, 范文兵, 杨潇楠, 黄成军, 王玮冰. 用于抗菌药物敏感实验的倍比稀释微流控芯片. 微纳电子技术[J]. 2019, 279-284, http://lib.cqvip.com/Qikan/Article/Detail?id=66688481504849574852484853.[65] 刘城, 王爱记, 刘自瑞, 刘建强, 毛海央. 高k金属栅NMOSFET器件阈值电压调控方法. 微纳电子技术[J]. 2019, 56(1): 13-19, http://lib.cqvip.com/Qikan/Article/Detail?id=6100101559.[66] Li, Ruirui, Mao, Haiyang, Zhu, Menghua, Yang, Yudong, Xiong, Jijun, Wang, Weibing. Facile preparation of broadband absorbers based on patternable candle soot for applications of optical sensors. SENSORS AND ACTUATORS A-PHYSICAL[J]. 2019, 285: 111-117, http://dx.doi.org/10.1016/j.sna.2018.10.047.[67] Ruirui Li, Haiyang Mao, Menghua Zhu, Yudong Yang, Jijun Xiong, Weibing Wang. Facile preparation of broadband absorbers based on patternable candle soot for applications of optical sensors. SENSORS & ACTUATORS: A. PHYSICAL. 2019, 285: 111-117, http://dx.doi.org/10.1016/j.sna.2018.10.047.[68] Zhou, Jie, Liu, Bin, Qi, Baojin, Wei, Jinjia, Mao, Haiyang. Experimental investigations of bubble behaviors and heat transfer performance on micro/nanostructure surfaces. INTERNATIONAL JOURNAL OF THERMAL SCIENCES[J]. 2019, 135: 133-147, http://dx.doi.org/10.1016/j.ijthermalsci.2018.09.013.[69] 刘洋, 毛海央, 范文兵, 杨潇楠, 黄成军, 王玮冰. 用于抗菌药物敏感实验的倍比稀释微流控芯片. 微纳电子技术[J]. 2019, 279-284, http://lib.cqvip.com/Qikan/Article/Detail?id=66688481504849574852484853.[70] 刘城, 王爱记, 刘自瑞, 刘建强, 毛海央. 高k金属栅NMOSFET器件阈值电压调控方法. 微纳电子技术[J]. 2019, 56(1): 13-19, http://lib.cqvip.com/Qikan/Article/Detail?id=6100101559.[71] Li, Ruirui, Mao, Haiyang, Zhu, Menghua, Yang, Yudong, Xiong, Jijun, Wang, Weibing. Facile preparation of broadband absorbers based on patternable candle soot for applications of optical sensors. SENSORS AND ACTUATORS A-PHYSICAL[J]. 2019, 285: 111-117, http://dx.doi.org/10.1016/j.sna.2018.10.047.[72] Ruirui Li, Haiyang Mao, Menghua Zhu, Yudong Yang, Jijun Xiong, Weibing Wang. Facile preparation of broadband absorbers based on patternable candle soot for applications of optical sensors. SENSORS & ACTUATORS: A. PHYSICAL. 2019, 285: 111-117, http://dx.doi.org/10.1016/j.sna.2018.10.047.[73] Li Ruirui, Mao Haiyang, Chen Guidong, Xiong Jijun, Wang Weibing, IEEE. A Highly Sensitive SERS Device Based on A PDMS-CVD Prepared Substrate. 2018 IEEE SENSORSnull. 2018, 16-19, [74] 刘洋, 毛海央, 范文兵, 杨潇楠, 黄成军, 程洁, 王玮冰. 一种挡板结构被动式微混合器的设计与仿真. 微纳电子技术[J]. 2018, 55(4): 258-264, http://lib.cqvip.com/Qikan/Article/Detail?id=674851616.[75] Yang, Yudong, Mao, Haiyang, Xiong, Jijun, Jia, Yuncong, Li, Ruirui, Wang, Weibing. Optical Features of Nanowire Forests Prepared by a Plasma Repolymerization Technique. IEEE TRANSACTIONS ON NANOTECHNOLOGY[J]. 2018, 17(4): 719-722, https://www.webofscience.com/wos/woscc/full-record/WOS:000438087000019.[76] 杨宇东, 毛海央, 李锐锐, 贾云丛, 熊继军, 王玮冰. 双层复合纳米森林结构的制备及其宽光谱高吸收光学特性研究. 红外与毫米波学报[J]. 2018, 37(2): 246-250, http://lib.cqvip.com/Qikan/Article/Detail?id=7000633081.[77] Li Ruirui, Mao Haiyang, Chen Guidong, Xiong Jijun, Wang Weibing, IEEE. A Highly Sensitive SERS Device Based on A PDMS-CVD Prepared Substrate. 2018 IEEE SENSORSnull. 2018, 16-19, [78] 刘洋, 毛海央, 范文兵, 杨潇楠, 黄成军, 程洁, 王玮冰. 一种挡板结构被动式微混合器的设计与仿真. 微纳电子技术[J]. 2018, 55(4): 258-264, http://lib.cqvip.com/Qikan/Article/Detail?id=674851616.[79] Yang, Yudong, Mao, Haiyang, Xiong, Jijun, Jia, Yuncong, Li, Ruirui, Wang, Weibing. Optical Features of Nanowire Forests Prepared by a Plasma Repolymerization Technique. IEEE TRANSACTIONS ON NANOTECHNOLOGY[J]. 2018, 17(4): 719-722, https://www.webofscience.com/wos/woscc/full-record/WOS:000438087000019.[80] 杨宇东, 毛海央, 李锐锐, 贾云丛, 熊继军, 王玮冰. 双层复合纳米森林结构的制备及其宽光谱高吸收光学特性研究. 红外与毫米波学报[J]. 2018, 37(2): 246-250, http://lib.cqvip.com/Qikan/Article/Detail?id=7000633081.[81] Li, Ruirui, Mao, Haiyang, Yang, Yudong, Jia, Yuncong, Xue, Huiqiong, Xiong, Jijun, Wang, Weibing, IEEE. CANDLE SOOT WITH BROADBAND HIGH ABSORPTANCE FOR APPLICATIONS OF INFRARED SENSORS. 2017 19TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS)null. 2017, 882-885, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000426701400218.[82] 刘卫兵, 谭秋林, 明安杰, 孙西龙, 毛海央, 岱钦, 张岳, 姚俊, 王玮冰, 熊继军. 面向MEMS红外光源的高辐射率纳米硅结构制备. 仪表技术与传感器[J]. 2017, 7-10,82, http://lib.cqvip.com/Qikan/Article/Detail?id=672535749.[83] Yang, Y D, Mao, H Y, Xiong, J J, Jia, Y C, Lp, R R, Ming, A J, Wang, W B, IEEE. Optical Features of Nanowire Forests Generated Using Plasma Repolymerization. 2017 IEEE 12TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS)null. 2017, 452-455, [84] Mao, Haiyang, Li, Ruirui, Huang, Chengjun, Jia, Yuncong, Wang, Weibing, Ming, Anjie, Xiong, Jijun, IEEE. A HIGHLY SERS-ACTIVE AND FLEXIBLE DROPLET BASED ON CARBON-METAL COMPOSITE NANOPARTICLES. 2017 19TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS)null. 2017, 1344-1347, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000426701400333.[85] 孟莹, 谭秋林, 明安杰, 刘卫兵, 熊继军, 王玮冰, 毛海央, 孙西龙. 面向红外光源的辐射自增强非晶碳薄膜性能. 微纳电子技术[J]. 2017, http://159.226.55.106/handle/172511/17991.[86] 刘卫兵, 明安杰, 谭秋林, 孟莹, 孙西龙, 毛海央, 王玮冰, 熊继军. 面向MEMS红外光源的辐射增强结构设计. 激光与红外[J]. 2017, 47(11): 1386-1391, http://lib.cqvip.com/Qikan/Article/Detail?id=673736225.[87] Mao, Haiyang, Huang, Chengjun, Wu, Wengang, Xue, Mei, Yang, Yudong, Xiong, Jijun, Ming, Anjie, Wang, Weibing. Wafer-level fabrication of nanocone forests by plasma repolymerization technique for surface-enhanced Raman scattering devices. APPLIED SURFACE SCIENCE[J]. 2017, 396: 1085-1091, http://dx.doi.org/10.1016/j.apsusc.2016.11.092.[88] Yang, Yudong, Mao, Haiyang, Jia, Yuncong, Xue, Huiqiong, Xiong, Jijun, Wang, Weibing, Jiao, Binbin, IEEE. HYBRID NANOPILLAR FORESTS WITH BROADBAND HIGH ABSORPTANCE. 2017 19TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS)null. 2017, 1332-1335, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000426701400330.[89] Li, Ruirui, Mao, Haiyang, Yang, Yudong, Jia, Yuncong, Xue, Huiqiong, Xiong, Jijun, Wang, Weibing, IEEE. CANDLE SOOT WITH BROADBAND HIGH ABSORPTANCE FOR APPLICATIONS OF INFRARED SENSORS. 2017 19TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS)null. 2017, 882-885, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000426701400218.[90] 刘卫兵, 谭秋林, 明安杰, 孙西龙, 毛海央, 岱钦, 张岳, 姚俊, 王玮冰, 熊继军. 面向MEMS红外光源的高辐射率纳米硅结构制备. 仪表技术与传感器[J]. 2017, 7-10,82, http://lib.cqvip.com/Qikan/Article/Detail?id=672535749.[91] Yang, Y D, Mao, H Y, Xiong, J J, Jia, Y C, Lp, R R, Ming, A J, Wang, W B, IEEE. Optical Features of Nanowire Forests Generated Using Plasma Repolymerization. 2017 IEEE 12TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS)null. 2017, 452-455, [92] Mao, Haiyang, Li, Ruirui, Huang, Chengjun, Jia, Yuncong, Wang, Weibing, Ming, Anjie, Xiong, Jijun, IEEE. A HIGHLY SERS-ACTIVE AND FLEXIBLE DROPLET BASED ON CARBON-METAL COMPOSITE NANOPARTICLES. 2017 19TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS)null. 2017, 1344-1347, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000426701400333.[93] 孟莹, 谭秋林, 明安杰, 刘卫兵, 熊继军, 王玮冰, 毛海央, 孙西龙. 面向红外光源的辐射自增强非晶碳薄膜性能. 微纳电子技术[J]. 2017, http://159.226.55.106/handle/172511/17991.[94] 刘卫兵, 明安杰, 谭秋林, 孟莹, 孙西龙, 毛海央, 王玮冰, 熊继军. 面向MEMS红外光源的辐射增强结构设计. 激光与红外[J]. 2017, 47(11): 1386-1391, http://lib.cqvip.com/Qikan/Article/Detail?id=673736225.[95] Mao, Haiyang, Huang, Chengjun, Wu, Wengang, Xue, Mei, Yang, Yudong, Xiong, Jijun, Ming, Anjie, Wang, Weibing. Wafer-level fabrication of nanocone forests by plasma repolymerization technique for surface-enhanced Raman scattering devices. APPLIED SURFACE SCIENCE[J]. 2017, 396: 1085-1091, http://dx.doi.org/10.1016/j.apsusc.2016.11.092.[96] Yang, Yudong, Mao, Haiyang, Jia, Yuncong, Xue, Huiqiong, Xiong, Jijun, Wang, Weibing, Jiao, Binbin, IEEE. HYBRID NANOPILLAR FORESTS WITH BROADBAND HIGH ABSORPTANCE. 2017 19TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS)null. 2017, 1332-1335, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000426701400330.[97] Anjie Ming, Weibing Wang, Haiyang Mao, Yudong Yang, Jijun Xiong. Hybrid nanocone forests with high absorption in full-solar spectrum for solar cell applications. INSTITUTE OF PHYSICS PUBLISHING LTD.. 2016, http://oa.las.ac.cn/oainone/service/browseall/read1?ptype=JA&workid=JA201904045532279ZK.[98] 唐力程, 谭秋林, 毛海央, 欧文, 雷程, 熊继军. 红外多气体传感器设计. 传感器与微系统[J]. 2016, 35(2): 65-66,70, http://lib.cqvip.com/Qikan/Article/Detail?id=667964872.[99] Lei, Cheng, Mao, Haiyang, Ou, Wen, Xue, Chenyang, Tang, Licheng, Yang, Tao, Chen, Dapeng, Xiong, Jijun. A CMOS-MEMS IR device based on double-layer thermocouples. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS[J]. 2016, 22(5): 1163-1171, https://www.webofscience.com/wos/woscc/full-record/WOS:000374570300026.[100] 毛海央, 欧文. 基于纳米化聚酰亚胺材料的MEMS湿度传感器的研究. 仪表技术与传感器[J]. 2016, 7-8,36, http://lib.cqvip.com/Qikan/Article/Detail?id=668373735.[101] 毛海央, 欧文. Fabrication of Nanocone Forests with High Optical Absorption based on A Plasma Repolymerization Technique. 2016 IEEE 29th international conference on micro electro mechanical systems: MEMS 2016, Shanghai, China, 24-28 January 2016, pages 617-1267, v.2null. 2016, 1185-1188, http://159.226.55.106/handle/172511/16306.[102] Haiyang Mao. Diversiform nanoforests: fabrication and applications. 2016 IEEE International Nanoelectronics Conference (INEC 2016). 2016, [103] Lei, Cheng, Mao, Haiyang, Yang, Yudong, Ou, Wen, Xue, Chenyang, Yao, Zong, Ming, Anjie, Wang, Weibing, Wang, Ling, Hu, Jiandong, Xiong, Jijun. A double-end-beam based infrared device fabricated using CMOS-MEMS process. SENSOR REVIEW[J]. 2016, 36(3): 240-248, http://159.226.55.106/handle/172511/16117.[104] Liu Weibing, Ming Anjie, Tan Zhenxin, Tan Qiulin, Sun Xilong, Li Chaobo, Yang Chengyue, Mao Haiyang, Wang Weibing, Xiong Jijun, Chen Dapeng, IEEE. Development of MEMS IR source by compound release process with nano-scale silicon forest radiation layer. 2016 IEEE SENSORSnull. 2016, [105] Wu, Wengang, Mao, Haiyang, Han, Xiang, Xu, Jun, Wang, Weibing. Fabrication and characterization of SiO2/Si heterogeneous nanopillar arrays. NANOTECHNOLOGY[J]. 2016, 27(30): http://159.226.55.106/handle/172511/16113.[106] Anjie Ming, Weibing Wang, Haiyang Mao, Yudong Yang, Jijun Xiong. Hybrid nanocone forests with high absorption in full-solar spectrum for solar cell applications. INSTITUTE OF PHYSICS PUBLISHING LTD.. 2016, http://oa.las.ac.cn/oainone/service/browseall/read1?ptype=JA&workid=JA201904045532279ZK.[107] 唐力程, 谭秋林, 毛海央, 欧文, 雷程, 熊继军. 红外多气体传感器设计. 传感器与微系统[J]. 2016, 35(2): 65-66,70, http://lib.cqvip.com/Qikan/Article/Detail?id=667964872.[108] Lei, Cheng, Mao, Haiyang, Ou, Wen, Xue, Chenyang, Tang, Licheng, Yang, Tao, Chen, Dapeng, Xiong, Jijun. A CMOS-MEMS IR device based on double-layer thermocouples. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS[J]. 2016, 22(5): 1163-1171, https://www.webofscience.com/wos/woscc/full-record/WOS:000374570300026.[109] 毛海央, 欧文. 基于纳米化聚酰亚胺材料的MEMS湿度传感器的研究. 仪表技术与传感器[J]. 2016, 7-8,36, http://lib.cqvip.com/Qikan/Article/Detail?id=668373735.[110] 毛海央, 欧文. Fabrication of Nanocone Forests with High Optical Absorption based on A Plasma Repolymerization Technique. 2016 IEEE 29th international conference on micro electro mechanical systems: MEMS 2016, Shanghai, China, 24-28 January 2016, pages 617-1267, v.2null. 2016, 1185-1188, http://159.226.55.106/handle/172511/16306.[111] Haiyang Mao. Diversiform nanoforests: fabrication and applications. 2016 IEEE International Nanoelectronics Conference (INEC 2016). 2016, [112] Lei, Cheng, Mao, Haiyang, Yang, Yudong, Ou, Wen, Xue, Chenyang, Yao, Zong, Ming, Anjie, Wang, Weibing, Wang, Ling, Hu, Jiandong, Xiong, Jijun. A double-end-beam based infrared device fabricated using CMOS-MEMS process. SENSOR REVIEW[J]. 2016, 36(3): 240-248, http://159.226.55.106/handle/172511/16117.[113] Liu Weibing, Ming Anjie, Tan Zhenxin, Tan Qiulin, Sun Xilong, Li Chaobo, Yang Chengyue, Mao Haiyang, Wang Weibing, Xiong Jijun, Chen Dapeng, IEEE. Development of MEMS IR source by compound release process with nano-scale silicon forest radiation layer. 2016 IEEE SENSORSnull. 2016, [114] Wu, Wengang, Mao, Haiyang, Han, Xiang, Xu, Jun, Wang, Weibing. Fabrication and characterization of SiO2/Si heterogeneous nanopillar arrays. NANOTECHNOLOGY[J]. 2016, 27(30): http://159.226.55.106/handle/172511/16113.[115] Haiyang Mao. Nanofiber Forests as A Humidity-Sensitive Material,. IEEE MEMS 2015. 2015, [116] Weibing Wang. Fabrication of Patternable Nanopillars for Microfluidic SERS Devices based on Gap-Induced Uneven Etching. IEEE MEMS 2015. 2015, [117] Wu, Meng, Ou, Yi, Mao, Haiyang, Li, Zhigang, Liu, Ruiwen, Ming, Anjie, Ou, Wen. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever. AIP ADVANCES[J]. 2015, 5(7): https://doaj.org/article/17748bb981494cda9699576c5d686a3f.[118] Tang L C, Mao H Y, Wang Y, Ou W, Wu W G, Tan Q L, Xiong J J, IEEE. FABRICATION OF NANOWIRES FROM POLYIMIDE FOR TRANSPARENT SERS DEVICES. 2015 TRANSDUCERS - 2015 18TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS)null. 2015, 1397-1400, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000380461400348.[119] 毛海央. 基于双层多晶硅材料的MEMS热电偶真空度传感器研究. 微纳电子技术. 2015, [120] Haiyang Mao. Fabrication of Transparent SERS Devices for Pesticide Detection. IEEE NEMS 2015. 2015, [121] Haiyang Mao. Nanofiber Forests as A Humidity-Sensitive Material,. IEEE MEMS 2015. 2015, [122] Weibing Wang. Fabrication of Patternable Nanopillars for Microfluidic SERS Devices based on Gap-Induced Uneven Etching. IEEE MEMS 2015. 2015, [123] Wu, Meng, Ou, Yi, Mao, Haiyang, Li, Zhigang, Liu, Ruiwen, Ming, Anjie, Ou, Wen. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever. AIP ADVANCES[J]. 2015, 5(7): https://doaj.org/article/17748bb981494cda9699576c5d686a3f.[124] Tang L C, Mao H Y, Wang Y, Ou W, Wu W G, Tan Q L, Xiong J J, IEEE. FABRICATION OF NANOWIRES FROM POLYIMIDE FOR TRANSPARENT SERS DEVICES. 2015 TRANSDUCERS - 2015 18TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS)null. 2015, 1397-1400, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000380461400348.[125] 毛海央. 基于双层多晶硅材料的MEMS热电偶真空度传感器研究. 微纳电子技术. 2015, [126] Haiyang Mao. Fabrication of Transparent SERS Devices for Pesticide Detection. IEEE NEMS 2015. 2015, [127] 欧文. Design of thermopile-based infrared detectors with suspended absorber-thermopile bi-layers. Chinese Journal of Sensors and Actuators. 2014, [128] Bao AiDa, Mao HaiYang, Xiong JiJun, Chen ZhuoJie, Ou Wen, Chen DaPeng. Nanopillar-forest based surface-enhanced Raman scattering substrates. SCIENCE CHINA-INFORMATION SCIENCES[J]. 2014, 57(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000339365500021.[129] 陈媛婧, 毛海央, 谭秋林, 薛晨阳, 欧文, 陈大鹏, 熊继军. 一种基于悬浮吸收层的双层结构的热电堆红外探测器. 传感技术学报[J]. 2014, 27(6): 730-735, http://lib.cqvip.com/Qikan/Article/Detail?id=662065813.[130] 欧文. Fabrication of polyimide sacrificial layers with inclined sidewalls based on RIE technology. AIP Advances. 2014, [131] Mao, Haiyang, Wu, Wengang, She, Didi, Sun, Gongchen, Lv, Pengpeng, Xu, Jun. Microfluidic Surface-Enhanced Raman Scattering Sensors Based on Nanopillar Forests Realized by an Oxygen-Plasma-Stripping-of-Photoresist Technique. SMALL[J]. 2014, 10(1): 127-134, https://www.webofscience.com/wos/woscc/full-record/WOS:000330624400015.[132] Haiyang Mao. Nanofiber Forests with High Infrared Absorptance. IEEEMEMS2014. 2014, [133] 欧文. Design of thermopile-based infrared detectors with suspended absorber-thermopile bi-layers. Chinese Journal of Sensors and Actuators. 2014, [134] Bao AiDa, Mao HaiYang, Xiong JiJun, Chen ZhuoJie, Ou Wen, Chen DaPeng. Nanopillar-forest based surface-enhanced Raman scattering substrates. SCIENCE CHINA-INFORMATION SCIENCES[J]. 2014, 57(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000339365500021.[135] 陈媛婧, 毛海央, 谭秋林, 薛晨阳, 欧文, 陈大鹏, 熊继军. 一种基于悬浮吸收层的双层结构的热电堆红外探测器. 传感技术学报[J]. 2014, 27(6): 730-735, http://lib.cqvip.com/Qikan/Article/Detail?id=662065813.[136] 欧文. Fabrication of polyimide sacrificial layers with inclined sidewalls based on RIE technology. AIP Advances. 2014, [137] Mao, Haiyang, Wu, Wengang, She, Didi, Sun, Gongchen, Lv, Pengpeng, Xu, Jun. Microfluidic Surface-Enhanced Raman Scattering Sensors Based on Nanopillar Forests Realized by an Oxygen-Plasma-Stripping-of-Photoresist Technique. SMALL[J]. 2014, 10(1): 127-134, https://www.webofscience.com/wos/woscc/full-record/WOS:000330624400015.[138] Haiyang Mao. Nanofiber Forests with High Infrared Absorptance. IEEEMEMS2014. 2014, [139] Mao, Haiyang, Chen, Yuanjing, Ou, Yi, Ou, Wen, Xiong, Jijun, You, Chunjuan, Tan, Qiulin, Chen, Dapeng. Fabrication of nanopillar forests with high infrared absorptance based on rough poly-Si and spacer technology. JOURNAL OF MICROMECHANICS AND MICROENGINEERING[J]. 2013, 23(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000323814100034.[140] Mao, Haiyang, Chen, Yuanjing, Ou, Yi, Ou, Wen, Xiong, Jijun, You, Chunjuan, Tan, Qiulin, Chen, Dapeng. Fabrication of nanopillar forests with high infrared absorptance based on rough poly-Si and spacer technology. JOURNAL OF MICROMECHANICS AND MICROENGINEERING[J]. 2013, 23(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000323814100034.[141] Mao, Haiyang, Zhang, Yulong, Wu, Wengang, Sun, Gongchen, Xu, Jun. Realization of cylindrical submicron shell arrays by diffraction-introduced photolithography. JOURNALOFMICROMECHANICSANDMICROENGINEERING[J]. 2011, 21(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000293163700004.[142] Mao, Haiyang, Zhang, Yulong, Wu, Wengang, Sun, Gongchen, Xu, Jun. Realization of cylindrical submicron shell arrays by diffraction-introduced photolithography. JOURNALOFMICROMECHANICSANDMICROENGINEERING[J]. 2011, 21(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000293163700004.[143] Mao, Haiyang, Wu, Wengang, Zhang, Yulong, Zhai, Ge, Xu, Jun. Fabrication of high-compact nanowires using alternating photoresist ashing and spacer technology. JOURNAL OF MICROMECHANICS AND MICROENGINEERING[J]. 2010, 20(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000280560600029.[144] Mao, Haiyang, Wu, Wengang, Zhang, Yulong, Zhai, Ge, Xu, Jun. Fabrication of high-compact nanowires using alternating photoresist ashing and spacer technology. JOURNAL OF MICROMECHANICS AND MICROENGINEERING[J]. 2010, 20(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000280560600029.[145] Haiyang Mao. A novel micro- accelerometer with adjustable sensitivity based on resonant tunneling diodes. Chinese Physics B. 2009, [146] Jijun Xiong, Wendong Zhang, Haiyang Mao, Kaiqun Wang. Research on double-barrier resonant tunneling effect based stress measurement methods. SENSORS & ACTUATORS: A. PHYSICAL. 2009, 150(2): 169-174, http://dx.doi.org/10.1016/j.sna.2008.12.015.[147] Mao, Haiyang, Wu, Di, Wu, Wengang, Xu, Jun, Hao, Yilong. The fabrication of diversiform nanostructure forests based on residue nanomasks synthesized by oxygen plasma removal of photoresist. NANOTECHNOLOGY[J]. 2009, 20(44): https://www.webofscience.com/wos/woscc/full-record/WOS:000270562900010.[148] 熊继军, 毛海央, 张文栋, 王楷群. A novel micro-accelerometer with adjustable sensitivity based on resonant tunnelling diodes. 中国物理:英文版[J]. 2009, 1242-1247, http://lib.cqvip.com/Qikan/Article/Detail?id=29794244.[149] Haiyang Mao. A novel micro- accelerometer with adjustable sensitivity based on resonant tunneling diodes. Chinese Physics B. 2009, [150] Jijun Xiong, Wendong Zhang, Haiyang Mao, Kaiqun Wang. Research on double-barrier resonant tunneling effect based stress measurement methods. SENSORS & ACTUATORS: A. PHYSICAL. 2009, 150(2): 169-174, http://dx.doi.org/10.1016/j.sna.2008.12.015.[151] Mao, Haiyang, Wu, Di, Wu, Wengang, Xu, Jun, Hao, Yilong. The fabrication of diversiform nanostructure forests based on residue nanomasks synthesized by oxygen plasma removal of photoresist. NANOTECHNOLOGY[J]. 2009, 20(44): https://www.webofscience.com/wos/woscc/full-record/WOS:000270562900010.[152] 熊继军, 毛海央, 张文栋, 王楷群. A novel micro-accelerometer with adjustable sensitivity based on resonant tunnelling diodes. 中国物理:英文版[J]. 2009, 1242-1247, http://lib.cqvip.com/Qikan/Article/Detail?id=29794244.