发表论文
[1] 吴济安, 陈昆峰, 薛冬峰. 超快高温制备正钽酸铕及发光性能研究. 中国稀土学报[J]. 2023, 41(1): 145-151, http://lib.cqvip.com/Qikan/Article/Detail?id=7109073089.[2] 薛冬峰, 苏良碧, 徐军. 凝结时空精华,铸就序构材料,力促大尺寸功能晶体新发展. 无机材料学报. 2023, 225-227, https://kns.cnki.net/kcms2/article/abstract?v=RtZjjXMhIaWhXgdp_r1IIhPXn9X0uNdAhvSfKa5JABRPbgOdT1WLv84aAV5Wg4lWVRv6zWjHDIbFedlq5R8miFT1NFmRGEb-Glwru12yiwyfXNGNSEvwUVRV40cNzeJy&uniplatform=NZKPT&language=gb.[3] 刘锋, 陈昆峰, 薛冬峰. 稀土倍半氧化物晶体材料研究进展. 材料导报[J]. 2023, 37(3): 95-101, http://lib.cqvip.com/Qikan/Article/Detail?id=7108960156.[4] 史国强, 薛冬峰. 量子材料化学研究的多尺度视角. 化学研究. 2022, 33(5): 387-395, http://lib.cqvip.com/Qikan/Article/Detail?id=7107964612.[5] 刘锋, 陈昆峰, 彭超, 薛冬峰. 大尺寸晶体快速生长理论与技术的研究进展. 人工晶体学报. 2022, 51(9): 1732-1744, http://lib.cqvip.com/Qikan/Article/Detail?id=7108332771.[6] 路正, 陈昆峰, 薛冬峰. 高热稳定性α-氧化铁的宏量制备及其电化学性能研究. 无机盐工业[J]. 2022, 54(3): 45-50, http://lib.cqvip.com/Qikan/Article/Detail?id=7106693919.[7] Sun, Xiangfei, Chen, Kunfeng, Liang, Feng, Zhi, Chunyi, Xue, Dongfeng. Perspective on Micro-Supercapacitors. FRONTIERS IN CHEMISTRYnull. 2022, 9: http://dx.doi.org/10.3389/fchem.2021.807500.[8] Shi, Yongqiang, Ma, Ruijie, Wang, Xin, Liu, Tao, Li, Yongchun, Fu, Sheng, Yang, Kun, Wang, Yang, Yu, Changjiang, Jiao, Lijuan, Wei, Xianwen, Fang, Junfeng, Xue, Dongfeng, Yan, He. Influence of Fluorine Substitution on the Photovoltaic Performance of Wide Band Gap Polymer Donors for Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES[J]. 2022, 14(4): 5740-5749, http://dx.doi.org/10.1021/acsami.1c23196.[9] Hu, Qianyu, Chen, Kunfeng, Liu, Fei, Zhao, Mengying, Liang, Feng, Xue, Dongfeng. Smart Materials Prediction: Applying Machine Learning to Lithium Solid-State Electrolyte. MATERIALSnull. 2022, 15(3): http://dx.doi.org/10.3390/ma15031157.[10] 王鑫, 薛冬峰. 定向转化策略创制氮氧化物光催化剂. 无机盐工业[J]. 2022, 54(3): 1-6, http://lib.cqvip.com/Qikan/Article/Detail?id=7106693913.[11] 王燕, 李雯, 薛冬峰. 稀土光学晶体研究新进展. 量子电子学报[J]. 2021, 38(2): 228-242, http://lib.cqvip.com/Qikan/Article/Detail?id=7104335330.[12] Chen, Kunfeng, Zhu, Yunzhong, Liu, Zhihua, Xue, Dongfeng. State of the Art in Crystallization of LiNbO3 and Their Applications. MOLECULESnull. 2021, 26(22): http://dx.doi.org/10.3390/molecules26227044.[13] Ding, Siyi, Ma, Ruijie, Yang, Tao, Zhang, Guangye, Yin, Junli, Luo, Zhenghui, Chen, Kai, Miao, Zongcheng, Liu, Tao, Yan, He, Xue, Dongfeng. Boosting the Efficiency of Non-fullerene Organic Solar Cells via a Simple Cathode Modification Method. ACS APPLIED MATERIALS & INTERFACES[J]. 2021, 13(43): 51078-51085, http://dx.doi.org/10.1021/acsami.1c16550.[14] Chen HuiWen, Li YunLong, Xue DongFeng. Perspective on perovskite materials as X-ray detectors. SCIENCE CHINA-TECHNOLOGICAL SCIENCES. 2021, 65: [15] Cao, Wangzhu, Chen, Kunfeng, Xue, Dongfeng. Highly Ordered TiO2 Nanotube Arrays with Engineered Electrochemical Energy Storage Performances. MATERIALS[J]. 2021, 14(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000615396900001.[16] 陈昆峰, 马天宇, 王安良, 张一波, 薛冬峰. 双碳目标下的多尺度稀土新材料研究. 无机盐工业[J]. 2021, 53(12): 1-13, http://lib.cqvip.com/Qikan/Article/Detail?id=7106157899.[17] 陈昆峰, 薛冬峰. 面向储能应用的多尺度电极材料结晶设计. 中国科学:化学[J]. 2021, 51(6): 742-750, https://www.sciengine.com/doi/10.1360/SSC-2021-0024.[18] Wang, Xuejiao, Xu, Benyan, Wang, Kunpeng, Li, Zhenyou, Zhang, Jianxiu, Liang, Lanju, Li, Longfei, Ren, Yanbiao, Liu, Yong, Liu, Meng, Xue, Dongfeng. The Electronic Structural and Defect-Induced Absorption Properties of a Ca2B10O14F6 Crystal. CRYSTALS[J]. 2021, 11(11): [19] Hou, Minjie, Yang, Xiecheng, Liang, Feng, Dong, Peng, Chen, Yuneng, Li, Jinran, Chen, Kunfeng, Dai, Yongnian, Xue, Dongfeng. Multiscale Investigation into Chemically Stable NASICON Solid Electrolyte in Acidic Solutions. ACS APPLIED MATERIALS & INTERFACES[J]. 2021, 13(28): 33262-33271, http://dx.doi.org/10.1021/acsami.1c07601.[20] Chen, Kunfeng, Li, Yanlu, Peng, Chao, Lu, Zheng, Luo, Xingyun, Xue, Dongfeng. Microstructure and defect characteristics of lithium niobate with different Li concentrations. INORGANIC CHEMISTRY FRONTIERS[J]. 2021, 8(17): 4006-4013, http://dx.doi.org/10.1039/d1qi00562f.[21] Chen, Kunfeng, Xue, Dongfeng. Fast growth of cerium-doped lutetium yttrium orthosilicate single crystals and their scintillation properties. JOURNAL OF RARE EARTHS[J]. 2021, 39(12): 1527-1532, http://dx.doi.org/10.1016/j.jre.2021.07.010.[22] Wang, Zhiqiang, Cao, Wangzhu, Chen, Kunfeng, Xue, Dongfeng. Temperature-dependent crystallization of Cu2O rhombic dodecahedra. CRYSTENGCOMM[J]. 2021, 23(45): 7970-7977, http://dx.doi.org/10.1039/d1ce00273b.[23] Sun, Congting, Xue, Dongfeng. Chemical bonding theory of single crystal growth and its application to crystal growth and design. CRYSTENGCOMM[J]. 2016, 18(8): 1262-1272, https://www.webofscience.com/wos/woscc/full-record/WOS:000371233200001.[24] Li, Keyan, Shua, Fenfen, Guo, Xinwen, Xue, Dongfeng. High performance porous MnO@C composite anode materials for lithium-ion batteries. ELECTROCHIMICA ACTA[J]. 2016, 188: 793-800, http://dx.doi.org/10.1016/j.electacta.2015.12.047.[25] Chen, Kunfeng, Xue, Dongfeng. Materials chemistry toward electrochemical energy storage. JOURNAL OF MATERIALS CHEMISTRY Anull. 2016, 4(20): 7522-7537, http://dx.doi.org/10.1039/c6ta01527a.[26] Sun, Congting, Li, Xingxing, Wang, Hao, Xue, Dongfeng. Crystallization-Dependent Luminescence Properties of Ce:LuPO4. INORGANIC CHEMISTRY[J]. 2016, 55(6): 2969-2976, https://www.webofscience.com/wos/woscc/full-record/WOS:000372677800035.[27] Chen, Kunfeng, Song, Shuyan, Xue, Dongfeng. Beyond graphene: materials chemistry toward high performance inorganic functional materials. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2015, 3(6): 2441-2453, http://ir.ciac.jl.cn/handle/322003/64634.[28] Chen, Kunfeng, Liu, Fei, Xue, Dongfeng, Komarneni, Sridhar. Carbon with ultrahigh capacitance when graphene paper meets K3Fe(CN)(6). NANOSCALE[J]. 2015, 7(2): 432-439, http://ir.ciac.jl.cn/handle/322003/64656.[29] Chen KunFeng, Xue DongFeng. Rare earth and transitional metal colloidal supercapacitors. SCIENCE CHINA-TECHNOLOGICAL SCIENCES[J]. 2015, 58(11): 1768-1778, https://www.webofscience.com/wos/woscc/full-record/WOS:000364227200002.[30] Chen, Xu, Chen, Kunfeng, Wang, Hao, Xue, Dongfeng. A colloidal pseudocapacitor: Direct use of Fe(NO3)(3) in electrode can lead to a high performance alkaline supercapacitor system. JOURNAL OF COLLOID AND INTERFACE SCIENCE[J]. 2015, 444(5): 49-57, http://dx.doi.org/10.1016/j.jcis.2014.12.026.[31] Chen, Kunfeng, Xue, Dongfeng, Komarneni, Sridhar. Colloidal pseudocapacitor: Nanoscale aggregation of Mn colloids from MnCl2 under alkaline condition. JOURNAL OF POWER SOURCES[J]. 2015, 279: 365-371, http://dx.doi.org/10.1016/j.jpowsour.2015.01.017.[32] Chen, Kunfeng, Xue, Dongfeng, Komarneni, Sridhar. Beyond theoretical capacity in Cu-based integrated anode: Insight into the structural evolution of CuO. JOURNAL OF POWER SOURCES[J]. 2015, 275: 136-143, http://dx.doi.org/10.1016/j.jpowsour.2014.11.002.[33] Chen, Kunfeng, Xue, Dongfeng. In-situ electrochemical route to aerogel electrode materials of graphene and hexagonal CeO2. JOURNAL OF COLLOID AND INTERFACE SCIENCE[J]. 2015, 446(6): 77-83, http://dx.doi.org/10.1016/j.jcis.2015.01.013.[34] Chen, Kunfeng, Chen, Xu, Xue, Dongfeng. Hydrothermal route to crystallization of FeOOH nanorods via FeCl3 center dot 6H(2)O: effect of Fe3+ concentration on pseudocapacitance of iron-based materials. CRYSTENGCOMM[J]. 2015, 17(9): 1906-1910, http://ir.ciac.jl.cn/handle/322003/65202.[35] Sun, Congting, Wang, Yan, Tu, Chaoyang, Xue, Dongfeng. Mesoscale morphology evolution of a GdAl3(BO3)(4) single crystal in a flux system: a case study of thermodynamic control of the anisotropic mass transfer during crystal growth. CRYSTENGCOMM[J]. 2015, 17(17): 3208-3213, http://ir.ciac.jl.cn/handle/322003/65206.[36] Sun, Congting, Xue, Dongfeng. In situ IR spectral identification of NH4H2PO4 structural evolution during crystallization in water-ethanol mixed solvent. CRYSTENGCOMM[J]. 2015, 17(13): 2728-2736, http://ir.ciac.jl.cn/handle/322003/65204.[37] Chen, Kunfeng, Yin, Shu, Xue, Dongfeng. A binary A(x)B(1-x) ionic alkaline pseudocapacitor system involving manganese, iron, cobalt, and nickel: formation of electroactive colloids via in situ electric field assisted coprecipitation. NANOSCALE[J]. 2015, 7(3): 1161-1166, http://ir.ciac.jl.cn/handle/322003/64657.[38] Chen, Kunfeng, Song, Shuyan, Xue, Dongfeng. Faceted Cu2O structures with enhanced Li-ion battery anode performances. CRYSTENGCOMM[J]. 2015, 17(10): 2110-2117, http://ir.ciac.jl.cn/handle/322003/65203.[39] Chen, Kunfeng, Song, Shuyan, Liu, Fei, Xue, Dongfeng. Structural design of graphene for use in electrochemical energy storage devices. CHEMICAL SOCIETY REVIEWS[J]. 2015, 44(17): 6230-6257, http://www.irgrid.ac.cn/handle/1471x/1037367.[40] Wang, Yan, Sun, Congting, Tu, Chaoyang, Xue, Dongfeng. Applying the chemical bonding theory of single crystal growth to a Gd3Ga5O12 Czochralski growth system: both thermodynamic and kinetic controls of the mesoscale process during single crystal growth. CRYSTENGCOMM[J]. 2015, 17(15): 2929-2934, https://www.webofscience.com/wos/woscc/full-record/WOS:000352142800003.[41] Chen, Kunfeng, Sun, Congting, Xue, Dongfeng. Morphology engineering of high performance binary oxide electrodes. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2015, 17(2): 732-750, http://ir.ciac.jl.cn/handle/322003/65142.[42] Sun, Congting, Xue, Dongfeng. IR Spectral Study of Mesoscale Process during Urea Crystallization from Aqueous Solution. CRYSTAL GROWTH & DESIGN[J]. 2015, 15(6): 2867-2873, http://ir.ciac.jl.cn/handle/322003/65054.[43] Chen, Kunfeng, Xue, Dongfeng. Preparation of colloidal graphene in quantity by electrochemical exfoliation. JOURNAL OF COLLOID AND INTERFACE SCIENCE[J]. 2014, 436: 41-46, http://dx.doi.org/10.1016/j.jcis.2014.08.057.[44] Chen, Kunfeng, Xue, Dongfeng. Water-soluble inorganic salt with ultrahigh specific capacitance: Ce(NO3)(3) can be designed as excellent pseudocapacitor electrode. JOURNAL OF COLLOID AND INTERFACE SCIENCE[J]. 2014, 416(2): 172-176, http://dx.doi.org/10.1016/j.jcis.2013.10.044.[45] Sun, Congting, Xue, Dongfeng. Physical Chemistry of Crystalline (K,NH4)H2PO4 in Aqueous Solution: An in Situ Molecule Vibration Spectral Observation of the Early Formation Stage. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2014, 118(29): 16043-16050, http://ir.ciac.jl.cn/handle/322003/56195.[46] Sun, Congting, Xue, Dongfeng. Chemical bonding theory of single crystal growth and its application to phi 3 '' YAG bulk crystal. CRYSTENGCOMM[J]. 2014, 16(11): 2129-2135, http://ir.ciac.jl.cn/handle/322003/57224.[47] Chen, Kunfeng, Liu, Fei, Song, Shuyan, Xue, Dongfeng. Water crystallization to create ice spacers between graphene oxide sheets for highly electroactive graphene paper. CRYSTENGCOMM[J]. 2014, 16(33): 7771-7776, http://ir.ciac.jl.cn/handle/322003/57232.[48] Sun, Congting, Xue, Dongfeng. Crystal Growth and Design of Sapphire: Experimental and Calculation Studies of Anisotropic Crystal Growth upon Pulling Directions. CRYSTAL GROWTH & DESIGN[J]. 2014, 14(5): 2282-2287, http://ir.ciac.jl.cn/handle/322003/56181.[49] Chen, Kunfeng, Xue, Dongfeng. Formation of electroactive colloids via in situ coprecipitation under electric field: Erbium chloride alkaline aqueous pseudocapacitor. JOURNAL OF COLLOID AND INTERFACE SCIENCE[J]. 2014, 430(23): 265-271, http://dx.doi.org/10.1016/j.jcis.2014.05.053.[50] Chen, Xu, Chen, Kunfeng, Wang, Hao, Xue, Dongfeng. Functionality of Fe(NO3)(3) salts as both positive and negative pseudocapacitor electrodes in alkaline aqueous electrolyte. ELECTROCHIMICA ACTA[J]. 2014, 147(23): 216-224, http://dx.doi.org/10.1016/j.electacta.2014.08.132.[51] Chen, Kunfeng, Xue, Dongfeng. YbCl3 electrode in alkaline aqueous electrolyte with high pseudocapacitance. JOURNAL OF COLLOID AND INTERFACE SCIENCE[J]. 2014, 424(1): 84-89, http://dx.doi.org/10.1016/j.jcis.2014.03.022.[52] Chen, Kunfeng, Yang, Yangyang, Li, Keyan, Ma, Zengsheng, Zhou, Yichun, Xue, Dongfeng. CoCl2 Designed as Excellent Pseudocapacitor Electrode Materials. ACS SUSTAINABLE CHEMISTRY & ENGINEERING[J]. 2014, 2(3): 440-444, https://www.webofscience.com/wos/woscc/full-record/WOS:000332348800015.[53] Sun, Congting, Xue, Dongfeng. In Situ IR Spectral Observation of NH4H2PO4 Crystallization: Structural Identification of Nucleation and Crystal Growth. JOURNALOFPHYSICALCHEMISTRYC[J]. 2013, 117(37): 19146-19153, http://www.irgrid.ac.cn/handle/1471x/833315.[54] Sun, Congting, Xue, Dongfeng. Tailoring Anisotropic Morphology at the Nanoregime: Surface Bonding Motif Determines the Morphology Transformation of ZnO Nanostructures. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2013, 117(10): 5505-5511, http://www.irgrid.ac.cn/handle/1471x/833715.[55] Zhang, Chengbo, Li, Keyan, Song, Shuyan, Xue, Dongfeng. Reversible Phase Transfer of Luminescent ZnO Quantum Dots between Polar and Nonpolar Media. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2013, 19(20): 6329-6333, https://www.webofscience.com/wos/woscc/full-record/WOS:000318365200021.[56] Liu, Fei, Xue, Dongfeng. An Electrochemical Route to Quantitative Oxidation of Graphene Frameworks with Controllable C/O Ratios and Added Pseudocapacitances. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2013, 19(32): 10716-10722, http://www.irgrid.ac.cn/handle/1471x/833393.[57] Li, Keyan, Kang, Congying, Xue, Dongfeng. Effect of Electrostatic and Size on Dopant Occupancy in Lithium Niobate Single Crystal. INORGANIC CHEMISTRY[J]. 2013, 52(17): 10206-10210, http://www.irgrid.ac.cn/handle/1471x/833332.[58] Sun, Congting, Xue, Dongfeng. Size-dependent oxygen storage ability of nano-sized ceria. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2013, 15(34): 14414-14419, http://www.irgrid.ac.cn/handle/1471x/833963.[59] Lu, Pai, Liu, Fei, Xue, Dongfeng, Yang, Hong, Liu, Yinong. Phase selective route to Ni(OH)(2) with enhanced supercapacitance: Performance dependent hydrolysis of Ni(Ac)(2) at hydrothermal conditions. ELECTROCHIMICA ACTA[J]. 2012, 78: 1-10, http://dx.doi.org/10.1016/j.electacta.2012.03.183.[60] Liu, Fei, Song, Shuyan, Xue, Dongfeng, Zhang, Hongjie. Folded Structured Graphene Paper for High Performance Electrode Materials. ADVANCED MATERIALS[J]. 2012, 24(8): 1089-1094, http://www.irgrid.ac.cn/handle/1471x/648684.[61] Chen, Kunfeng, Xue, Dongfeng. pH-assisted crystallization of Cu2O: chemical reactions control the evolution from nanowires to polyhedra. CRYSTENGCOMM[J]. 2012, 14(23): 8068-8075, http://www.irgrid.ac.cn/handle/1471x/648812.[62] Liu, Jun, Zhou, Yichun, Wang, Jinbin, Pan, Yong, Xue, Dongfeng. Template-free solvothermal synthesis of yolk-shell V2O5 microspheres as cathode materials for Li-ion batteries. CHEMICAL COMMUNICATIONS[J]. 2011, 47(37): 10380-10382, http://ir.ciac.jl.cn/handle/322003/44949.[63] Yan, Chenglin, Nikolova, Liya, Dadvand, Afshin, Harnagea, Catalin, Sarkissian, Andranik, Perepichka, Dmitrii F, Xue, Dongfeng, Rosei, Federico. Multiple NaNbO3/Nb2O5 Heterostructure Nanotubes: A New Class of Ferroelectric/Semiconductor Nanomaterials. ADVANCED MATERIALS[J]. 2010, 22(15): 1741-+, https://www.webofscience.com/wos/woscc/full-record/WOS:000277369600007.[64] Liu, Jun, Xia, Hui, Xue, Dongfeng, Lu, Li. Double-Shelled Nanocapsules of V2O5-Based Composites as High-Performance Anode and Cathode Materials for Li Ion Batteries. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2009, 131(34): 12086-+, https://www.webofscience.com/wos/woscc/full-record/WOS:000269379600033.[65] Li, Keyan, Wang, Xingtao, Zhang, Fangfang, Xue, Dongfeng. Electronegativity identification of novel superhard materials. PHYSICAL REVIEW LETTERS[J]. 2008, 100(23): https://www.webofscience.com/wos/woscc/full-record/WOS:000256708100045.[66] Yan, Chenglin, Xue, Dongfeng. Formation of Nb2O5 nanotube Arrays through phase transformation. ADVANCED MATERIALS[J]. 2008, 20(5): 1055-+, https://www.webofscience.com/wos/woscc/full-record/WOS:000254181900034.[67] Liu, Jun, Xue, Dongfeng. Thermal oxidation strategy towards porous metal oxide hollow architectures. ADVANCED MATERIALS[J]. 2008, 20(13): 2622-+, https://www.webofscience.com/wos/woscc/full-record/WOS:000257808700028.