基本信息

李伟  女  博导  中国科学院数学与系统科学研究院
电子邮件: liwei@mmrc.iss.ac.cn
通信地址: 北京市海淀区中关村东路55号思源楼
邮政编码: 100190

个人主页:http://mmrc.iss.ac.cn/~weili/

研究领域

构造性代数几何、微分代数几何、差分代数、符号计算

招生信息

   
招生专业
070104-应用数学
070101-基础数学
招生方向
构造性微分代数几何,差分代数

教育背景及工作经历

2019.4~现在,  中国科学院数学与系统科学研究院,  副研究员

2014.8-2015.11  美国 UC Berkeley,  访问学者

2012.7~2019.3, 中国科学院数学与系统科学研究院,  助理研究员

2007-09--2012-06   中国科学院数学与系统科学研究院   理学博士

2003-09--2007-06   山东大学   理学学士


发表论文

[1] Xiao-Shan Gao, Wei Li, Chun-Ming Yuan, Intersection Theory in Differential Algebraic Geometry: Generic Intersections and the Differential Chow Form, Trans. Amer. Math. Soc., 365,  4575–4632, 2013.  

[2]  Wei Li, Xiao-Shan Gao, Chun-Ming Yuan, Sparse Differential Resultant, In Proc. ISSAC 2011, San Jose, USA, 225–232, 2011 (ACM SIGSAM ISSAC Distinguished Paper Award). 

[3]  Wei Li and Xiao-Shan Gao, Differential Chow Form for Projective Differential Variety, J. Algebra, 370, 344–360, 2012.  

[4]  Wei Li, Chun-Ming Yuan, Xiao-Shan Gao, Sparse Differential Resultant for Laurent Differential Polynomials., Found. Comput. Math.,Volume 15, Issue 2, 451–517, 2015.  

[5] Wei Li, Chun-Ming Yuan, Xiao-Shan Gao, Sparse Difference Resultant, In Proc. ISSAC 2013, Boston, MA, USA, 275–282, 2013.  

[6] Wei Li, Differential Chow form and sparse differential resultant, Sci. Sin. Math., 44: 211–220, 2014. (in Chinese, written on invitation of Sci. Sin. Math, a brief introduction of my thesis which won the Outstanding Doctoral Dissertation Award of Chinese Academy of Sciences.) 

[7] Wei Li, Chun-Ming Yuan, Xiao-Shan Gao, Sparse Difference Resultant, J. Symb. Comput., 68, 169–203, 2015.  

[8] Wei Li,Yinghong Li, Difference Chow Form, J. Algebra, 428, 67–90, 2015.  

[9] Wei Li,Yinghong Li, The Computation of Differential Chow Form, Advances in Applied Mathematics, 72, 77–112, 2016.  

[10] James Freitag, Wei Li, Tom Scanlon, Differential Chow Varieties Exist, Journal of the London Mathematical Society, 95(2), 128–156, 2017.) 

[11] James Freitag, Wei Li, Embeddings of Differential Fields and Effective Bounds, Proc. of MACIS 2015, LNCS, 2015.

[12] Wei Li, Chun-Ming Yuan, Elimination Theory in Differential and Difference Algebra, J. Syst. Sci. Complex., 32: 287-316, 2019. 

[13] Wei Li, Partial Differential Chow Forms and a Type of Partial Differential Chow varieties,  Communications in Algebra, 48(8), 3342-3371, 2020.

[14] J. Freitag, O. Leon-Sanchez and W. Li.  Effective definability of Kolchin polynomials. Proc. Amer. Math. Soc., 148(4), 1455–1466, 2020. 

[15] W. Li, A. Ovchinnikov,  G.   Pogudin, and T. Scanlon. Elimination of unknowns for systems of   algebraic differential-difference equations. Trans. Amer. Math. Soc., 374(1), 303-326, 2021.

[16]  L. Fu and W. Li. Unirational differential curves and differential rational parametrizations. J. Symb. Comput. 104539–562, 2021. 

[17] W. Li, A. Ovchinnikov, G. Pogudin, and T. Scanlon. Algorithms yield upper bounds in differential algebra,  Canadian Journal of Mathematics, 75 (1) : 29-51, 2023.

[18] W. Li and C.R. Wei, On the Partial Differential L\"{u}roth's Theorem, to appear in Journal of Algebra, 2023.