Wu - Ming Liu, 
Professor, 
Institute of Physics

Chinese Academy of Sciences
,

Telphone: 86-10-82649249
Fax: 86-10-82649531
E-mail:
wmliu@iphy.ac.cn

Address: Institute of Physics, Chinese Academy of Sciences,
No. 8 South-Three Street,
Zhongguancun, 
P. O. Box 603, Beijing 100190, 
China

Research Areas

1. Mathematical methods in Physics (PACS number 02.): 

Integrable systems (02.30.Ik), Ordinary differential equations (02.30.Hq), Partial differential equations (02.30.Jr), Inverse problems (02.30.Zz), Solutions of wave equations: bound states (03.65.Ge), and solitons (05.45.Yv): integrable and near-integrable statistical physical models, condensed matter models and nonlinear partial differential equations in general physics: the exact solutions, solitons, instantons, vortices, asymptotic solutions, adiabatic dynamics, stochastic dynamics, nonlinear dynamics, nonequilibrium dynamics, long-time behavior, etc. 


2. Matter waves, quantum condensation phenomena and superfluidity (PACS number 03.)

Matter waves (03.75.-b), quantum condensation phenomena (03.75.Fi), Bose-Einstein condensates (03.75), atom and neutron optics (03.75.Be), atom and neutron interferometry (03.75.Dg), entanglement and decoherence in Bose-Einstein condensates (03.75.Gg), static properties of condensates; thermodynamical, statistical, and structural properties (03.75.Hh), dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow (03.75.Kk), tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations (03.75.Lm), multicomponent condensates; spinor condensates (03.75.Mn), other Bose-Einstein condensation phenomena (03.75.Nt), atom lasers (03.75.Pp), degenerate Fermi gases (03.75.Ss), photon interactions with atoms (32.80.-t), optical cooling of atoms; trapping (32.80.Pj), coherent control of atomic interactions with photons (32.80.Qk), atom interferometry techniques (39.20.+qn), quantum fluids and solid (67.), liquid and solid helium (67.), boson degeneracy and superfluidity of 4^He (67.20+k), mixed systems, liquid 3^He and 4^He mixtures (67.60.-g), etc. 


3. Electronic structure and electrical properties of thin films and low dimensional structure (PACS number 73.):

Weak or Anderson localization (73.20.Fz), delocalization processes (73.20.Jc), collective excitations (73.20.Mf), electron states and collective excitations in multilayers, quantum wells, mesoscopic and nanoscale systems (73.21.-b), electronic transport in mesoscopic systems (73.23.-b), electronic transport in mesoscopic or nanoscale materials and structures (73.63.-b), etc. 


4. Theory of magnetic properties and materials (PACS number 75.):

General theory and models of magnetic ordering (75.10.-b), classical spin models (75.10.Hk), quantized spin models (75.10.Jm), band and itinerant models (75.10.Lp), intrinsic properties of magnetically ordered materials (75.30.-m), spin waves (75.30.Ds), exchange and superexchange interactions (75.30.Et), spin density waves (75.30.Fv), magnetic anisotropy (75.30.Gw), magnetic impurity interactions (75.30.Hx), magnetic phase boundaries (75.30.Kz), valence fluctuation and Kondo lattice and heavy fermion phenomena (75.30.Mb), colossal magnetoresistance (75.30.Vn), macroscopic quantum phenomena in magnetic systems (75.45.+j), domain effects (75.60.-d), magnetic properties of thin films (75.70.-i), magnetic properties of nanostructures (75.75.+a), spin polarized transport (72.25.-b), etc. 


5. Quantum phase transition theory:

Quantum phase transition theory and its applications in the Nanomaterials, the Josephson-junction arrays, the quantum Hall effect systems, the high-T_c superconductor, the strongly corrected electron systems, the conductor near its metal-insulator transition, the two-dimensional films, the magnetic systems, etc.

6. Quantum many-body theory

Quantum many-body theory and its applications in the nanomaterials, the quantum Hall effect systems, the high-T_c superconductor, the strongly corrected electron systems, the disorder systems, the quantum magnetism, the mesoscopic systems, etc.

Education

Ph.D., Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China, 06/1994.

Experience

   
Work Experience

Professor, Institute of Physics, Chinese Academy of Sciences, Beijing, China, 2/2002 -

Research Scientist, Bartol Research Institute, University of Delaware, Newark, USA, 07/2000 - 01/2002.

Research Scientist, Department of Physics, University of Texas at Austin, Austin, USA, 07/1998 - 06/2000.

Associate Professor, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China, 07/1996 - 06/1998.

Postdoctoral Fellow, Institute of Physics, Chinese Academy of Sciences, Beijing, China, 07/1994 - 06/1996.

Research Interests

1. Mathematical methods in Physics (PACS number 02.):

Integrable systems (02.30.Ik), Ordinary differential equations (02.30.Hq), Partial differential equations (02.30.Jr), Inverse problems (02.30.Zz), Solutions of wave equations: bound states (03.65.Ge), and solitons (05.45.Yv): integrable and near-integrable statistical physical models, condensed matter models and nonlinear partial differential equations in general physics: the exact solutions, solitons, instantons, vortices, asymptotic solutions, adiabatic dynamics, stochastic dynamics, nonlinear dynamics, nonequilibrium dynamics, long-time behavior, etc.


2. Matter waves, quantum condensation phenomena and superfluidity (PACS number 03.):

Matter waves (03.75.-b), quantum condensation phenomena (03.75.Fi), Bose-Einstein condensates (03.75), atom and neutron optics (03.75.Be), atom and neutron interferometry (03.75.Dg), entanglement and decoherence in Bose-Einstein condensates (03.75.Gg), static properties of condensates; thermodynamical, statistical, and structural properties (03.75.Hh), dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow (03.75.Kk), tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations (03.75.Lm), multicomponent condensates; spinor condensates (03.75.Mn), other Bose-Einstein condensation phenomena (03.75.Nt), atom lasers (03.75.Pp), degenerate Fermi gases (03.75.Ss), photon interactions with atoms (32.80.-t), optical cooling of atoms; trapping (32.80.Pj), coherent control of atomic interactions with photons (32.80.Qk), atom interferometry techniques (39.20.+qn), quantum fluids and solid (67.), liquid and solid helium (67.), boson degeneracy and superfluidity of 4^He (67.20+k), mixed systems, liquid 3^He and 4^He mixtures (67.60.-g), etc.


3. Electronic structure and electrical properties of thin films and low dimensional structure (PACS number 73.):

Weak or Anderson localization (73.20.Fz), delocalization processes (73.20.Jc), collective excitations (73.20.Mf), electron states and collective excitations in multilayers, quantum wells, mesoscopic and nanoscale systems (73.21.-b), electronic transport in mesoscopic systems (73.23.-b), electronic transport in mesoscopic or nanoscale materials and structures (73.63.-b), etc.


4. Theory of magnetic properties and materials (PACS number 75.):

General theory and models of magnetic ordering (75.10.-b), classical spin models (75.10.Hk), quantized spin models (75.10.Jm), band and itinerant models (75.10.Lp), intrinsic properties of magnetically ordered materials (75.30.-m), spin waves (75.30.Ds), exchange and superexchange interactions (75.30.Et), spin density waves (75.30.Fv), magnetic anisotropy (75.30.Gw), magnetic impurity interactions (75.30.Hx), magnetic phase boundaries (75.30.Kz), valence fluctuation and Kondo lattice and heavy fermion phenomena (75.30.Mb), colossal magnetoresistance (75.30.Vn), macroscopic quantum phenomena in magnetic systems (75.45.+j), domain effects (75.60.-d), magnetic properties of thin films (75.70.-i), magnetic properties of nanostructures (75.75.+a), spin polarized transport (72.25.-b), etc.


5. Quantum phase transition theory:

Quantum phase transition theory and its applications in the Nanomaterials, the Josephson-junction arrays, the quantum Hall effect systems, the high-T_c superconductor, the strongly corrected electron systems, the conductor near its metal-insulator transition, the two-dimensional films, the magnetic systems, etc.


6. Quantum many-body theory:

Quantum many-body theory and its applications in the nanomaterials, the quantum Hall effect systems, the high-T_c superconductor, the strongly corrected electron systems, the disorder systems, the quantum magnetism, the mesoscopic systems, etc.

Students

已指导学生

贺鹏斌  博士研究生  070201-理论物理  

熊波  博士研究生  070201-理论物理  

李红  博士研究生  070201-理论物理  

蒋占峰  博士研究生  070201-理论物理  

赵建芝  博士研究生  070201-理论物理  

俞弘毅  博士研究生  070201-理论物理  

李宗国  博士研究生  070201-理论物理  

张晓斐  博士研究生  070201-理论物理  

张江敏  博士研究生  070201-理论物理  

刘循序  博士研究生  070201-理论物理  

孙青  博士研究生  070201-理论物理  

齐燃  博士研究生  070201-理论物理  

朱国宝  博士研究生  070201-理论物理  

胡兴华  博士研究生  070201-理论物理  

吴宝俊  博士研究生  070201-理论物理  

吴为  博士研究生  070201-理论物理  

陈耀桦  博士研究生  070201-理论物理  

章鹏  博士研究生  070201-理论物理  

王强  博士研究生  070201-理论物理  

张义财  博士研究生  070201-理论物理  

蒋少剑  博士研究生  070201-理论物理  

武建华  博士研究生  070201-理论物理  

陶红帅  博士研究生  070201-理论物理  

孙法砥  博士研究生  070201-理论物理  

宋淑伟  博士研究生  070201-理论物理  

张尚舜  博士研究生  070201-理论物理  

黄飞杰  博士研究生  070201-理论物理  

王亮亮  博士研究生  070201-理论物理  

杨明  博士研究生  070201-理论物理  

张晓龙  博士研究生  070201-理论物理  

刘海迪  博士研究生  070201-理论物理  

文林  博士研究生  070201-理论物理  

林恒福  博士研究生  070201-理论物理  

喻益湘  博士研究生  070201-理论物理  

刘静思  博士研究生  070201-理论物理  

现指导学生

王勋高  博士研究生  070201-理论物理  

李吉  博士研究生  070201-理论物理  

郭文祥  博士研究生  070201-理论物理  

王寰宇  博士研究生  070201-理论物理  

张铁夫  硕士研究生  070201-理论物理  

靖东洋  博士研究生  070201-理论物理  

李成蹊  硕士研究生  070201-理论物理  

刘恺  硕士研究生  070201-理论物理