General

Prof. Dr. Haizheng Dang

Head of  Cryogenics Division

State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics

Chinese Academy of Sciences

Deputy Chairman of Board of Directors & General Manager of Shanghai Boreas Cryogenics Co., Ltd

Tel: +86-21-25051967

Email: haizheng.dang@mail.sitp.ac.cn

Address: 500 Yutian Road, Hongkou District, Shanghai

Postcode: 200083


Research Areas

Space Cryogenics

Extreme-low Temperature Cryogenics

Regenerative Cryocoolers

Recuperative Cryocoolers

Hybrid Cryocoolers

Pulse Tube Cryocoolers

Joule-Thomson Cryocoolers

Linear Compressors

Cryogenics for Infrared Detectors and Systems

Cryogenics for Superconducting Devices and Facilities



Education

09/2000~02/2004   Institute of Mechanics (IM) & Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences

            Degree: Ph.D.

            Major: Refrigeration and Cryogenics


Honors & Distinctions

2019.07: CRYOGENICS Best Paper Award 2018, The Journal of CRYOGENICS ( https://www.journals.elsevier.com/cryogenics/news/2018-cryogenics-award)

2018.02: Certificate of Outstanding Contribution in Reviewing ENERGY, Elsevier

2017.11: Certificate of Outstanding Contribution in Reviewing CRYOGENICS, Elsevier

2017.11: Certificate of Outstanding Contribution in Reviewing SENSORS & ACTUATORS A: PHYSICAL, Elsevier

2015.08: ICR 2015 Excellent Poster Presentation Award, The 24th IIR International Congress of Refrigeration, August 16-22, 2015 Yokohama, Japan


Publications

 

Papers

Selected Publications in Journals

    1. Dang H Z, Zhang T, Zhao B J, et al. A hybrid cryocooler achieving 1.8 K with He-4 as the only working medium and its application verification (in Chinese). Chin Sci Bull, 2022, 67: 896–905.
    2. Dang HZ, Zhang T, Zhao BJ, Zhao YJ, Tan J, Tan H, Xue RJ. Investigations on a 1 K hybrid cryocooler composed of a four-stage Stirling-type pulse tube cryocooler and a Joule-Thomson cooler. Part B: Experimental verifications. Cryogenics, doi:10.1016/j.cryogenics.2022.103452
    3. Zhang T, Dang HZ*Investigations on a 1 K hybrid cryocooler composed of a four-stage Stirling-type pulse tube cryocooler and a Joule-Thomson cooler. Part A: Theoretical analyses and modeling. Cryogenics, doi: 10.1016/j.cryogenics.2021.103282, 2021
    4. Dang HZ, Tan H, Zhang T, Zha R, Tan J, Zhao YJ, Zhao BJ, Xue RJ, Li JQ. A 1-2 K cryogenic system with light weight, long life, low vibration, low EMI and flexible cooling capacity for the superconducting nanowire single-photon detectorIEEE Transactions on Applied Superconductivity, Vol.31, No. 5, doi: 10.1109/TASC.2021.3060357, 2021.
    5. Zhang T, Dang HZ*, Zha R, Tan J, Li JQ, Zhao YJ, Zhao BJ, Xue RJ, Tan H. Investigation of a 1.6 K space cryocooler for cooling the superconducting nanowire single photon detectorsIEEE Transactions on Applied Superconductivity, doi: 10.1109/TASC.2021.3063661, 2021.
    6. Dang HZ, Li JQ, Zha R, Tan J, Zhang T,  Zhao BJ, Zhao YJ, Li N, Tan H, Xue RJ. A single-stage Stirling-type pulse tube cryocooler achieving 1080 W at 77 K with four coldfingers driven by one linear compressor. Cryogenics, Vol.106, doi: 10.1016/j.cryogenics.2020.103045, 2020
    7. Dang HZ, Zha R, Tan J, Zhang T, Li JQ, Li N, Zhao BJ, Zhao YJ, Tan H, Xue RJ. Investigations on a 3.3 K four-stage Stirling-type pulse tube cryocooler. Part A: Theoretical analyses and modeling. Cryogenics, Vol.105, doi: 10.1016/j.cryogenics.2019.103014, 2020.
    8. Dang HZ, Zha R, Tan J, Zhang T, Li JQ, Li N, Zhao BJ, Zhao YJ, Tan H, Xue RJ. Investigations on a 3.3 K four-stage Stirling-type pulse tube cryocooler. Part B: Experimental verifications. Cryogenics, Vol.105, 103015, doi: 10.1016/j.cryogenics.2019.103015, 2020.
    9. Dang HZ, Zhang T, Zha R, Tan J, Li JQ, Zhao YJ, Zhao BJ, Tan H, Xue RJ. Development of 2 K space cryocoolers for cooling the superconducting nanowire single photon detector. IEEE Transactions on Applied Superconductivity, Vol.29, No. 5, AUGUST 2019, doi: 10.1109/TASC.2019.2902770, 2019.
    10. Dang HZ, Li JQ, Tan J, Zhao YB, Zha R, Zhang T, Zhao BJ, Zhao YJ, Tan H, Xue RJ. Theoretical modeling and experimental verification of the motor design for a 500 g micro moving-coil linear compressor operating at 90–140 Hz. International Journal of Refrigeration, Vol.104, pp.502–512, 2019.
    11. Dang HZ, Bao DL, Zhang T, Tan J, Zha R, Li JQ, Li N, Zhao YJ, Zhao BJ. Theoretical and experimental investigations on the three-stage Stirling-type pulse tube cryocooler using cryogenic phase-shifting approach and mixed regenerator matrices. Cryogenics, Vol.93, pp.7–16, 2018. (CRYOGENICS Best Paper Award 2018)
    12. Dang HZ, Bao DL, Gao ZQ, Zhang T, Tan J, Zha R, Li JQ, Li N, Zhao YJ, Zhao BJ. Theoretical modeling and experimental verifications of the single-compressor-driven three-stage Stirling-type pulse tube cryocooler. Frontiers in Energy, doi: 10.1007/s11708-018-0569-8, 2018.
    13. Zhao YB, Yu GR, Tan J, Mao XC, Li JQ, Zha R, Li N, Dang HZ*.  CFD modeling and experimental verification of oscillating flow and heat transfer processes in the micro coaxial Stirling-type pulse tube cryocooler operating at 90–170 Hz. Cryogenics, Vol.90, pp.30–40, 2018.
    14. Bao DL, Tan J, Zhang L, Gao ZQ, Zhao YB, Dang HZ*.  A two-dimensional model of regenerator with mixed matrices and experimental investigations      for improving the single-stage Stirling-type pulse tube cryocooler. Applied Thermal Engineering, 2017, Vol.123, pp.1278–1290, 2017.
    15. Tan J, Dang HZ*. Theoretical and experimental investigations on the cooling capacity distributions at the stages in the thermally-coupled two-stage Stirling-type pulse tube cryocooler without external precooling. Cryogenics,Vol.82, pp.48–61, 2017.
    16. Tan J, Dang HZ*. Effects of the driving voltage waveform on the performance of the Stirling-type pulse tube cryocooler driven by the moving-coil linear      compressor. International Journal of Refrigeration, Vol.75, pp.239–249, 2017.
    17. Gao ZQ, Dang HZ*, Bao DL, Zhao YB. Investigation on a three-stage Stirling-type pulse tube cryocooler for cooling the low-Tc SQUID. IEEE Transactions on Applied Superconductivity, VOL.27, NO.4, JUNE 2017, Doi: 10.1109/TASC.2016.2642584.
    18. Dang HZ, Zhang L, Tan J. Dynamic and thermodynamic characteristics of the moving-coil linear compressor for the pulse tube cryocooler. Part A: Theoretical analyses and modeling. International Journal of Refrigeration, Vol.69, pp.480–496, 2016.
    19. Dang HZ, Zhang L, Tan J. Dynamic and thermodynamic characteristics of the moving-coil linear compressor for the pulse tube cryocooler. Part B: Experimental verifications. International Journal of Refrigeration, Vol.69, pp.497–504, 2016.
    20. Dang HZ, Zhao YB. CFD modeling and experimental verification of a single-stage inertance tube coaxial Stirling-type pulse tube cryocooler operating at 30–35 K using the mixed stainless steel mesh regenerator matrix. Cryogenics, Vol.69, pp.497–504, 2016
    21. Dang HZ, Tan J, Zhang L. Theoretical and experimental investigations on the optimal match between compressor and cold finger of the Stirling-type pulse tube cryocooler. Cryogenics, Vol.76, pp.33–46, 2016.
    22. Gao ZQ, Dang HZ*.  Entropy analyses of the three-stage thermally-coupled Stirling-type pulse tube cryocooler. Applied  Thermal Engineering, Vol.100, pp.944–960, 2016.
    23. Zhao YB, Dang HZ*. CFD simulation of a miniature coaxial Stirling-type pulse tube cryocooler operating at 128 Hz. Cryogenics, Vol.73, pp.53–59, 2016.
    24. Tan J, Dang HZ*. An electrical circuit analogy model for analyses and optimizations of the Stirling-type pulse tube cryocooler. Cryogenics, Vol.71, pp.18–29, 2015.
    25. Zhang L, Dang HZ*, Tan J, et al. Theoretical and experimental investigations on the partial scaling method for the Oxford-type moving-coil linear compressor. Cryogenics, Vol.69, pp.26–35, 2015.
    26. Dang HZ. Development of high performance moving-coil linear compressors for space Stirling-type pulse tube cryocoolers. Cryogenics, Vol.68, pp.1–18,      2015.
    27. Dang HZ. High-capacity 60 K single-stage coaxial pulse tube cryocoolers. Cryogenics, Vol.52, pp.205–211, 2012.
    28. Dang HZ. 40 K single-stage coaxial pulse tube cryocoolers. Cryogenics, Vol.52, pp.216–220, 2012.
    29. Dang HZ, et al. 10W/90K single-stage pulse tube cryocoolers. Cryogenics, Vol.52, pp.221–225, 2012.
    30. Dang HZ, et al. Performance of Stirling-type nonmagnetic and nonmetallic co-axial pulse tube cryocoolers for high-Tc SQUIDs Operation. Cryogenics, Vol.45, pp.213–223, 2005.


    Selected Publications in International Conferences

    1.  Dang HZ, Tan J, Zha R, Li JQ, Zhang T, Zhao YJ, Zhao BJ, Tan H, Xue RJ. Review of Recent Advances in Stirling-type Pulse Tube Cryocoolers, IOP Conference Series: Materials Science and Engineering 502 (2019) 012038. doi:10.1088/1757-899X/502/1/012034.
    2.  Li JQ, Tan J, Zha R, Zhang T, Zhao BJ, Zhao YJ, Dang HZ*. Investigation of a coaxial Stirling-type pulse      tube cryocooler with the cooling capacity of 600 W at 77 K, IOP Conference Series: Materials Science and Engineering 502 (2019) 012038. doi:10.1088/1757-899X/502/1/012032.
    3. Li JQ, Tan J, Zha R, Zhang T, Zhao BJ, Zhao YJ, Dang HZ*. Modelling and experimental study of a 700 g micro coaxial Stirling-type pulse tube cryocooler operating at 100-190 Hz, IOP Conference Series: Materials Science and Engineering 502 (2019) 012038. doi:10.1088/1757-899X/502/1/012031.
    4. Tan J, Li JQ, Zha R, Zhang T, Bao DL, Dang HZ*. Theoretical and experimental investigations on a 12 kW Oxford-type dual-opposed moving-coil linear compressor, IOP Conference Series: Materials Science and Engineering 502 (2019)  012038. doi:10.1088/1757-899X/502/1/012039.
    5. Zha R, Zhang T, Tan J, Li JQ, Zhao BJ, Zhao YJ, Dang HZ*. Theoretical and experimental investigations on a four-stage Stirling-type pulse tube cryocooler, IOP Conference Series: Materials Science and Engineering 502 (2019) 012038.  doi:10.1088/1757-899X/502/1/012037.
    6. Zha R, Zhang T, Li JQ, Tan J, Zhao YJ, Zhao BJ, Dang HZ*. Investigations on the three-stage gas-coupled Stirling-type pulse tube cryocooler, IOP Conference Series: Materials Science and Engineering 502 (2019) 012038. doi:10.1088/1757-899X/502/1/012038.
    7. Dang HZ, Tan J, Zha R, Li JQ, Zhang L, Zhao YB, Gao ZQ, Bao DL, Li N, Zhang T, Zhao YJ, Zhao BJ. Advances in single- and multi-stage Stirling-type pulse tube cryocoolers for space applications in NLIP/SITP/CAS, IOP Conference Series: Materials Science and Engineering 278 (2017) 012008. doi: 10.1088/1757-899X/278/1/012008.
    8. Tan J, Dang HZ*, Zhang L. Theoretical and experimental investigations on the match between pulse tube cold fingers and linear compressors, IOP Conference Series:      Materials Science and Engineering 101 (2015) 012048. doi:10.1088/1757-899X/101/1/012048.
    9.  Zhang L, Dang HZ*, Tan J, et al. Theoretical and experimental investigations on the dynamic and thermodynamic characteristics of the linear compressor for the pulse tube cryocooler, IOP Conference Series: Materials Science and Engineering 101 (2015) 012094. doi:10.1088/1757-899X/101/1/012094.
    10.  Dang HZ, et al. Performance investigation on 10W/60 K high-capacity single-stage Stirling-type pulse tube cryocoolers. Refrigeration Science and Technology: Proceedings of ICR 2015, pp.144–151, Yokohama, Japan, 2015. doi:10.18462/ijr.icr.2015.0661.
    11.  Tan J, Dang HZ*, Zhao Y, Zhang L, Gao ZQ, Bao DL. Investigations on the driving voltage waveforms of the linear compressor for Stirling-type pulse tube cryocooler. Refrigeration Science and Technology: Proceedings of ICR 2015, pp.4211–4218, Yokohama, Japan, 2015. doi:10.18462/ijr.icr.2015.0352.
    12. Tan J, Dang HZ*, Zhang L, Zhao Y, Gao ZQ, Bao DL. Investigations on the automatic temperature control electronics of the single stage space Stirling-type pulse tube cryocooler. Refrigeration Science and Technology: Proceedings of ICR 2015, pp.152–159, Yokohama, Japan, 2015. doi:10.18462/ijr.icr.2015.0351.
    13. Zhang L, Dang HZ*, Tan J, Zhao YB, Gao ZQ, Bao DL. Investigations on effects of the linear compressor’s outlet phase angle on the pulse tube cryocooler’s performance. Refrigeration Science and Technology: Proceedings of ICR 2015, pp.160–167, Yokohama, Japan, 2015. doi:10.18462/ijr.icr.2015.0366.
    14. Zhang L, Dang HZ*, Tan J, Zhao YB, Gao ZQ, Bao DL. Effects on the cooling performance of the gas distribution in the two-stage thermal-coupled pulse tube cryocooler. Refrigeration Science and Technology: Proceedings of ICR 2015, pp.4235–4242, Yokohama, Japan, 2015. doi:10.18462/ijr.icr.2015.0371.
    15. Gao ZQ, Dang HZ*, Zhao Y, Bao DL, Tan J, Zhang L. Investigation on a J-T cooler used to couple with a pulse tube cryocooler. Refrigeration Science and Technology: Proceedings of ICR 2015, pp.4219–4226, Yokohama, Japan, 2015. doi:10.18462/ijr.icr.2015.0362.
    16. Gao ZQ, Dang HZ*, Zhao Y, Bao DL, Tan J, Zhang L. Investigation on pulse tube/J-T hybrid crycooler capable of fast cool down. Refrigeration Science and Technology: Proceedings of ICR 2015, pp.4227–4234, Yokohama, Japan, 2015. doi:10.18462/ijr.icr.2015.0370.
    17. Zhao Y, Dang HZ*, Gao ZQ, Bao DL, Zhang L, Tan J. Investigation on a 130 Hz miniature coaxial pulse tube cryocooler. Refrigeration Science and Technology: Proceedings of ICR 2015, pp.4251–4258, Yokohama, Japan, 2015. doi:10.18462/ijr.icr.2015.0420.
    18. Bao DL, Dang HZ*, Zhao Y, Gao ZQ. Theoretical studies on the regenerator of a single-stage Stirling-type pulse tube cryocooler working at 20–35 K. Refrigeration Science and Technology: Proceedings of ICR 2015, pp.4243–4250, Yokohama, Japan, 2015. doi:10.18462/ijr.icr.2015.0417.
    19. Dang HZ. High efficiency pulse tube cryocoolers for aerospace applications. Advances in Cryogenic Engineering, Vol.59, pp.378–385, 2014, AIP Conference Proceedings 1573,      doi:10.1063/1.4860726.
    20. Dang HZ, et al. Investigations on the interaction between high frequency pulse tube cold fingers and their driving compressors. Proceedings of ICEC 24 - ICMC 2012, pp.363–366, edited by K. Funaki, A. Nishimura, Y. Kamioka, et al., Cryogenics and Superconductivity society of Japan, Tokyo, Japan, 2013.
    21.  Dang HZ. Development of high efficiency pulse tube cryocoolers for space-borne infrared applications. In: Infrared, Millimeter Wave, and Terahertz Technologies, edited by Cunlin Zhang, Xi-Cheng Zhang, Peter H. Siegel, et al., SPIE 8562, 2012, doi:10.1117/12.999356.Invited Paper
    22. Dang HZ. Development of high frequency pulse tube cryocoolers for space applications. Advances in Cryogenic Engineering, Vol.57, pp.1457–1464, 2012, AIP Conference Proceedings 1434, doi: 10.1063/1.4707073.
    23. Dang HZ, et al. Performance investigation on 4.0W/60K high frequency coaxial pulse tube cryocoolers. Proceedings of ICR 2011, pp.2604–2609, Prague, The Czech Republic, 2012.
    24. Dang HZ, et al. Performance investigation on high capacity pulse tube cryocoolers operating at 80–100 K. Proceedings of ICR 2011, pp.2658–2663, Prague, The Czech Republic, 2012.
    25. Dang HZ, et al. Performance characterization of SITP's large capacity high frequency coaxial pulse tube cryocoolers. Proceedings of ICEC 23-ICMC 2010, pp.155–160, edited by M. Chorowski, J. Fydrych, A. Piotrowska–Hajnus, et al., Wroclaw University of Technology, Wroclaw, Poland, 2011.
    26. Dang HZ, et al. Performance characterization of SITP's miniature coaxial pulse tube cryocoolers for small space-borne infrared      detector systems. Proceedings of ICEC 23-ICMC 2010, pp.161–166, edited by M. Chorowski, J. Fydrych, A. Piotrowska-Hajnus, et al., Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw, Poland, 2011.
    27. Dang HZ, et al. SITP's miniature coaxial pulse tube cryocooler. Cryocoolers 16, pp.103–110, edited by S. D. Miller and R. G. Ross, Jr., International Cryocooler Conference, Inc., Boulder, CO, U.S.A, 2011.
    28. Dang HZ, et al. Performance investigation on SITP's 60 K  high frequency single-stage coaxial pulse tube cryocoolers. Cryocoolers 16, pp.149–156, edited by S. D. Miller and R. G. Ross, Jr.,  International Cryocooler Conference, Inc., Boulder, CO, U.S.A, 2011.
    29.  Dang HZ, et al. Development of SITP's large capacity high frequency coaxial pulse tube cryocoolers. Cryocoolers 16, pp.167–173, edited by S. D. Miller and R. G. Ross, Jr., International Cryocooler Conference, Inc., Boulder, CO, U.S.A, 2011.
    30. Dang HZ. High frequency coaxial pulse tube cryocoolers for cooling infrared focal plane arrays. In: Infrared, Millimeter Wave, and Terahertz Technologies, edited by Cunlin Zhang, Xi-Cheng Zhang, Peter H. Siegel, et al., SPIE 7854, 2010, doi:10.1117/12.868792. (Invited Paper)
    31.  Dang HZ, et al. Development of a miniature coaxial pulse tube cryocooler for a space-borne infrared detector system. In: Infrared Technology and Applications XXXVI, edited by Bjørn F. Andresen, Gabor F. Fulop, Paul R. Norton, SPIE 7660, 2010, doi:10.1117/12.850075.
    32.  Dang HZ, et al. Development of high-capacity U-type pulse tube cryocoolers for a cold optics system in space applications. In: Infrared Technology and Applications XXXVI, edited by Bjørn F. Andresen, Gabor F. Fulop, Paul R. Norton, SPIE 7660, 2010, doi:10.1117/12.850089.
    33. Dang HZ, et al. Development of a 2.0W/60K single-stage coaxial pulse tube cryocooler for long-wave infrared focal plane array applications. In: Infrared Technology and Applications XXXVI, edited by Bjørn F. Andresen, Gabor F. Fulop, Paul R. Norton, SPIE 7660, 2010, doi:10.1117/12.850104.
    34.  Dang HZ, et al. Development of space Stirling and pulse tube cryocoolers in Shanghai Institute Technical Physics, Chinese Academy of Sciences. In: Infrared Technology and Applications XXXVI, edited by Bjørn F. Andresen, Gabor F. Fulop, Paul R. Norton, SPIE 7660, 2010, doi: 10.1117/12.850116.
    35. Haug F, Dang HZ, Essler J, et al. Investigation on a single-stage coaxial pulse tube cryocooler for small particle detectors at CERN. Proceedings of ICEC 22-ICMC 2008, Soul, Korea, July 21–25, 2008.