基本信息
卿光焱  男  博导  中国科学院大连化学物理研究所
电子邮件: qinggy@dicp.ac.cn
通信地址: 辽宁省大连市沙河口区中山路457号大连化学物理研究所 化工楼101室
邮政编码: 116023

研究领域

[1] 生物分子响应性聚合物及其生物应用;

生命体系强烈地依赖生物分子间,例如DNA-蛋白,抗原-抗体,蛋白-糖链,蛋白小分子,相互作用,行使各种生物学功能,调控了细胞行为。精确的分子识别和特异性的相互作用,是生物分子行使功能的基础和前提。通过学习和模仿生物分子间特异性相互作用,结合智能聚合物构象转变,开发出的生物分子响应性聚合物很好地切合了“精准医学”的需求,能够大幅材料对目标生物分子精准捕获的效率,将在生物分离、生物分析、药物控制释放、生物芯片、蛋白构象调控、组织工程等领域,获得广泛的应用。这一方向融合了智能聚合物、主客体化学、微纳米器件构筑、精准测量和生物医学,是目前新兴涌现的一个学科方向,具有鲜明的开创性和广阔的应用前景。

 

[2] 面向翻译后修饰蛋白质组学的智能富集材料;

翻译后修饰蛋白质组学是生物学、医学研究的前沿和热点。高性能富集材料的开发有力地推动了蛋白磷酸化和糖基化研究,发现了一系列与细胞凋亡、肿瘤发生、免疫应答和神经退行性疾病等有关的细胞信号通路,为疾病早期诊断、有效治疗和靶向药物开发提供了强有力的支持。然而蛋白翻译后修饰有三百多种,其中甲基化、乙酰化、泛素化等修饰蛋白的捕获强烈依赖抗体蛋白,抗体易失活、富集效率低,高昂的成本,人工富集材料的缺失严重制约了相关研究。开发高性能的精确捕获材料,特别是基于生物分子响应性聚合物的富集材料,将具有很好的应用前景,同时能为深入的生物医学研究,提供强有力的材料学工具。

 

[3] 糖链精准捕获和分析;

糖链作为生物信息分子参与了细胞生物几乎所有的生命过程,在细胞分化、发育、免疫、老化、癌变、信息传递等生命和疾病过程中,发挥着特异性识别、介导和调控的作用。蛋白糖基化修饰是动物细胞中最常见、最重要的翻译后修饰方式之一,在已知的哺乳动物蛋白中,大约50%的蛋白发生了不同程度的糖基化。从医学角度,蛋白糖基化程度的变化以及糖链结构的改变与疾病的状态密切相关,是许多疾病,特别是多种癌症诊断的标志物或治疗的靶标。因此,研究糖基化有助于从基因组—蛋白组—糖组的综合水平观察生命现象。

在这些复杂的生命过程中,蛋白对糖链的精确识别和结合,是其执行生物学功能的前提和关键。与生命体相比,人工材料对糖链识别的准确度和效率还很低,糖链的选择性捕获和精细解析是一个巨大的挑战。构筑先进的材料学工具和器件,实现对糖链结构的精确解析,是研究组最重要的研究方向。

 

[4] 生物分离中的界面分子相互作用

生物分离是生物学、医学研究的前提和基础。高纯度样品的获取和定量分析直接关系着生物学研究的成败。同时在现代生物技术产品的生产中,分离成本占总成本的70–90%。这些都指向了以色谱为核心的分离技术,生命科学从没有像现在这样,迫切需要先进的分离方法与技术。然而生物样品种类繁多、结构各异、高度复杂。以蛋白质组学分析为例,一个关键技术挑战就是如何大幅降低样品的复杂性,尤其是从不同组织、细胞中动态地识别和捕获出极其微量的目标蛋白表达水平及其病理变化,这对生物分离提出了非常高的要求。“精准医学计划”也迫切需要开发对靶标生物分子具有精确识别能力的富集材料与技术。

智能聚合物,特别是生物分子响应性聚合物的出现,为解决生物分离中的问题和挑战,提供了很好的机遇。同时,生物分离的过程中,蕴含着非常丰富的科学问题,科学地认识界面上的生物分子相互作用,通过材料设计对生物分离的过程,进行精确动态的调控,是研究的关键,未来研究充满着机遇与挑战。

 

[5] 探索奇特的分子手性效应,手性识别与放大。

手性是生命体最基本的特征之一,从单分子点手性,聚合物、蛋白、DNA螺旋手性,宏观层面的各种手性取向,直至宇宙星河中的螺旋状星云,手性分子和手性效应普遍存在。探索手性的起源,发生和发展,是科学杂志列举的21世纪25个最重要的科学问题之一。同时,利用手性分子间立体选择性的相互作用,可以构筑各种生物分子精确识别材料,进而通过聚合物链的运动,将微弱的手性相互作用的信号,转换为材料宏观性质的变化,实现对手性分子的识别和感知。发现奇特的手性效应,对手性分子相互作用进行精细的观察,构筑各种手性分子响应性器件,将会非常有趣。


招生信息

欢迎分析化学、高分子化学、表界面化学方向的硕士报考博士研究生

欢迎化学专业,材料化学专业,高分子材料专业本科报考硕士研究生。

招生专业
070302-分析化学
070305-高分子化学与物理
080501-材料物理与化学
招生方向
智能生物分离材料
生物界面材料与机制
翻译后修饰蛋白质组学

教育背景

2007-09--2008-08   德国明斯特大学物理系,纳米科技中心   联合培养博士生
2003-09--2008-07   武汉大学化学与分子科学学院   研究生/博士学位
1999-09--2003-07   武汉大学化学与分子科学学院   本科/学士学位

工作经历

   
工作简历
2020-01~2022-12,中国科学院大连化学物理研究所, 辽宁省百千万人才工程“千”层次
2019-08~2022-12,中国科学院大连化学物理研究所, 国家基金委优秀青年基金获得者 大连化物所张大煜青年学者
2019-01~2021-12,中国科学院大连化学物理研究所, 辽宁省“兴辽英才计划”海内外高层次人才引进集聚计划创新领军人才
2018-01~现在, 中国科学院大连化学物理研究所, 研究员 课题组组长
2014-09~2017-09,材料复合新技术国家重点实验室(武汉理工大学), 湖北省杰出青年基金获得者
2012-12~2017-12,材料复合新技术国家重点实验室(武汉理工大学), 楚天学者特聘教授,博士生导师
2011-01~2017-12,材料复合新技术国家重点实验室(武汉理工大学), 研究员,硕士生导师
2008-09~2010-12,德国明斯特大学物理系,纳米科技中心, 博士后
社会兼职
2019-04-21-今,《色谱》杂志青年编委, 青年编委
2019-01-21-今,科技部重点研发计划纳米专项评审专家, 评审专家
2018-01-15-今,国家自然科学基金评审专家, 评审专家
2014-04-15-今,教育部博士点基金评审专家, 评审专家
2011-06-16-今,中国材料研究学会青年委员会, 理事

专利与奖励

   
奖励信息
(1) 湖北省第十四届 自然科学优秀 学术论文, 一等奖, 省级, 2012
(2) 湖北省自然科学一等奖, 一等奖, 省级, 2011
专利成果
[1] 卿光焱, 张福生, 王东东. 一种原生纤维素膜及其制备方法和应用. CN: CN111484637B, 2021-07-27.

[2] 卿光焱, 王东东. 一种人工智能纳米通道材料及其制备方法和在环磷酸腺苷检测中的应用. CN: CN112851888A, 2021-05-28.

[3] 梁鑫淼, 孙涛垒, 李秀玲, 卿光焱, 姜舸, 陆琦. 一种富集分离糖肽的方法. CN: CN108072719B, 2021-03-26.

[4] 卿光焱, 李闵闵, 熊雨婷, 王东东. 一种功能多孔膜材料及其在复杂糖链分子识别中的应用. CN: CN112147198A, 2020-12-29.

[5] 梁鑫淼, 李秀玲, 张小菲, 卿光焱. 一种基于多氢键响应性聚合物的磷酸化蛋白富集方法. CN: CN111808164A, 2020-10-23.

[6] 卿光焱, 王雪, 王东东. 一对有效抑制Aβ(1-40)聚集和纤维化的手性磷脂分子及其制备方法和应用. CN: CN111808131A, 2020-10-23.

[7] 卿光焱, 李云龙. 一种智能响应性聚合物修饰的多孔膜材料及其制备方法和应用. CN: CN111482090A, 2020-08-04.

[8] 梁鑫淼, 孙涛垒, 李秀玲, 卿光焱, 姜舸, 熊雨婷. 单糖聚合物富集材料及其制备和在糖肽富集中的应用. CN: CN106861661B, 2019-06-25.

[9] 孙涛垒, 梁鑫淼, 卿光焱, 李秀玲. 基于二肽的聚合物材料及其在糖分离和糖肽富集中的应用. CN: CN105254707B, 2019-05-24.

[10] 孙涛垒, 梁鑫淼, 卿光焱, 李秀玲, 陆琦, 姜舸. 一种磷酸化肽富集材料及其制备方法与应用. 中国: CN106749884A, 2017-05-31.

出版信息

   
发表论文
[1] Zhang, Yahui, Zhao, Xiangyu, Bi, Ce, Lu, Wenqi, Song, Mengyuan, Wang, Dongdong, Qing, Guangyan. Selective electrocatalytic hydroboration of aryl alkenes. GREEN CHEMISTRY[J]. 2021, 23(4): 1691-1699, http://dx.doi.org/10.1039/d0gc03890c.
[2] Wang, Xue, Qian, Shengxu, Wang, Dongdong, Wang, Cunli, Qin, Haijuan, Peng, Lang, Lu, Wenqi, Zhang, Yahui, Qing, Guangyan. Self-assembly gel-based dynamic response system for specific recognition of N-acetylneuraminic acid. JOURNAL OF MATERIALS CHEMISTRY B[J]. 2021, 9(23): 4690-4699, http://dx.doi.org/10.1039/d1tb00627d.
[3] Chen, Zhonghui, Lv, Ziyu, Lin, Zirong, Chen, Jun, Zhang, Yifang, Wang, Cunli, Qing, Guangyan, Sun, Yifeng, Chi, Zhenguo. A methylation-inspired mesoporous coordination polymer for identification and removal of organic pollutants in aqueous solutions. JOURNAL OF MATERIALS CHEMISTRY B[J]. 2021, 9(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000612856700007.
[4] Li, Minmin, Xiong, Yuting, Qing, Guangyan. Comment on Preparation of Vortex Porous Graphene Chiral Membrane for Enantioselective Separation. ANALYTICAL CHEMISTRYnull. 2021, 93(10): 4682-4684, https://www.webofscience.com/wos/woscc/full-record/WOS:000634562600042.
[5] Zhang, Fusheng, Ge, Wenna, Wang, Cunli, Zheng, Xintong, Wang, Dongdong, Zhang, Xiancheng, Wang, Xue, Xue, Xingya, Qing, Guangyan. Highly Strong and Solvent-Resistant Cellulose Nanocrystal Photonic Films for Optical Coatings. ACS APPLIED MATERIALS & INTERFACES[J]. 2021, 13(14): 17118-17128, http://dx.doi.org/10.1021/acsami.1c02753.
[6] Zhang, Fusheng, Zheng, Xintong, Wang, Cunli, Wang, Dongdong, Xue, Xingya, Qing, Guangyan. Synthesis of optically active chiral mesoporous molybdenum carbide film. JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY[J]. 2021, 94: 482-488, https://www.webofscience.com/wos/woscc/full-record/WOS:000609261000010.
[7] Wang, Dongdong, Bai, Tianxin, Wang, Xue, Xiong, Yuting, Zhang, Yahui, Shi, Zhenqiang, Zhang, Fusheng, Lu, Wenqi, Qing, Guangyan. Sensing Mechanism of Excited-State Intermolecular Hydrogen Bond for Phthalimide: Indispensable Role of Dimethyl Sulfoxide. CHINESE JOURNAL OF CHEMISTRY[J]. 2021, 39(5): 1113-1120, http://dx.doi.org/10.1002/cjoc.202000604.
[8] Zheng Xintong, Wang Xue, Zhang Fusheng, Zhang Xuyang, Zhao Yanyan, Qing Guangyan. Advances in enrichment of phosphorylated peptides and glycopeptides by smart polymer-based materials. CHINESE JOURNAL OF CHROMATOGRAPHYnull. 2021, 39(1): 15-25, [9] Lu, Qi, Chen, Cheng, Xiong, Yuting, Li, Guodong, Zhang, Xiaofei, Zhang, Yahui, Wang, Dongdong, Zhu, Zhichao, Li, Xiuling, Qing, Guangyan, Sun, Taolei, Liang, Xinmiao. High-Efficiency Phosphopeptide and Glycopeptide Simultaneous Enrichment by Hydrogen Bond-based Bifunctional Smart Polymer. ANALYTICAL CHEMISTRY[J]. 2020, 92(9): 6269-6277, https://www.webofscience.com/wos/woscc/full-record/WOS:000530658600016.
[10] Xiong, Yuting, Li, Xiuling, Li, Minmin, Qin, Haijuan, Chen, Cheng, Wang, Dongdong, Wang, Xue, Zheng, Xintong, Liu, Yunhai, Liang, Xinmiao, Qing, Guangyan. What Is Hidden Behind Schiff Base Hydrolysis? Dynamic Covalent Chemistry for the Precise Capture of Sialylated Glycans. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2020, 142(16): 7627-7637, https://www.webofscience.com/wos/woscc/full-record/WOS:000529156100051.
[11] Li, Minmin, Xiong, Yuting, Lu, Wenqi, Wang, Xue, Liu, Yunhai, Na, Bing, Qin, Haijuan, Tang, Mingliang, Qin, Hongqiang, Ye, Mingliang, Liang, Xinmiao, Qing, Guangyan. Functional Nanochannels for Sensing Tyrosine Phosphorylation. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2020, 142(38): 16324-16333, https://www.webofscience.com/wos/woscc/full-record/WOS:000575684100026.
[12] Chen, Zhonghui, Lv, Ziyu, Sun, Yifeng, Chi, Zhenguo, Qing, Guangyan. Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. JOURNAL OF MATERIALS CHEMISTRY Bnull. 2020, 8(15): 2951-2973, https://www.webofscience.com/wos/woscc/full-record/WOS:000527940500001.
[13] Wei, Pengfei, Li, Hefei, Lin, Long, Gao, Dunfeng, Zhang, Xiaomin, Gong, Huimin, Qing, Guangyan, Cai, Rui, Wang, Guoxiong, Bao, Xinhe. CO(2)electrolysis at industrial current densities using anion exchange membrane based electrolyzers. SCIENCE CHINA-CHEMISTRY[J]. 2020, 63(12): 1711-1715, http://lib.cqvip.com/Qikan/Article/Detail?id=7103734648.
[14] Li, Minmin, Xiong, Yuting, Wang, Dongdong, Liu, Yunhai, Na, Bing, Qin, Haijuan, Liu, Jinxuan, Liang, Xinmiao, Qing, Guangyan. Biomimetic nanochannels for the discrimination of sialylated glycans via a tug-of-war between glycan binding and polymer shrinkage. CHEMICAL SCIENCE[J]. 2020, 11(3): 748-756, https://www.webofscience.com/wos/woscc/full-record/WOS:000508917000012.
[15] Ji, Shengyan, Xiong, Yuting, Lu, Wenqi, Li, Minmin, Wang, Xue, Wang, Cunli, Wang, Dongdong, Xiao, Jie, Zhu, Zhichao, Chen, Lihua, Zhang, Yahui, Qing, Guangyan. cAMP sensitive nanochannels driven by conformational transition of a tripeptide-based smart polymer. CHEMICAL COMMUNICATIONS[J]. 2020, 56(23): 3425-3428, https://www.webofscience.com/wos/woscc/full-record/WOS:000521320900013.
[16] Wang, Xue, Wang, Cunli, Chu, Huiying, Qin, Haijuan, Wang, Dongdong, Xu, Feifei, Ai, Xuanjun, Quan, Chunshan, Li, Guohui, Qing, Guangyan. Molecular chirality mediated amyloid formation on phospholipid surfaces. CHEMICAL SCIENCE[J]. 2020, 11(28): 7369-7378, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159450/.
[17] Chang, Yongxin, Qin, Haijuan, Wang, Xue, Li, Xiaopei, Li, Minmin, Yang, Hang, Xu, Kuoxi, Qing, Guangyan. Visible and Reversible Restrict of Molecular Configuration by Copper Ion and Pyrophosphate. ACS SENSORS[J]. 2020, 5(8): 2438-2447, https://www.webofscience.com/wos/woscc/full-record/WOS:000566765900021.
[18] Li, Minmin, Xiong, Yuting, Qing, Guangyan. Smart bio-separation materials. TRAC-TRENDS IN ANALYTICAL CHEMISTRYnull. 2020, 124: http://dx.doi.org/10.1016/j.trac.2019.06.035.
[19] Sheng, Qianying, Wang, Cunli, Li, Xiaopei, Qin, Hongqiang, Ye, Mingliang, Xiong, Yuting, Wang, Xue, Li, Xiuling, Lan, Minbo, Li, Junyan, Ke, Yanxiong, Qing, Guangyan, Liang, Xinmiao. Highly Efficient Separation of Methylated Peptides Utilizing Selective Complexation between Lysine and 18-Crown-6. ANALYTICAL CHEMISTRY[J]. 2020, 92(23): 15663-15670, https://www.webofscience.com/wos/woscc/full-record/WOS:000596727600052.
[20] Qing, Guangyan, Yan, Jingyu, He, Xiangnan, Li, Xiuling, Liang, Xinmiao. Recent advances in hydrophilic interaction liquid interaction chromatography materials for glycopeptide enrichment and glycan separation. TRAC-TRENDS IN ANALYTICAL CHEMISTRYnull. 2020, 124: http://dx.doi.org/10.1016/j.trac.2019.06.020.
[21] Shao, Kenan, Lv, Ziyu, Xiong, Yuting, Li, Guodong, Wang, Dongdong, Zhang, Haining, Qing, Guangyan. Circularly polarized light modulated supramolecular self-assembly for an azobenzene-based chiral gel. RSC ADVANCES[J]. 2019, 9(18): 10360-10363, http://cas-ir.dicp.ac.cn/handle/321008/165518.
[22] Li, Yunlong, Xiong, Yuting, Wang, Dongdong, Li, Xiuling, Chen, Zhixiang, Wang, Cunli, Qin, Haijuan, Liu, Jinxuan, Chang, Baisong, Qing, Guangyan. Smart polymer-based calcium-ion self-regulated nanochannels by mimicking the biological Ca2+-induced Ca2+ release process. NPG ASIA MATERIALS[J]. 2019, 11(1): http://dx.doi.org/10.1038/s41427-019-0148-4.
[23] 卿光焱. Excellent Chemoselectivity of Pristine Nanocrystalline Cellulose Films Driven by Carbohydrate–Carbohydrate Interactions. ACS Appl. Mater. Interfaces. 2019, [24] 卿光焱. Smart Polymer–Based Calcium Ion-Actuated Nanochannel by Mimicking Biological Ca2+–induced Ca2+ Release Process. NPG Asia Materials. 2019, [25] Zhang, Xiaofei, Lu, Qi, Chen, Cheng, Li, Xiuling, Qing, Guangyan, Sun, Taolei, Liang, Xinmiao. Smart polymers driven by multiple and tunable hydrogen bonds for intact phosphoprotein enrichment. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS[J]. 2019, 20(1): 858-869, https://doaj.org/article/59198eefc515467dafeceef859b2febc.
[26] Zhang, Fusheng, Wang, Dongdong, Qin, Haijuan, Feng, Liang, Liang, Xinmiao, Qing, Guangyan. Chemoselectivity of Pristine Cellulose Nanocrystal Films Driven by Carbohydrate-Carbohydrate Interactions. ACS APPLIED MATERIALS & INTERFACES[J]. 2019, 11(14): 13114-13122, http://cas-ir.dicp.ac.cn/handle/321008/165558.
[27] Chen, Zhixiang, Sun, Taolei, Qing, Guangyan. cAMP-modulated biomimetic ionic nanochannels based on a smart polymer. JOURNAL OF MATERIALS CHEMISTRY B[J]. 2019, 7(23): 3710-3715, [28] 卿光焱. A biomimetic design for sialylated glycan-specific smart polymer.. NPG Asia Materials. 2018, [29] Zhang, Xiaofei, Qing, Guangyan, Yu, Long, Kang, Hongjian, Chen, Cheng, Li, Xiuling, Liang, Xinmiao. Novel nanoporous covalent organic frameworks for the selective extraction of endogenous peptides. RSC ADVANCES[J]. 2018, 8(65): 37528-37533, http://cas-ir.dicp.ac.cn/handle/321008/166592.
[30] Sun, Na, Xiong, Yuting, Qing, Guangyan, Zhao, Yanyan, Li, Xiuling, Liang, Xinmiao. Selective enrichment of sialylated glycopeptides with a d-allose@SiO2 matrix. RSC ADVANCES[J]. 2018, 8(68): 38780-38786, http://www.corc.org.cn/handle/1471x/2373012.
[31] Wang, ShaoRu, Wang, JiaQi, Fu, BoShi, Chen, Kun, Xiong, Wei, Wei, Lai, Qing, Guangyan, Tian, Tian, Zhou, Xiang. Supramolecular Coordination-Directed Reversible Regulation of Protein Activities at Epigenetic DNA Marks. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2018, 140(46): 15842-15849, http://cas-ir.dicp.ac.cn/handle/321008/166518.
[32] Qing, Guangyan, Lu, Qi, Xiong, Yuting, Zhang, Lei, Wang, Hongxi, Li, Xiuling, Liang, Xinmiao, Sun, Taolei. New Opportunities and Challenges of Smart Polymers in Post-Translational Modification Proteomics. ADVANCED MATERIALS[J]. 2017, 29(20): https://www.webofscience.com/wos/woscc/full-record/WOS:000401563200014.
[33] Xiong, Yuting, Jiang, Ge, Li, Minmin, Qing, Guangyan, Li, Xiuling, Liang, Xinmiao, Sun, Taolei. Sialic Acid-Responsive Polymeric Interface Material: From Molecular Recognition to Macroscopic Property Switching. SCIENTIFIC REPORTS[J]. 2017, 7: http://cas-ir.dicp.ac.cn/handle/321008/151877.
[34] Guangyan Qing, Qi Lu, Xiuling Li, Jing Liu, Mingliang Ye, Xinmiao Liang, Taolei Sun. Hydrogen bond based smart polymer for highly selective and tunable capture of multiply phosphorylated peptides. NATURE COMMUNICATIONS[J]. 2017, 8(1): http://cas-ir.dicp.ac.cn/handle/321008/149966.
[35] Chen, Wenrui, Qing, Guangyan, Sun, Taolei. A novel aggregation-induced emission enhancement triggered by the assembly of a chiral gelator: from non-emissive nanofibers to emissive micro-loops. CHEMICAL COMMUNICATIONS[J]. 2017, 53(2): 447-450, https://www.webofscience.com/wos/woscc/full-record/WOS:000391736100037.
[36] Xiong, Yuting, Li, Minmin, Lu, Qi, Qing, Guangyan, Sun, Taolei. Sialic Acid-Targeted Biointerface Materials and Bio-Applications. POLYMERSnull. 2017, 9(7): https://www.webofscience.com/wos/woscc/full-record/WOS:000404219500008.
[37] Chen, Zhonghui, Lv, Ziyu, Qing, Guangyan, Sun, Taolei. Exploring the role of molecular chirality in the photo-responsiveness of dipeptide-based gels. JOURNAL OF MATERIALS CHEMISTRY B[J]. 2017, 5(17): 3163-3171, https://www.webofscience.com/wos/woscc/full-record/WOS:000400501900010.
[38] Lu, Qi, Tang, Qiuhan, Chen, Zhonghui, Zhao, Shilong, Qing, Guangyan, Sun, Taolei. Developing an Inositol-Phosphate-Actuated Nanochannel System by Mimicking Biological Calcium Ion Channels. ACS APPLIED MATERIALS & INTERFACES[J]. 2017, 9(38): 32554-32564, https://www.webofscience.com/wos/woscc/full-record/WOS:000412149800018.
[39] 卿光焱. Sialic acid-triggered macroscopic properties switching on a smart polymer surface.. Appl. Surf. Sci.. 2017, [40] Lu, Qi, Zhan, Mimi, Deng, Lijing, Qing, Guangyan, Sun, Taolei. Rapid and high-efficiency discrimination of different sialic acid species using dipeptide-based fluorescent sensors. ANALYST[J]. 2017, 142(19): 3564-3568, https://www.webofscience.com/wos/woscc/full-record/WOS:000411703800003.
[41] Qing, Guangyan, Li, Xiuling, Xiong, Peng, Chen, Cheng, Zhan, Mimi, Liang, Xinmiao, Sun, Taolei. Dipeptide-Based Carbohydrate Receptors and Polymers for Glycopeptide Enrichment and Glycan Discrimination. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 8(34): 22084-22092, http://cas-ir.dicp.ac.cn/handle/321008/170126.
[42] Li, Xiuling, Xiong, Yuting, Qing, Guangyan, Jiang, Ge, Li, Xianqin, Sun, Taolei, Liang, Xinmiao. Bioinspired Saccharide-Saccharide Interaction and Smart Polymer for Specific Enrichment of Sialylated Glycopeptides. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 8(21): 13294-13302, http://cas-ir.dicp.ac.cn/handle/321008/170568.
[43] 丁鹏, 陈掀, 李秀玲, 卿光焱, 孙涛垒, 梁鑫淼. 基于纳米粒子的糖蛋白/糖肽分离富集方法. PROGRESS IN CHEMISTRY化学进展[J]. 2015, 27(11): 1628-, http://cas-ir.dicp.ac.cn/handle/321008/148009.
[44] Lv, Ziyu, Li, Xiuling, Chen, Zhonghui, Chen, Ji, Chen, Cheng, Xiong, Peng, Sun, Taolei, Qing, Guangyan. Surface Stiffness-a Parameter for Sensing the Chirality of Saccharides. ACS APPLIED MATERIALS & INTERFACES[J]. 2015, 7(49): 27223-27233, http://www.irgrid.ac.cn/handle/1471x/1012342.
[45] Peng Ding, 李秀玲, 卿光焱, 孙涛垒, 梁鑫淼. Disaccharide-driven transition of macroscopic properties: from molecular recognition to glycopeptide enrichment. medchemcomm[J]. 2015, 51(89): 16111-, http://cas-ir.dicp.ac.cn/handle/321008/148021.
[46] Qing, Guangyan, Sun, Taolei. Chirality-Driven Wettability Switching and Mass Transfer. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2014, 53(4): 930-932, https://www.webofscience.com/wos/woscc/full-record/WOS:000329879500005.
[47] Qing, Guangyan, Zhao, Shilong, Xiong, Yuting, Lv, Ziyu, Jiang, Fenglei, Liu, Yi, Chen, Hui, Zhang, Mingxi, Sun, Taolei. Chiral Effect at Protein/Graphene Interface: A Bioinspired Perspective To Understand Amyloid Formation. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2014, 136(30): 10736-10742, https://www.webofscience.com/wos/woscc/full-record/WOS:000339693900031.
[48] Qing, Guangyan, Shan, Xingxing, Chen, Wenrui, Lv, Ziyu, Xiong, Peng, Sun, Taolei. Solvent-Driven Chiral-Interaction Reversion for Organogel Formation. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2014, 53(8): 2124-2129, https://www.webofscience.com/wos/woscc/full-record/WOS:000330908600014.
[49] 卿光焱. Transforming chiral signals into macroscopic properties of materials using chirality-responsive polymers.. NPG Asia Materials. 2012, [50] 卿光焱. Chirality triggered wettability switching on smart polymer surface.. Adv. Mater.. 2011, [51] Qing, Guangyan, Xiong, Hai, Seela, Frank, Sun, Taolei. Spatially Controlled DNA Nanopatterns by "Click" Chemistry Using Oligonucleotides with Different Anchoring Sites. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2010, 132(43): 15228-15232, https://www.webofscience.com/wos/woscc/full-record/WOS:000283621700035.
[52] 卿光焱. Nucleotide responsive wettability on smart polymer surface.. J. Am. Chem. Soc.. 2009, 

科研活动

   
科研项目
( 1 ) 面向蛋白甲基化的智能富集新材料, 主持, 国家级, 2018-01--2021-12
( 2 ) 基于二肽的手性响应性聚合物:设计及其在手性分离中的应用, 主持, 国家级, 2015-01--2018-12
( 3 ) 生物分离与界面分子机制, 主持, 部委级, 2018-01--2022-12
( 4 ) 辽宁省“兴辽英才计划”海内外高层次人才引进集聚计划创新领军人才, 主持, 省级, 2019-01--2021-12
( 5 ) 基于共价有机框架化合物的糖肽富集新材料的开发, 主持, 院级, 2019-01--2023-12
( 6 ) 生物分离材料, 主持, 国家级, 2020-01--2022-12
参与会议
(1)生物分离材料   中国化学会第22届全国色谱学术报告会及仪器展览会   2019-04-21
(2)Biomolecule-responsive polymer: From recognition to applications in post-translational modification proteomics   第十届中国蛋白质组学大会   2018-11-15
(3)Biomolecule-responsive polymer: From recognition to applications in post-translational modification proteomics   第九届上海国际分析化学研讨会   2018-10-31
(4)智能生物分离介质   中国化学会第13届全国分析化学年会   2018-06-14
(5)生物分子响应性聚合物   第十六届全国青年材料科学技术研讨会   2017-10-13
(6)生物分子响应性聚合物   2017年全国高分子学术论文报告会   2017-10-10
(7)智能聚合物在翻译后修饰蛋白质组学中新的机遇与挑战   第21届全国色谱学术报告会及仪器展览会   2017-05-19
(8)智能生物分离介质   第十二届全国生物医药色谱及相关技术学术交流会   2017-04-16
(9)生物界面材料   第十四届全国高分子液晶态与超分子有序结构学术论文报告会   2016-08-02

指导学生

现指导学生

杨航  博士研究生  070302-分析化学  

逯文启  硕士研究生  070302-分析化学  

宋梦圆  硕士研究生  070302-分析化学  

在读硕士研究生

陈志祥,李云龙,邵珂楠,姬生雁,王雪,张应杰、李国栋、郑鑫彤、逯文启

指导博士研究生

杨越、王雪、李明阳