基本信息
梁汉璞  男  博导  中国科学院青岛生物能源与过程研究所
电子邮件: lianghp@qibebt.ac.cn
通信地址: 中科院青岛生物能源与过程研究所
邮政编码: 266101

招生信息

招生专业
081705-工业催化
070304-物理化学(含:化学物理)
0703J1-纳米科学与技术
招生方向
电化学,纳米催化
费托催化剂,纳米催化
能源材料,电池材料

教育背景

2002-09--中国科学院化学研究所   博士
学历

工作经历

教授课程

绿色化工课程

专利与奖励

   
专利成果
[1] 陆家佳, 梁汉璞. 一种基于镍基底原位刻蚀生长的复合纳米结构催化剂的制备方法. CN: CN114182266A, 2022-03-15.
[2] 梁汉璞, 时晓玥, 朱洪伟, 鞠静静, 杨晨. 一种超小、高分散金属纳米颗粒制备方法. CN: CN113894288A, 2022-01-07.
[3] 梁汉璞, 王西龙. 一种铂基高效稳定氧还原电催化剂及其制备方法和应用. CN: CN113363520A, 2021-09-07.
[4] 梁汉璞, 朱洪伟. 单分散空心结构碳介孔微球材料及以有机-无机杂化盐为模板诱导组装制备方法. CN: CN113086963A, 2021-07-09.
[5] 张洪霞, 梁汉璞. 一种独立结构燃料电池. CN: CN112768722A, 2021-05-07.
[6] 梁汉璞, 杜健, 李超, 王西龙, 陈国栋. 一种电化学氧化法制备单层多孔羟基氧化钴纳米片的方法. CN: CN110364365A, 2019-10-22.
[7] 梁汉璞, 杜健, 李超. 一种单层多孔四氧化三钴纳米片的制备方法. CN: CN109534410A, 2019-03-29.
[8] 王宗花, 陈国栋, 梁汉璞. 动物血液盐析热聚合制备自掺杂Fe-N-C氧还原电催化剂的方法. CN: CN108855179A, 2018-11-23.
[9] 梁汉璞, 王西龙, 陈国栋. 一种高效生物质碳电化学氧还原催化剂及其制备方法和应用. CN: CN108134098A, 2018-06-08.
[10] 梁汉璞, 王西龙, 陈国栋, 杜健. 一种有效素化贵金属并提升其电催化性能的制备方法. CN: CN107552044A, 2018-01-09.
[11] 梁汉璞, 周欣, 杜健, 时晓玥. 一种Co 3 O 4 纳米颗粒的粒度检测方法. CN: CN106769708A, 2017-05-31.

出版信息

   
发表论文
[1] Liu, Xin, Wang, Kun, Liu, Ying, Zhao, Fuhua, He, Jianjiang, Wu, Hao, Wu, Jianfei, Liang, HanPu, Huang, Changshui. Constructing an ion-oriented channel on a zinc electrode through surface engineering. CARBON ENERGY. 2023, http://dx.doi.org/10.1002/cey2.343.
[2] 梁汉璞. Anchored and confined Pt nanoparticles in radial mesoporous hollow carbon spheres enhancing oxygen reduction reaction stability. New J. Chem.[J]. 2023, 47: 10866-10874, [3] Xiaoyue Shi, Ziyi Jiang, Xiaoyan Sun, Jian Zhou, Jiajia Lu, Chen Yang, HanPu Liang, Shengli Chen. Constructing electron-regulating structure to stabilize ruthenium sites for efficient acidic water oxidation. MATERIALS TODAY ENERGY. 2023, 33: http://dx.doi.org/10.1016/j.mtener.2023.101264.
[4] Lu, Jiajia, Deng, PengJun, Chen, Anyong, Yang, Chen, Zhu, Hongwei, Liang, HanPu. Encapsulated Ni nanoparticles in the incomplete graphite layer anchored on NiMo oxides enabling superior hydrogen evolution to Pt. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2023, 11(5): 2452-2459, [5] Xilong Wang, Hongwei Zhu, Chen Yang, Jiajia Lu, Lirong Zheng, Han-Pu Liang. Mesoporous carbon promoting the efficiency and stability of single atomic electrocatalysts for oxygen reduction reaction. Carbon[J]. 2022, [6] Anyong Chen, Jiajia Lu, Hongwei Zhu, Hongxia Zhang, Shaojuan Zeng, Lirong Zheng, Han-Pu Liang. Construction of highly durable electrocatalysts by pore confinement and anchoring effect for the oxygen reduction reaction. New Journal of Chemistry[J]. 2022, [7] Wang, Xilong, Li, Yadong, Yang, Chen, Lu, Jiajia, Cao, Lijuan, Liang, HanPu. Surfactant-assisted implantation strategy for facile construction of Pt-based hybrid electrocatalyst to accelerate oxygen reduction reaction. MATERIALS TODAY ENERGY[J]. 2022, 24: http://dx.doi.org/10.1016/j.mtener.2021.100919.
[8] Cao, Lijuan, Wang, Xilong, Yang, Chen, Lu, Jiajia, Shi, Xiaoyue, Zhu, Hongwei, Liang, HanPu. Highly Active Fe/Pt Single-Atom Bifunctional Electrocatalysts on Biomass-Derived Carbon. ACS SUSTAINABLE CHEMISTRY & ENGINEERING[J]. 2021, 9(1): 189-196, https://www.webofscience.com/wos/woscc/full-record/WOS:000610827900016.
[9] Ju, Jingjing, Lu, Jiajia, Shi, Xiaoyue, Zhu, Hongwei, Liang, HanPu. Fe-Induced electronic optimization of mesoporous Co-Ni oxide nanosheets as an efficient binder-free electrode for the oxygen evolution reaction dagger. NEW JOURNAL OF CHEMISTRY[J]. 2021, 45(14): 6424-6431, https://www.webofscience.com/wos/woscc/full-record/WOS:000632024200001.
[10] Chen Yang, Nannan Gao, Xilong Wang, Jiajia Lu, Lijuan Cao, Yadong Li, Han-Pu Liang. Stable and efficient seawater splitting on a porous phosphate-intercalated NiFe (oxy)hydroxide@NiMoO4 core-shell micropillar electrode. Energy Materials[J]. 2021, [11] Wang, Xilong, Yang, Chen, Wang, Xiaogang, Zhu, Hongwei, Cao, Lijuan, Chen, Anyong, Gu, Lin, Zhang, Qinghua, Zheng, Lirong, Liang, HanPu. Green Synthesis of a Highly Efficient and Stable Single-Atom Iron Catalyst Anchored on Nitrogen-Doped Carbon Nanorods for the Oxygen Reduction Reaction. ACS SUSTAINABLE CHEMISTRY & ENGINEERING[J]. 2021, 9(1): 137-146, https://www.webofscience.com/wos/woscc/full-record/WOS:000610827900011.
[12] Shi, Xiaoyue, Zhu, Hongwei, Du, Jian, Cao, Lijuan, Wang, Xilong, Liang, HanPu. Directed assembly of ultrasmall nitrogen coordinated Ir nanoparticles for enhanced electrocatalysis. ELECTROCHIMICA ACTA. 2021, 370: http://dx.doi.org/10.1016/j.electacta.2020.137710.
[13] Wang, Xilong, Du, Jian, Zhang, Qinghua, Gu, Lin, Cao, Lijuan, Liang, HanPu. In situ synthesis of sustainable highly efficient single iron atoms anchored on nitrogen doped carbon derived from renewable biomass. CARBON[J]. 2020, 157: 614-621, http://dx.doi.org/10.1016/j.carbon.2019.10.054.
[14] Wang, Xilong, Yang, Chen, Cao, Lijuan, Liang, HanPu. A facile solvothermal synthesis of Pt1.2Co/C bimetallic nanocrystals as efficient electrocatalysts for methanol oxidation and hydrogen evolution reaction. NEW JOURNAL OF CHEMISTRY[J]. 2020, 44(15): 5792-5799, https://www.webofscience.com/wos/woscc/full-record/WOS:000531211600018.
[15] Chen, Guodong, Wang, Xilong, Yang, Chen, Liang, HanPu, Wang, Zonghua. NaCl-Promoted Hierarchically Porous Carbon Self-Co-Doped with Iron and Nitrogen for Efficient Oxygen Reduction. CHEMISTRYSELECT[J]. 2020, 5(43): 13703-13710, https://www.webofscience.com/wos/woscc/full-record/WOS:000590573600036.
[16] Du, Jian, Li, Chao, Wang, Xilong, Jones, Timothy G J, Liang, HanPu. Cobalt oxyhydroxide with highly porous structures as active and stable phase for efficient water oxidation. ELECTROCHIMICA ACTA[J]. 2019, 303: 231-238, http://dx.doi.org/10.1016/j.electacta.2019.02.083.
[17] 陈国栋, 杜健, 王西龙, 时晓玥, 王宗花, 梁汉璞. 铁诱导生长在碳布上三维纳米多孔铁钴羟基氧化物作为高效电催化析氧反应电极. 催化学报[J]. 2019, 40(10): 1540-1547, http://lib.cqvip.com/Qikan/Article/Detail?id=7100021932.
[18] Du, Jian, Li, Chao, Wang, Xilong, Shi, Xiaoyue, Liang, HanPu. Mesoporous Ultrathin Cobalt Oxides Nanosheets Grown on Carbon Cloth as a High-Performance Electrode for Oxygen Evolution Reaction. ACS APPLIED ENERGY MATERIALS[J]. 2019, 2(3): 1977-1987, [19] Du, Jian, Li, Chao, Wang, Xilong, Shi, Xiaoyue, Liang, HanPu. Electrochemical Synthesis of Cation Vacancy-Enriched Ultrathin Bimetallic Oxyhydroxide Nanoplatelets for Enhanced Water Oxidation. ACS APPLIED MATERIALS & INTERFACES[J]. 2019, 11(29): 25958-25966, [20] Chen, Guodong, Du, Jian, Wang, Xilong, Shi, Xiaoyue, Wang, Zonghua, Liang, HanPu. Iron-induced 3D nanoporous iron-cobalt oxyhydroxide on carbon cloth as a highly efficient electrode for oxygen evolution reaction. CHINESE JOURNAL OF CATALYSIS[J]. 2019, 40(10): 1540-1547, http://dx.doi.org/10.1016/S1872-2067(19)63401-7.
[21] Du, Jian, Wang, Xilong, Li, Chao, Liu, XinYu, Gu, Lin, Liang, HanPu. Hollow Rh nanoparticles with nanoporous shell as efficient electrocatalyst for hydrogen evolution reaction. ELECTROCHIMICA ACTA[J]. 2018, 282: 853-859, http://dx.doi.org/10.1016/j.electacta.2018.06.126.
[22] Shi, Xiaoyue, Du, Jian, Jones, Timothy G J, Wang, Xilong, Liang, HanPu. Understanding the Mechanism for Capacity Decay of V6O13-Based Lithium-Metal Polymer Batteries. ACS APPLIED MATERIALS & INTERFACES[J]. 2018, 10(35): 29667-29674, http://ir.qibebt.ac.cn/handle/337004/11810.
[23] Meng, Wei, Pigliapochi, Roberta, Bayley, Paul M, Pecher, Oliver, Gaultois, Michael W, Seymour, Ieuan D, Liang, HanPu, Xu, Wenqian, Wiaderek, Kamila M, Chapman, Karena W, Grey, Clare P. Unraveling the Complex Delithiation and Lithiation Mechanisms of the High Capacity Cathode Material V6O13. CHEMISTRY OF MATERIALS[J]. 2017, 29(13): 5513-5524, http://dx.doi.org/10.1021/acs.chemmater.7b00428.
[24] Liang, H.-P., Du, J., Jones, T. G. J., Lawrence, N. S., Meredith, A. W.. Large-Scale Production of V6O13 Cathode Materials Assisted by Thermal Gravimetric Analysis–Infrared Spectroscopy Technology. ACS APPL. MATER. INTER.[J]. 2016, 8(39): 25674-25679, http://ir.qibebt.ac.cn/handle/337004/8559.
[25] Liang, HanPu, Du, Jian, Jones, Timothy G J, Lawrence, Nathan S, Meredith, Andrew W. Large-Scale Production of V6O13 Cathode Materials Assisted by Thermal Gravimetric Analysis-Infrared Spectroscopy Technology. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 8(39): 25674-25679, https://www.webofscience.com/wos/woscc/full-record/WOS:000384951800006.
[26] Liang, HanPu, Lawrence, Nathan S, Wan, LiJun, Jiang, Li, Song, WeiGuo, Jones, Timothy G J. Controllable synthesis of hollow hierarchical palladium nanostructures with enhanced activity for proton/hydrogen sensing. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2008, 112(2): 338-344, https://www.webofscience.com/wos/woscc/full-record/WOS:000252287300005.
[27] Liang, HanPu, Jones, Timothy G J, Lawrence, Nathan S, Jiang, Li, Barnard, Jonathan S. Understanding the role of nanoparticle synthesis on their underlying electrocatalytic activity. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2008, 112(11): 4327-4332, https://www.webofscience.com/wos/woscc/full-record/WOS:000253946200047.
[28] Liang, HanPu, Lawrence, Nathan S, Jones, Timothy G J, Banks, Craig E, Ducati, Caterina. Nanoscale tunable proton/hydrogen sensing: Evidence for surface-adsorbed hydrogen atom on architectured palladium nanoparticles. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2007, 129(19): 6068-+, https://www.webofscience.com/wos/woscc/full-record/WOS:000246415100006.
[29] Liang, HanPu, Hu, JinSong, Cao, AnMin, Mu, YongYan, Wan, LiJun. Facile synthesis of Pt multipods nanocrystals. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2006, 6(7): 2031-2036, http://www.corc.org.cn/handle/1471x/2379728.
[30] Liang, HP, Zhang, HM, Hu, JS, Guo, YG, Wan, LJ, Bai, CL. Pt hollow nanospheres: Facile synthesis and enhanced electrocatalysts. ANGEWANDTECHEMIEINTERNATIONALEDITION[J]. 2004, 43(12): 1540-1543, https://www.webofscience.com/wos/woscc/full-record/WOS:000220389600015.
[31] 梁汉璞, 赵燕, 张亚利, 焦奎. 纳米微电极研究进展. 青岛大学学报:自然科学版[J]. 2003, 16(2): 67-73, http://lib.cqvip.com/Qikan/Article/Detail?id=8077770.
[32] Xiaoyue Shi, Ziyi Jiang, Xiaoyan Sun, Jian Zhou, Jiajia Lu, Chen Yang, HanPu Liang, Shengli Chen. Constructing Electron-regulating Structure to Stabilize Ruthenium Sites for Efficient Acidic Water Oxidation. MATERIALS TODAY ENERGY. http://dx.doi.org/10.1016/j.mtener.2023.101264.