基本信息
徐云 女 博导 中国科学院半导体研究所
电子邮件: xuyun@semi.ac.cn
通信地址: 清华东路甲35号
邮政编码:
电子邮件: xuyun@semi.ac.cn
通信地址: 清华东路甲35号
邮政编码:
招生信息
招生专业
080903-微电子学与固体电子学
招生方向
半导体光电子学
教育背景
2001-09--2005-03 中国科学院半导体研究所 博士
教授课程
柔性可穿戴与微纳传感技术红外成像技术柔性传感技术
专利与奖励
专利成果
( 1 ) 一种在GaAs衬底上生长GaSb外延片的方法及GaAs基衬底, 发明专利, 2021, 第 1 作者, 专利号: CN113823551A( 2 ) 基于波导传输的高效太赫兹偏振分束器, 发明专利, 2021, 第 3 作者, 专利号: CN113805272A( 3 ) 一种衍射环结构II类超晶格红外探测器及其制备方法, 发明专利, 2021, 第 1 作者, 专利号: CN112117345B( 4 ) 单行载流子探测器及其制备方法, 发明专利, 2021, 第 2 作者, 专利号: CN113471313A( 5 ) 基于二氧化钒的超材料太赫兹可调吸收器, 实用新型, 2021, 第 3 作者, 专利号: CN213026519U( 6 ) 一种纳米线状狄拉克半金属砷化镉及其制备方法, 发明专利, 2020, 第 3 作者, 专利号: CN111554567A( 7 ) 柔性可贴附式血流速度测试系统及其构建方法, 发明专利, 2019, 第 1 作者, 专利号: CN109770886A( 8 ) 基于亚波长结构调制太赫兹辐射的光电导天线及制备方法, 发明专利, 2019, 第 1 作者, 专利号: CN109728428A( 9 ) 一种基于摩擦发电的自供电电子显示屏, 发明专利, 2019, 第 1 作者, 专利号: CN109683420A( 10 ) 一种可见光至近红外集成的光谱探测器装置及制备方法, 发明专利, 2019, 第 1 作者, 专利号: CN109686806A( 11 ) 可伪装可形变的智能可见光至近红外探测器及其制备方法, 发明专利, 2019, 第 1 作者, 专利号: CN109524423A( 12 ) 空间全方位探测的可见光至近红外探测器的制备方法, 发明专利, 2019, 第 1 作者, 专利号: CN109524501A( 13 ) 多波段可见光至近红外焦平面探测器的制备方法, 发明专利, 2018, 第 1 作者, 专利号: CN108878585A( 14 ) 一种可延展柔性的光电针灸器件及其制备方法, 专利授权, 2018, 第 1 作者, 专利号: CN108815714A( 15 ) 红外成像器件及其制备方法、仿生红外球面相机, 发明专利, 2018, 第 1 作者, 专利号: CN108417592A( 16 ) 血氧探测器探测单元、探头及其制备方法, 发明专利, 2018, 第 1 作者, 专利号: CN108209941A( 17 ) 纳米线状狄拉克半金属砷化镉及其制备方法, 发明专利, 2018, 第 2 作者, 专利号: CN108109904A( 18 ) 激光器的侧边耦合光栅及其制备方法、包含其的激光器, 专利授权, 2017, 第 1 作者, 专利号: CN107306011A( 19 ) 一种柔性超表面结构, 专利授权, 2017, 第 7 作者, 专利号: CN106918850A( 20 ) 基于褶皱导电薄膜的摩擦发电机及制备方法、集成结构, 专利授权, 2017, 第 1 作者, 专利号: CN106877732A( 21 ) 可延展柔性无机光电子器件及其制备方法, 专利授权, 2017, 第 2 作者, 专利号: CN106783745A( 22 ) 一种包含缓冲层的外延结构及其制备方法, 发明专利, 2017, 第 7 作者, 专利号: CN106711252A( 23 ) 具有吸收增强结构的II类超晶格光电探测器及其制备方法, 发明专利, 2017, 第 7 作者, 专利号: CN106684180A( 24 ) InAs/InSb/GaSb/InSbⅡ类超晶格材料制造方法及产品, 发明专利, 2016, 第 4 作者, 专利号: CN105932106A( 25 ) 一种表面等离子体增强量子阱红外探测器及其制备方法, 发明专利, 2016, 第 4 作者, 专利号: CN105870219A( 26 ) 适用于转印的无机半导体薄膜功能单元的制备方法, 发明专利, 2016, 第 1 作者, 专利号: CN105609589A( 27 ) 表面增强的相干反斯托克斯拉曼散射的结构, 发明专利, 2016, 第 4 作者, 专利号: CN105576497A( 28 ) 用于表面增强相干反斯托克斯拉曼散射的纳米结构, 发明专利, 2016, 第 3 作者, 专利号: CN105573010A( 29 ) 基于无机半导体材料的柔性LED阵列的制备方法, 发明专利, 2016, 第 3 作者, 专利号: CN105489716A( 30 ) 一种高响应度雪崩光电二极管制备方法, 发明专利, 2015, 第 7 作者, 专利号: CN105118886A( 31 ) 一种可延展无机柔性LED阵列的制备方法, 发明专利, 2015, 第 3 作者, 专利号: CN105006450A( 32 ) 基于表面等离子体效应增强吸收的InGaAs光探测器, 发明专利, 2014, 第 7 作者, 专利号: CN103943714A( 33 ) InGaAs红外光探测器, 发明专利, 2014, 第 5 作者, 专利号: CN103811580A( 34 ) 一种PDLC压光效应光纤传感器及其制备方法, 发明专利, 2013, 第 4 作者, 专利号: CN103335758A( 35 ) 一种双色量子阱红外光探测器, 发明专利, 2013, 第 7 作者, 专利号: CN103325862A( 36 ) 一种聚合物分散液晶薄盒微位移传感器及其测量方法, 发明专利, 2013, 第 4 作者, 专利号: CN103292712A( 37 ) 可调谐有源滤波器, 发明专利, 2013, 第 3 作者, 专利号: CN103278942A( 38 ) 大面积表面增强拉曼活性基底的倾斜生长制备方法, 发明专利, 2013, 第 4 作者, 专利号: CN103274353A( 39 ) 局域表面等离子体和波导模式耦合的结构, 发明专利, 2013, 第 3 作者, 专利号: CN103267742A( 40 ) 具有宽度周期性渐变表面的全息光栅制备方法, 发明专利, 2013, 第 5 作者, 专利号: CN103226215A( 41 ) 一种制备GaSb基分布反馈激光器中光栅的系统及方法, 发明专利, 2012, 第 3 作者, 专利号: CN102545044A( 42 ) “W”型锑化物二类量子阱的外延生长方法, 发明专利, 2011, 第 5 作者, 专利号: CN102157903A( 43 ) 基于微小孔激光器的扫描近场光学显微镜系统, 发明专利, 2010, 第 3 作者, 专利号: CN101881786A( 44 ) 一种制备半导体固态白光光源的方法, 发明专利, 2010, 第 1 作者, 专利号: CN101741009A( 45 ) 一种制备微小化固态白光光源的方法, 发明专利, 2010, 第 1 作者, 专利号: CN101741008A( 46 ) 一种半导体固态白光光源的制备方法, 发明专利, 2009, 第 1 作者, 专利号: CN101471533A( 47 ) 红光铝镓铟磷半导体激光器光纤耦合模块的制备方法, 发明专利, 2008, 第 1 作者, 专利号: CN101316025A( 48 ) 一种量子阱边发射半导体激光器的制作方法, 发明专利, 2008, 第 1 作者, 专利号: CN101316027A
出版信息
发表论文
[1] Zhang, Yuanlong, Xiao, Yu, Xu, Yun, Zhang, Shaochun, Qu, Changming, Liu, Hanyun, Huang, Kai, Shao, Hanxiao. Wrinkle Clamp Down on Structure Crack Strain Sensor Based on High Poisson's Ratio Material for Home Health Monitoring and Human-Machine Interaction. ACS APPLIED MATERIALS & INTERFACES[J]. 2023, 15(26): 31729-31739, http://dx.doi.org/10.1021/acsami.3c05281.[2] Zhang, Shaochun, Xiao, Yu, Chen, Huamin, Zhang, Yuanlong, Liu, Hanyun, Qu, Changming, Shao, Hanxiao, Xu, Yun. Flexible Triboelectric Tactile Sensor Based on a Robust MXene/ Leather Film for Human-Machine Interaction. ACS APPLIED MATERIALS & INTERFACES[J]. 2023, 15(10): 13802-13812, http://dx.doi.org/10.1021/acsami.3c00126.[3] Xiao, Yu, Zhang, Yuanlong, Qu, Changming, Zhang, Shaochun, Liu, Hanyun, Xu, Yun. Miniaturized Flexible Non-Contact Interface Based on Heat Shrinkage Technology. SMALL METHODS. 2023, http://dx.doi.org/10.1002/smtd.202300316.[4] Liu, Hanyun, Xiao, Yu, Xu, Yun, Zhang, Shaochun, Qu, Changming, Zhang, Yuanlong. A highly adaptive real-time water wave sensing array for marine applications. NANOSCALE[J]. 2023, 15(20): 9162-9170, http://dx.doi.org/10.1039/d3nr00856h.[5] Zhao, Jiang, Xiao, Yu, Yang, Wei, Zhang, Shaochun, Wang, Huining, Wang, Qiang, Sun, Zhaoyang, Li, Wenjie, Gao, Min, Wang, Zefeng, Xu, Yun, Chen, Huamin, Wang, Jun. Ultrastretchable Triboelectric Nanogenerators Based on Ecoflex/Porous Carbon for Self-Powered Gesture Recognition. ADVANCED MATERIALS TECHNOLOGIES. 2023, 8(9): [6] Changming Qu, Yu Xiao, 徐云, Shaochun Zhang. A sensing and display system on wearable fabric based on patterned silver nanowiresy. Nano Energy[J]. 2022, [7] Shao, Hanxiao, Cheng, Bo, Xu, Yun, Song, Guofeng. Ultrahigh-quantum-efficiency and high-bandwidth nanowire array UTC-PDs working at 1064 nm. OPTICAL AND QUANTUM ELECTRONICS[J]. 2022, 54(1): [8] Shao, Hanxiao, Xu, Yun, Lv, Longfeng, Cheng, Bo, Song, Guofeng. Resonance-Enhanced Quantum Well Micropillar Array with Ultra-Narrow Bandwidth and Ultra-High Peak Quantum Efficiency. ELECTRONICS[J]. 2022, 11(9): http://dx.doi.org/10.3390/electronics11091396.[9] Chen, Huamin, Yang, Wei, Zhang, Cheng, Wu, Mingqiang, Li, Wenjie, Zou, Yuxiao, Lv, Longfeng, Yu, Hualiang, Ke, Huizhen, Liu, Ruping, Xu, Yun, Wang, Jun, Li, Zhou. Performance-enhanced and cost-effective triboelectric nanogenerator based on stretchable electrode for wearable SpO2 monitoring. NANO RESEARCH[J]. 2022, 15(3): 2465-2471, http://dx.doi.org/10.1007/s12274-021-3724-1.[10] hanyunliu, 徐云, Yuxiao, shaochunzhang. Highly Adaptive Liquid−Solid Triboelectric Nanogenerator-Assisted Self-Powered Water Wave Motion Sensor. ACS Appl. Electron. Mater[J]. 2022, [11] Zhang, Shaochun, Qu, Changming, Xiao, Yu, Liu, Hanyun, Song, Guofeng, Xu, Yun. Flexible alternating current electroluminescent devices integrated with high voltage triboelectric nanogenerators. NANOSCALE[J]. 2022, 14(11): 4244-4253, http://dx.doi.org/10.1039/d1nr08203e.[12] Cheng, Bo, Wang, Lei, Zou, Yuxiao, Lv, Longfeng, Li, Chuanchuan, Xu, Yun, Song, Guofeng. Large bandwidth and high-efficiency plasmonic quarter-wave plate. OPTICS EXPRESS[J]. 2021, 29(11): 16939-16949, http://dx.doi.org/10.1364/OE.426006.[13] Tang, Diandong, Chen, Yan, Yang, Meng, Wang, Qiming, Zou, Yuxiao, Wang, Xin, Li, Zezhong, Yi, Changjiang, Shi, Youguo, Kong, Xiangmu, Song, Guofeng, Xu, Yun, Wei, Xin, Weinert, Michael, Li, Lian, Fang, Weihai, Liu, Ying. Strong-coupling anisotropic s-wave superconductivity in the type-II Weyl semimetal TaIrTe4. PHYSICALREVIEWB[J]. 2021, 103(17): http://dx.doi.org/10.1103/PhysRevB.103.174508.[14] Du, Yanan, Wang, Lei, Xu, Yun, Song, Guofeng. Design and calculation of type-II superlattice resonant cavity-enhanced photodetector with high quantum efficiency and low dark current. PHYSICA B-CONDENSED MATTER[J]. 2021, 619: http://dx.doi.org/10.1016/j.physb.2021.413201.[15] Chen, Huamin, Yang, Wei, Huang, Peiyu, Li, Chenyu, Yang, Yaqian, Zheng, Biao, Zhang, Cheng, Liu, Ruping, Li, Yuliang, Xu, Yun, Wang, Jun, Li, Zhou. A multiple laser-induced hybrid electrode for flexible triboelectric nanogenerators. SUSTAINABLE ENERGY & FUELS[J]. 2021, 5(14): 3737-3743, http://dx.doi.org/10.1039/d1se00819f.[16] Xiao, Yu, Xu, Yun, Qu, Changming, Liu, Hanyun, Zhang, Shaochun, Lin, Fangqi, Wu, Weitong, Song, Guofeng. Micro-Crack Assisted Wrinkled PEDOT: PSS to Detect and Distinguish Tensile Strain and Pressure Based on a Triboelectric Nanogenerator. ADVANCED MATERIALS TECHNOLOGIES[J]. 2021, 7(1): [17] 徐云. Multifunctional Displays and Sensing Platforms for the Future: A 2 Review on Flexible Alternating Current Electroluminescence Devices. ACS Appl. Electron. Mater.. 2021, [18] Jiao, XiaoFei, Zhang, ZiHeng, Xu, Yun, Song, GuoFeng. Efficient and multifunctional terahertz polarization control device based on metamaterials*. CHINESE PHYSICS B[J]. 2020, 29(11): 364-369, http://lib.cqvip.com/Qikan/Article/Detail?id=7103409388.[19] Su, DaHong, Xu, Yun, Wang, WenXin, Song, GuoFeng. Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio. CHINESE PHYSICS LETTERS[J]. 2020, 37(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000521470700001.[20] Jiao, XiaoFei, Zhang, ZiHeng, Li, Tong, Xu, Yun, Song, GuoFeng. Tunable Dual Broadband Terahertz Metamaterial Absorber Based on Vanadium Dioxide. APPLIED SCIENCES-BASEL[J]. 2020, 10(20): https://www.webofscience.com/wos/woscc/full-record/WOS:000586175100001.[21] Huamin Chen, Chao Xing, Yuliang Li, Jun Wang, Yun Xu. Triboelectric nanogenerators for a macro-scale blue energy harvesting and self-powered marine environmental monitoring system. SUSTAINABLE ENERGY & FUELS[J]. 2020, 4(3): 1063-1077, https://www.webofscience.com/wos/woscc/full-record/WOS:000518690900007.[22] Chen, Huamin, Lv, Longfeng, Zhang, Jiushuang, Zhang, Shaochun, Xu, Pengjun, Li, Chuanchuan, Zhang, Zhicheng, Li, Yuliang, Xu, Yun, Wang, Jun. Enhanced Stretchable and Sensitive Strain Sensor via Controlled Strain Distribution. NANOMATERIALS[J]. 2020, 10(2): https://doaj.org/article/a81684f454714c5187c2a6b7664d5fe3.[23] Chen, Yan, Li, MengChen, Wang, QiMing, Wang, GuoSheng, Wei, Xin, Song, GuoFeng, Kong, XiangMu, Xu, Yun, Liu, Ying. Structure and electronic properties of closed-ring defects in epitaxial graphene. MATERIALS RESEARCH EXPRESS[J]. 2020, 7(5): https://www.webofscience.com/wos/woscc/full-record/WOS:000536000900001.[24] Lu, Wei, Xu, Yun, Zou, Yuxiao, Zhang, Linao, Zhang, Jiushuang, Wu, Weitong, Song, Guofeng. Corrosion-resistant and high-performance crumpled-platinum-based triboelectric nanogenerator for self-powered motion sensing. NANO ENERGY[J]. 2020, 69: http://dx.doi.org/10.1016/j.nanoen.2019.104430.[25] Zhang, Ziheng, Li, Tong, Jiao, Xiaofei, Song, Guofeng, Xu, Yun. High-Efficiency All-Dielectric Metasurfaces for the Generation and Detection of Focused Optical Vortex for the Ultraviolet Domain. APPLIED SCIENCES-BASEL[J]. 2020, 10(16): http://dx.doi.org/10.3390/app10165716.[26] Wu, Weitong, Xu, Yun, Zhang, Jiushuang, Lu, Wei, Song, Guofeng. Enhanced Performance of a Soft Strain Sensor by Combining Microcracks with Wrinkled Structures. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS[J]. 2020, 14(12): https://www.webofscience.com/wos/woscc/full-record/WOS:000578237300001.[27] 苏大鸿, 徐云, 王文新, 宋国峰. Growth Control of High-Performance In As/Ga Sb Type-Ⅱ Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio. 中国物理快报:英文版[J]. 2020, 37(3): 60-63, http://lib.cqvip.com/Qikan/Article/Detail?id=7102014382.[28] Zhang, Jiushuang, Xu, Yun, Wu, Weitong, Lu, Wei, Song, Guofeng. Theoretical Analysis of Strain-Optoelectronic Properties in Externally Deformed Ge/GeSi Quantum Well Nanomembranes via Neutral Plane Modulation. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS[J]. 2020, 257(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000530620100001.[29] Du, Yanan, Xu, Yun, Song, Guofeng. Theoretical analysis on the energy band properties of N- and M-structure type-II superlattices. SUPERLATTICES AND MICROSTRUCTURES[J]. 2020, 145: http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000557880800010.[30] Linao Zhang, Yun Xu, Guofeng Song. Investigation of modulation transfer function in InGaAs photodetector small pitch array based on three-dimensional numerical analysis. OPTICAL AND QUANTUM ELECTRONICS[J]. 2020, 52(3): 171-, https://www.webofscience.com/wos/woscc/full-record/WOS:000521055000001.[31] Wang, Bo, Xu, Yun, Chen, Huamin, Song, Guofeng. High performance graphene photodetector by introducing porous interface. MATERIALS RESEARCH EXPRESS[J]. 2019, 6(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000470816100005.[32] Huamin Chen, Yun Xu, Jiushuang Zhang, Weitong Wu, Guofeng Song. Self-Powered Flexible Blood Oxygen Monitoring System Based on a Triboelectric Nanogenerator. NANOMATERIALS[J]. 2019, 9(5): 778-, https://doaj.org/article/a4921653e0c148f5987a2d13019ca98a.[33] Zhang, Jiushuang, Xu, Yun, Weitong, Huamin, Wu, Weitong, Song, Guofeng. Strain-optoelectronic coupling properties of externally deformed nanoribbons with embedded quantum well. MATERIALS RESEARCH EXPRESS[J]. 2019, 6(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000454136200003.[34] Chen, Huamin, Xu, Yun, Zhang, Jiushuang, Wu, Weitong, Song, Guofeng. Enhanced stretchable graphene-based triboelectric nanogenerator via control of surface nanostructure. NANO ENERGY[J]. 2019, 58: 304-311, http://dx.doi.org/10.1016/j.nanoen.2019.01.029.[35] Li, Tong, Li, Zhancheng, Chen, Shuqi, Zhou, Lyu, Zhang, Nan, Wei, Xin, Song, Guofeng, Gan, Qiaoqiang, Xu, Yun. Efficient generation of broadband short-wave infrared vector beams with arbitrary polarization. APPLIED PHYSICS LETTERS[J]. 2019, 114(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000456263800007.[36] Chen Huamin, Xu Yun, Bai Lin, Li Jian, Li Tong, Zhao Chen, Zhang Jiushuang, Song Guofeng. Optimization of contact-mode triboelectric nanogeneration for high energy conversion efficiency. 中国科学:信息科学(英文版)[J]. 2018, 61(6): 060416-1, http://lib.cqvip.com/Qikan/Article/Detail?id=74708871504849564854484855.[37] Chen, Huamin, Xu, Yun, Bai, Lin, Li, Jian, Li, Tong, Zhao, Chen, Zhang, Jiushuang, Song, Guofeng. Optimization of contact-mode triboelectric nanogeneration for high energy conversion efficiency. SCIENCE CHINA-INFORMATION SCIENCES[J]. 2018, 61(6): 74-82, http://lib.cqvip.com/Qikan/Article/Detail?id=74708871504849564854484855.[38] Chen, Huamin, Bai, Lin, Li, Tong, Zhao, Chen, Zhang, Jiushuang, Zhang, Nan, Song, Guofeng, Gan, Qiaoqiang, Xu, Yun. Wearable and robust triboelectric nanogenerator based on crumpled gold films. NANO ENERGY[J]. 2018, 46: 73-80, http://dx.doi.org/10.1016/j.nanoen.2018.01.032.[39] Xu, Yun, Ji, Dengxin, Song, Haomin, Zhang, Nan, Hu, Yaowu, Anthopoulos, Thomas D, Di Fabrizio, Enzo M, Xiao, Shumin, Gan, Qiaoqiang. Light-Matter Interaction within Extreme Dimensions: From Nanomanufacturing to Applications. ADVANCED OPTICAL MATERIALSnull. 2018, 6(18): https://www.webofscience.com/wos/woscc/full-record/WOS:000444797000011.[40] Chen, Huamin, Xu, Yun, Zhang, Jiushuang, Wu, Weitong, Song, Guofeng. Theoretical System of Contact-Mode Triboelectric Nanogenerators for High Energy Conversion Efficiency. NANOSCALE RESEARCH LETTERS[J]. 2018, 13(1): https://doaj.org/article/fda1e71491c2459688252757be460493.[41] Zhang, Jiushuang, Xu, Yun, Jiang, Yu, Bai, Lin, Chen, Huamin, Li, Jian, Wang, Lei, Wu, Weitong, Song, Guofeng. A fully verified theoretical analysis of strain-photonic coupling for quantum wells embedded in wavy nanoribbons. NANOSCALE[J]. 2018, 10(26): 12657-12664, https://www.webofscience.com/wos/woscc/full-record/WOS:000438246000049.[42] Li, Tong, Hu, Xiaobin, Chen, Huamin, Zhao, Chen, Xu, Yun, Wei, Xin, Song, Guofeng. Metallic metasurfaces for high efficient polarization conversion control in transmission mode. OPTICS EXPRESS[J]. 2017, 25(20): 23597-23604, https://www.webofscience.com/wos/woscc/full-record/WOS:000412048500017.[43] Yu, HaiLong, Wu, HaoYue, Zhu, HaiJun, Song, GuoFeng, Xu, Yun. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAsxSb1-x Buffer Layers. CHINESE PHYSICS LETTERS[J]. 2017, 34(1): http://lib.cqvip.com/Qikan/Article/Detail?id=671593619.[44] Song Guofeng. Transfer method of crumpled grapheme and its application for human strain monitoring. Sensors and Actuators. 2017, [45] Bai, Lin, Xu, Yun, Jiang, Yu, Chen, Huamin, Li, Xiaomin, Zhang, Jiushuang, Song, Guofeng. Transfer method of crumpled graphene and its application for human strain monitoring. SENSORS AND ACTUATORS A-PHYSICAL[J]. 2017, 260: 153-160, http://dx.doi.org/10.1016/j.sna.2017.04.028.[46] Chen, Huamin, Xu, Yun, Bai, Lin, Jiang, Yu, Zhang, Jiushuang, Zhao, Chen, Li, Tong, Yu, Hailong, Song, Guofeng, Zhang, Nan, Gan, Qiaoqiang. Crumpled Graphene Triboelectric Nanogenerators: Smaller Devices with Higher Output Performance. ADVANCED MATERIALS TECHNOLOGIES[J]. 2017, 2(6): [47] Li, Haicheng, Xu, Yun, Li, Xiaomin, Chen, Ying, Jiang, Yu, Zhang, Changxing, Lu, Bingwei, Wang, Jian, Ma, Yinji, Chen, Yihao, Huang, Yin, Ding, Minquang, Su, Honghong, Song, Guofeng, Luo, Yi, Feng, X. Epidermal Inorganic Optoelectronics for Blood Oxygen Measurement. ADVANCED HEALTHCARE MATERIALS[J]. 2017, 6(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000402422400001.[48] Jiang, Yu, Xu, Yun, Wu, Haoyue, Li, Jian, Bai, Lin, Chen, Huamin, Zhang, Jiushuang, Song, Guofeng. A self-consistent numerical approach for characterizing the band structures and gain spectrum of tensile-strained and n(+)-doped Ge/GeSi quantum wells. JOURNAL OF PHYSICS D-APPLIED PHYSICS[J]. 2017, 50(47): https://www.webofscience.com/wos/woscc/full-record/WOS:000414269300002.[49] Wu, Haoyue, Xu, Yun, Li, Jian, Jiang, Yu, Bai, Lin, Yu, Hailong, Fu, Dong, Zhu, Haijun, Song, Guofeng. High quantum efficiency N-structure type-II superlattice mid-wavelength infrared detector with resonant cavity enhanced design. SUPERLATTICES AND MICROSTRUCTURES[J]. 2017, 105: 28-33, http://dx.doi.org/10.1016/j.spmi.2017.03.019.[50] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAsxSb1-x Buffer Layers. 中国物理快报:英文版[J]. 2017, 34(1): 125-128, http://lib.cqvip.com/Qikan/Article/Detail?id=671593619.[51] Bai Lin, Xu Yun, Jiang Yu, Chen Huamin, Wu Haoyue, Zhang Jiushuang, Song Guofeng. Numerical simulation of the modulation transfer function in planar InGaAs dense arrays. INFRARED PHYSICS AND TECHNOLOGY[J]. 2017, 85: 287-292, http://dx.doi.org/10.1016/j.infrared.2017.07.001.[52] 徐云. Crumpled Graphene Triboelectric Nanogenerators: smaller wearable generator devices for higher output voltages. Advanced Materials Technologies. 2017, [53] 李慧梅, 胡晓斌, 白霖, 李晓敏, 于海龙, 徐云, 宋国峰. In_(0.53)Ga_(0.47)As/In_(0.52)Al_(0.48)As雪崩光电二极管的数值模拟研究. 红外与激光工程[J]. 2016, 45(5): 90-94, http://lib.cqvip.com/Qikan/Article/Detail?id=668948594.[54] 宋玉志, 宋甲坤, 张祖银, 李康文, 徐云, 宋国峰, 陈良惠. 大功率及高转换效率2.1μm GaInSb/AlGaAsSb量子阱激光器. 红外与激光工程[J]. 2016, 45(5): 58-62, http://lib.cqvip.com/Qikan/Article/Detail?id=668948588.[55] Fu, Dong, Liu, Jietao, Song, Jiakun, Yu, Hailong, Zhang, Zuyin, Wang, Wenbo, Xu, Yun, Song, Guofeng, Wei, Xin. Coupled optical and electrical study of thin-film InGaAs photodetector integrated with surface InP Mie resonators. JOURNAL OF APPLIED PHYSICS[J]. 2016, 119(10): http://ir.semi.ac.cn/handle/172111/27908.[56] Yuxuan Wang, Ying Chen, Haicheng Li, Xiaomin Li, Hang Chen, Honghong Su, Yuan Lin, Yun Xu, Guofeng Song, Xue Feng. A Buckling-Based Method for Measuring the Strain-Photonic Coupling Effect of GaAs Nanoribbons. ACS NANO[J]. 2016, 10(9): 8199-8206, http://ir.semi.ac.cn/handle/172111/27907.[57] Wenbo Wang, Dong Fu, Xiaobin Hu, Yun Xu, Guofeng Song, Xin Wei. Investigation of polarization-selective InGaAs sensor with elliptical two-dimensional holes array structure. INTERNATIONAL SYMPOSIUM ON OPTOELECTRONIC TECHNOLOGY AND APPLICATION[J]. 2016, 10157: http://ir.semi.ac.cn/handle/172111/27911.[58] Hu, Haifeng, Zeng, Xie, Zhao, Yong, Li, Jin, Song, Haomin, Song, Guofeng, Xu, Yun, Gan, Qiaoqiang. Unidirectional Coupling of Surface Plasmon Polaritons by a Single Slit on a Metal Substrate. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2016, 28(21): 2395-2398, http://ir.semi.ac.cn/handle/172111/28066.[59] 徐云. Unidirectional Coupling of Surface Plasmon Ploaritons by a Single Slit on a Metal Substrate. IEEE Phot. Tech. Lett. 2016, [60] Wu, Haoyue, Jiang, Yu, Li, Jian, Ma, Xunpeng, Song, Jiakun, Yu, Hailong, Fu, Dong, Xu, Yun, Zhu, Haijun, Song, Guofeng. Performance analysis of an N-structure type-II superlattice photodetector for long wavelength infrared applications. JOURNAL OF ALLOYS AND COMPOUNDS[J]. 2016, 684: 663-668, http://ir.semi.ac.cn/handle/172111/28063.[61] 李晓敏, 宗约瀚, 江宇, 白霖, 宋国峰, 徐云. 基于外延剥离技术的薄膜LEDs的电流扩展和热效应研究. 中国科学(物理学·力学·天文学)[J]. 2016, 46(4): 044614-, http://ir.semi.ac.cn/handle/172111/28068.[62] 于海龙, 吴皓越, 朱海军, 宋国峰, 徐云. Molecular Beam Epitaxy of Zero Lattice-Mismatch InAs/GaSb Type-Ⅱ Superlattice. 中国物理快报:英文版[J]. 2016, 33(12): 128103-1, http://lib.cqvip.com/Qikan/Article/Detail?id=670952845.[63] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with AlSb Buffer Layers. CHIN. PHYS. LETT.[J]. 2016, 34(1): 018101-, http://ir.semi.ac.cn/handle/172111/27912.[64] Yu, HaiLong, Wu, HaoYue, Zhu, HaiJun, Song, GuoFeng, Xu, Yun. Molecular Beam Epitaxy of Zero Lattice-Mismatch InAs/GaSb Type-II Superlattice. CHINESE PHYSICS LETTERS[J]. 2016, 33(12): http://ir.semi.ac.cn/handle/172111/27913.[65] Yu Hailong, Wu Haoyue, Zhu Haijun, Song Guofeng, Xu Yun. Molecular Beam Epitaxy of Zero Lattice-Mismatch InAs/GaSb Type-Ⅱ Superlattice. 中国物理快报:英文版[J]. 2016, 33(12): 128103-1, http://lib.cqvip.com/Qikan/Article/Detail?id=670952845.[66] 徐云. Current spreading and thermal effect in thin-film Light-Emitting Diodes for epitaxial lift-off technology. Scientia Sinica. 2016, [67] Zhang, Nan, Dong, Ziye, Ji, Dengxin, Song, Haomin, Zeng, Xie, Liu, Zhejun, Jiang, Suhua, Xu, Yun, Bernussi, Ayrton, Li, Wei, Gan, Qiaoqiang. Reversibly tunable coupled and decoupled super absorbing structures. APPLIED PHYSICS LETTERS[J]. 2016, 108(9): http://dx.doi.org/10.1063/1.4943089.[68] Song, Jiakun, Song, Yuzhi, Li, Kangwen, Zhang, Zuyin, Wei, Xin, Xu, Yun, Song, Guofeng. Tunable plasmon-induced transparency in hybrid waveguide-magnetic resonance system. APPLIED OPTICS[J]. 2015, 54(9): 2279-2282, https://www.webofscience.com/wos/woscc/full-record/WOS:000351638300016.[69] Song Jia-Kun, Song Yu-Zhi, Li Kang-Wen, Zhang Zu-Yin, Xu Yun, Wei Xin, Song Guo-Feng. Exploring electromagnetic response of tellurium dielectric resonator metamaterial at the infrared wavelengths. CHIN. PHYS. B[J]. 2015, 24(10): 104103-, http://ir.semi.ac.cn/handle/172111/27036.[70] Jiakun Song, Yuzhi Song, Kangwen Li, Zuyin Zhang, Xin Wei, Yun Xu, Guofeng Song. Tunable plasmon-induced transparency in hybrid waveguide-magnetic resonance system. APPL. OPTICS[J]. 2015, 54(9): 2279-2282, http://ir.semi.ac.cn/handle/172111/27035.[71] Song Yuzhi, Zhang Yu, Song Jiakun, Li Kangwen, Zhang Zuyin, Xu Yun, Song Guofeng, Chen Lianghui. Single Mode 2 μm GaSb Based Laterally Coupled Distributed Feedback Quantum-Well Laser Diodes with Metal Grating. 中国物理快报:英文版[J]. 2015, 76-79, http://lib.cqvip.com/Qikan/Article/Detail?id=665867305.[72] Song JiaKun, Song YuZhi, Li KangWen, Zhang ZuYin, Xu Yun, Wei Xin, Song GuoFeng. Exploring electromagnetic response of tellurium dielectric resonator metamaterial at the infrared wavelengths. CHINESE PHYSICS B[J]. 2015, 24(10): https://www.webofscience.com/wos/woscc/full-record/WOS:000363327400027.[73] Song, Jiakun, Liu, Jietao, Song, Yuzhi, Li, Kangwen, Zhang, Zuyin, Xu, Yun, Wei, Xin, Song, Guofeng. Plasmon-Induced Transparency and Dispersionless Slow Light in a Novel Metamaterial. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2015, 27(11): 1177-1180, https://www.webofscience.com/wos/woscc/full-record/WOS:000354457400010.[74] Haomin Song, Suhua Jiang, Dengxin Ji, Xie Zeng, Nan Zhang, Kai Liu, Chu Wang, Yun Xu, Qiaoqiang Gan. Nanocavity absorption enhancement for two-dimensional material monolayer systems.. OPT. EXPRESS[J]. 2015, 23(6): 7120-7130, http://ir.semi.ac.cn/handle/172111/27039.[75] Jiakun Song, Jietao Liu, Yuzhi Song, Kangwen Li, Zuyin Zhang, Yun Xu, Xin Wei, Guofeng Song. Plasmon-Induced Transparency and Dispersionless Slow Light in a Novel Metamaterial.. IEEEPHOTONICSTECHNOLLETT[J]. 2015, 27(11): 1177-1180, http://ir.semi.ac.cn/handle/172111/27038.[76] Liu, Kai, Jiang, Suhua, Ji, Dengxin, Zeng, Xie, Zhang, Nan, Song, Haomin, Xu, Yun, Gan, Qiaoqiang. Super Absorbing Ultraviolet Metasurface. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2015, 27(14): 1539-1542, https://www.webofscience.com/wos/woscc/full-record/WOS:000356875700019.[77] Song YuZhi, Zhang Yu, Song JiaKun, Li KangWen, Zhang ZuYin, Xu Yun, Song GuoFeng, Chen LiangHui. Single Mode 2 mu m GaSb Based Laterally Coupled Distributed Feedback Quantum-Well Laser Diodes with Metal Grating. CHINESE PHYSICS LETTERS[J]. 2015, 32(7): http://ir.semi.ac.cn/handle/172111/27037.[78] Dong Fu, Jietao Liu, Xi Zhu, Jian Li, Yun Xu, Guofeng Song, Xin Wei. Exploring the effective photon management by InP nanoparticles: Broadband light absorption enhancement of InP/In0.53Ga0.47As/InP thin-film photodetectors. J. APPL. PHYS.[J]. 2015, 117(20): 203102-, http://ir.semi.ac.cn/handle/172111/27034.[79] Song Yuzhi, Zhang Yu, Song Jiakun, Li Kangwen, Zhang Zuyin, Xu Yun, Song Guofeng, Chen Lianghui. Single Mode 2 μm GaSb Based Laterally Coupled Distributed Feedback Quantum-Well Laser Diodes with Metal Grating. 中国物理快报:英文版[J]. 2015, 074206-1, http://lib.cqvip.com/Qikan/Article/Detail?id=665867305.[80] Kai Liu, Suhua Jiang, Dengxin Ji, Xie Zeng, Nan Zhang, Haomin Song, Yun Xu, Qiaoqiang Gan. Super Absorbing Ultraviolet Metasurface. IEEE PHOTONICS TECHNOL. LETT.[J]. 2015, 27(14): 1539-1542, http://ir.semi.ac.cn/handle/172111/27040.[81] Fu, Dong, Liu, Jietao, Zhu, Xi, Li, Jian, Xu, Yun, Song, Guofeng, Wei, Xin. Exploring the effective photon management by InP nanoparticles: Broadband light absorption enhancement of InP/In0.53Ga0.47As/InP thin-film photodetectors. JOURNAL OF APPLIED PHYSICS[J]. 2015, 117(20): https://www.webofscience.com/wos/woscc/full-record/WOS:000355918300002.[82] 周州, 耿红艳, 刘杰涛, 许斌宗, 胡海峰, 宋国峰, 徐云. 量子阱红外探测器双面金属光栅设计优化. 红外与激光工程[J]. 2014, 43(5): 1375-1379, http://lib.cqvip.com/Qikan/Article/Detail?id=49812627.[83] Li, Kangwen, Ma, Xunpeng, Zhang, Zuyin, Song, Jiakun, Xu, Yun, Song, Guofeng. Sensitive refractive index sensing with tunable sensing range and good operation angle-polarization-tolerance using graphene concentric ring arrays. JOURNAL OF PHYSICS D-APPLIED PHYSICS[J]. 2014, 47(40): http://ir.semi.ac.cn/handle/172111/26598.[84] 耿红艳, 周州, 宋国峰, 徐云. 红外探测器倒装互连技术进展. 红外与激光工程[J]. 2014, 43(3): 722-726, http://lib.cqvip.com/Qikan/Article/Detail?id=49021338.[85] Li, Kangwen, Ma, Xunpeng, Zhang, Zuyin, Xu, Yun, Song, Guofeng. Tunable and angle-insensitive plasmon resonances in graphene ribbon arrays with multispectral diffraction response. JOURNAL OF APPLIED PHYSICS[J]. 2014, 115(10): http://ir.semi.ac.cn/handle/172111/26600.[86] Jiang, Yu, Ma, Xunpeng, Xu, Yun, Song, Guofeng. Finite difference method for analyzing band structure in semiconductor heterostructures without spurious solutions. JOURNAL OF APPLIED PHYSICS[J]. 2014, 116(17): http://ir.semi.ac.cn/handle/172111/25950.[87] Fu Dong, Liu Jietao, Xu Binzong, Xu Yun, Song Guofeng, Wei Xin, Guina M, Gong H, Niu Z, Lu J. Polarization-independent broadband absorption enhancement of thin-film InGaAs photodetector. INTERNATIONAL SYMPOSIUM ON OPTOELECTRONIC TECHNOLOGY AND APPLICATION 2014: INFRARED TECHNOLOGY AND APPLICATIONSnull. 2014, 9300: [88] Xiang ChunPing, Jin Yu, Liu JieTao, Xu BinZong, Wang WeiMin, Wei Xin, Song GuoFeng, Xu Yun. Effective absorption enhancement in small molecule organic solar cells using trapezoid gratings. CHINESE PHYSICS B[J]. 2014, 23(3): http://ir.semi.ac.cn/handle/172111/26348.[89] Ma, Xunpeng, Li, Kangwen, Zhang, Zuyin, Jiang, Yu, Xu, Yun, Song, Guofeng. Stable finite element method of eight-band k center dot p model without spurious solutions and numerical study of interfaces in heterostructures. JOURNAL OF APPLIED PHYSICS[J]. 2014, 116(23): http://ir.semi.ac.cn/handle/172111/25941.[90] Xu Binzong, Liu Jietao, Wang Weimin, Xu Yun, Wang Qing, Song Guofeng, Wei Xin, Gu M, Yuan X, Qiu M. Absorption enhancement of In0.53Ga0.47As photodetector with rear plasmonic nanostructure. INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2013: MICRO/NANO OPTICAL IMAGING TECHNOLOGIES AND APPLICATIONSnull. 2013, 8911: [91] Liu, Jietao, Xu, Binzong, Hu, Haifeng, Zhang, Jing, Wei, Xin, Xu, Yun, Song, Guofeng. Tunable coupling-induced transparency band due to coupled localized electric resonance and quasiguided photonic mode in hybrid plasmonic system. OPTICS EXPRESS[J]. 2013, 21(11): 13386-13393, http://ir.semi.ac.cn/handle/172111/24738.[92] Zhang, Tiancheng, Ni, Qinfei, Liu, Xuezhen, Yu, Bin, Wang, Yuxia, Zhang, Yu, Ma, Xunpeng, Wang, Yongbin, Xu, Yun. MBE growth of 2.3m InGaAsSb/AlGaAsSb strained multiple quantum well diode lasers. KEY ENGINEERING MATERIALS[J]. 2013, 552: 389-392, http://ir.semi.ac.cn/handle/172111/24814.[93] Liu, JieTao, Xu, BinZong, Xu, Yun, Wei, Xin, Song, GuoFeng. Sensitive refractive index sensing with good operation angle polarization tolerance using a plasmonic split-ring resonator array with broken symmetry. JOURNAL OF PHYSICS D-APPLIED PHYSICS[J]. 2013, 46(19): http://ir.semi.ac.cn/handle/172111/24287.[94] Xu, Binzong, Hu, Haifeng, Liu, Jietao, Wei, Xin, Wang, Qing, Song, Guofeng, Xu, Yun. Terahertz light deflection in doped semiconductor slit arrays. OPTICS COMMUNICATIONS[J]. 2013, 308: 74-77, http://dx.doi.org/10.1016/j.optcom.2013.06.030.[95] Yun Xu, Jing Zhang, Guofeng Song. Slow Surface Plasmons in Plasmonic Grating Waveguide. PHOTONICS TECHNOLOGY LETTERS, IEEE[J]. 2013, 25(5): 410 - 413, http://ir.semi.ac.cn/handle/172111/24743.[96] Xu Yun, Wang YongBin, Zhang Yu, Song GuoFeng, Chen LiangHui. High power 2-mu m room-temperature continuous-wave operation of GaSb-based strained quantum-well lasers. CHINESE PHYSICS B[J]. 2013, 22(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000325006700044.[97] Li, Kangwen, Ma, Xunpeng, Zhang, Zuyin, Wang, Lina, Hu, Haifeng, Xu, Yun, Song, Guofeng. Highly tunable Terahertz filter with magneto-optical Bragg grating formed in semiconductor-insulator-semiconductor waveguides. AIP ADVANCES[J]. 2013, 3(6): http://ir.semi.ac.cn/handle/172111/26599.[98] Xu Yun, Wang Yongbin, Zhang Yu, Song Guofeng, Chen Lianghui. High power 2-μm room-temperature continuous-wave operation of GaSb-based strained quantum-well lasers. CHINESE PHYSICS B[J]. 2013, 22(9): 094208-, http://ir.semi.ac.cn/handle/172111/24742.[99] Xu, Yun, Zhang, Jing, Song, Guofeng. Slow Surface Plasmons in Plasmonic Grating Waveguide. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2013, 25(5): 410-413, https://www.webofscience.com/wos/woscc/full-record/WOS:000320521400002.[100] Wang, Y B, Xu, Y, Zhang, Y, Song, G F, Chen, L H. Coupling coefficient calculation for GaSb-based quantum well distributed feedback lasers with laterally coupled gratings. JOURNAL OF PHYSICS D-APPLIED PHYSICS[J]. 2012, 45(50): http://ir.semi.ac.cn/handle/172111/23728.[101] Wang Yongbin, Xu Yun, Song Guofeng, Chen Lianghui. Theoretical analyses on improved beam properties of GaSb-based 2.X-μm quantum-well diode lasers with no degradation in laser parameters. 中国物理B:英文版[J]. 2012, 21(8): 084208-1, http://lib.cqvip.com/Qikan/Article/Detail?id=42911348.[102] Hu, Haifeng, Zeng, Xie, Wang, Lina, Xu, Yun, Song, Guofeng, Gan, Qiaoqiang. Surface plasmon coupling efficiency from nanoslit apertures to metal-insulator-metal waveguides. APPLIED PHYSICS LETTERS[J]. 2012, 101(12): http://ir.semi.ac.cn/handle/172111/23796.[103] Zhang, Yu, Wang, Yongbin, Xu, Yingqiang, Xu, Yun, Niu, Zhichuan, Song, Guofeng. High-temperature (T = 80 °c) operation of a 2 μm InGaSb - AlGaAsSb quantum well laser. JOURNAL OF SEMICONDUCTORS[J]. 2012, 33(4): 044006-, http://www.irgrid.ac.cn/handle/1471x/622156.[104] Wang YongBin, Xu Yun, Song GuoFeng, Chen LiangHui. Theoretical analyses on improved beam properties of GaSb-based 2.X-mu m quantum-well diode lasers with no degradation in laser parameters. CHINESE PHYSICS B[J]. 2012, 21(8): http://ir.semi.ac.cn/handle/172111/23862.[105] 王永宾, 徐云, 宋国峰, 陈良惠. Theoretical analyses on improved beam properties of GaSb-based 2.X-μm quantum-well diode lasers with no degradation in laser parameters. 中国物理B:英文版[J]. 2012, 21(8): 084208-1, http://lib.cqvip.com/Qikan/Article/Detail?id=42911348.[106] Zhang Yu, Wang Yongbin, Xu Yingqiang, Xu Yun, Niu Zhichuan, Song Guofeng. High-temperature (T =80℃) operation of a 2 μm InGaSb_AlGaAsSb quantum well laser. JOURNAL OF SEMICONDUCTORS[J]. 2012, 33(4): 044006-1, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=4701832&detailType=1.[107] 王永宾, 徐云, 张宇, 迂修, 宋国峰, 陈良惠. Effect of compensation doping on the electrical and optical properties of mid-infrared type-II InAs/GaSb superlattice photodetectors. 中国物理:英文版[J]. 2011, 20(6): 397-402, http://lib.cqvip.com/Qikan/Article/Detail?id=38140037.[108] Zhang, Jing, Bai, Wenli, Cai, Likang, Xu, Yun, Song, Guofeng, Gan, Qiaoqiang. Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems. APPLIED PHYSICS LETTERS[J]. 2011, 99(18): http://ir.semi.ac.cn/handle/172111/22878.[109] Wang YongBin, Xu Yun, Zhang Yu, Yu Xiu, Song GuoFeng, Chen LiangHui. Effect of compensation doping on the electrical and optical properties of mid-infrared type-II InAs/GaSb superlattice photodetectors. CHINESE PHYSICS B[J]. 2011, 20(6): http://lib.cqvip.com/Qikan/Article/Detail?id=38140037.[110] 徐云. Theoretical analyses on improved beam properties of GaSb-based 2.X μm quantum-well diode lasers with no degradation in laser parameters. Chin. Phys. B,. 2011, [111] 张宇, 王国伟, 汤宝, 徐应强, 徐云, 宋国锋. Molecular beam epitaxy growth of InGaSb/AlGaAsSb strained quantum well diode lasers. 半导体学报[J]. 2011, 32(10): 102003-1, http://lib.cqvip.com/Qikan/Article/Detail?id=39451796.[112] Zhang, Jing, Cai, Likang, Bai, Wenli, Xu, Yun, Song, Guofeng. Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement. OPTICS LETTERS[J]. 2011, 36(12): 2312-2314, http://ir.semi.ac.cn/handle/172111/21404.[113] Chen, Xi, Fan, ZhongChao, Xu, Yun, Song, GuoFeng, Chen, LiangHui. Fabrication of biomimic GaAs subwavelength grating structures for broadband and angular-independent antireflection. MICROELECTRONICENGINEERING[J]. 2011, 88(9): 2889-2893, http://dx.doi.org/10.1016/j.mee.2011.03.014.[114] Song GuoFeng, Wang WeiMin, Cai LiKang, Guo BaoShan, Wang Qing, Xu Yun, Wei Xin, Liu YunTao. Sub-wavelength beam lasers with surface plasmon structures. ACTA PHYSICA SINICA[J]. 2010, 59(7): 5105-5109, http://ir.semi.ac.cn/handle/172111/13480.[115] Song GuoFeng, Wang WeiMin, Cai LiKang, Guo BaoShan, Wang Qing, Xu Yun, Wei Xin, Liu YunTao. Sub-wavelength beam lasers with surface plasmon structures. ACTA PHYSICA SINICA[J]. 2010, 59(7): 5105-5109, http://dx.doi.org/10.7498/aps.59.5105.[116] Zhang, Jing, Cai, Likang, Bai, Wenli, Xu, Yun, Song, Guofeng. Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide. JOURNAL OF APPLIED PHYSICS[J]. 2009, 106(10): http://ir.semi.ac.cn/handle/172111/10195.[117] Xu, Yun, Chen, Lianghui, Li, Yuzhang, Song, Guofeng, Wang, Yuping, Zhuang, Weidong, Long, Zhen. Phosphor-conversion white light using InGaN ultraviolet laser diode. APPLIED PHYSICS LETTERS[J]. 2008, 92(2): http://ir.semi.ac.cn/handle/172111/6900.[118] 高建霞, 宋国峰, 甘巧强, 徐云, 郭宝山, 陈良惠. 纳米孔径垂直腔面发射激光器的制备及特性. 半导体学报[J]. 2007, 28(2): 265-268, http://lib.cqvip.com/Qikan/Article/Detail?id=23924825.[119] Xu, Yun, Li, Yuzhang, Gan, Qiaoqiang, Cao, Qing, Song, Guofeng, Guo, Liang, Chen, Lianghui. High-power AlGaInP laser diodes with current-injection-free region near the laser facet. OPTICAL ENGINEERING[J]. 2006, 45(3): http://ir.semi.ac.cn/handle/172111/10656.[120] 徐云, 郭良, 曹青, 宋国峰, 甘巧强, 杨国华, 李玉璋, 陈良惠. 大功率GaInP/AlGaInP半导体激光器. 半导体学报[J]. 2005, 26(11): 2213-2217, http://lib.cqvip.com/Qikan/Article/Detail?id=20622844.[121] 侯识华, 赵鼎, 孙永伟, 徐云, 谭满清, 陈良惠. 垂直腔面发射激光器的热学特性. 半导体学报[J]. 2005, 26(4): 805-811, http://lib.cqvip.com/Qikan/Article/Detail?id=15518266.[122] 叶晓军, 朱晓鹏, 徐云, 孙永伟, 侯识华, 种明, 陈良惠. GaN基蓝光激光器光场特性模拟. 半导体学报[J]. 2004, 25(8): 1004-1008, http://lib.cqvip.com/Qikan/Article/Detail?id=10155569.[123] Yun Xu, Qing Cao, Xiaopeng Zhu, Guohua Yang, Qiaoqiang Gan, Guofeng Song, Liang Guo, Yuzhang Li, Lianghui Chen. High power AlGaInP laser diodes with zinc-diffused window mirror structure. CHINESE OPTICS LETTERS[J]. 2004, 2(11): 647-649, http://lib.cqvip.com/Qikan/Article/Detail?id=11141937.[124] 徐云, 曹青, 孙永伟, 叶晓军, 侯识华, 郭良, 陈良惠. 离子束刻蚀法制备大功率高效率650nm AlGaInP可见光激光器. 半导体学报[J]. 2004, 25(9): 1079-1083, http://lib.cqvip.com/Qikan/Article/Detail?id=10541891.[125] 朱晓鹏, 韦欣, 叶晓军, 康香宁, 徐云, 侯识华, 孙永伟, 陈良惠. 条形半导体激光器光束质量因子M^2的理论计算. 光学学报[J]. 2003, 23(1): 45-49, http://lib.cqvip.com/Qikan/Article/Detail?id=7308467.[126] 康香宁, 徐云, 宋国峰, 叶晓军, 陈良惠. 窗口型极小孔激光器的研制. 半导体学报[J]. 2003, 24(11): 1145-1148, http://lib.cqvip.com/Qikan/Article/Detail?id=8525611.
科研活动
科研项目
( 1 ) 太赫兹波段金属/重掺半导体表面等离子体慢光效应的研究, 负责人, 国家任务, 2012-01--2015-12( 2 ) 超灵敏气体检测用锑化物分布反馈半导体激光器的外延生长及光栅制备研究, 负责人, 地方任务, 2011-01--2013-12( 3 ) 探测器, 参与, 国家任务, 2011-01--2013-12( 4 ) 新型半导体激光器, 参与, 国家任务, 2011-01--2015-12( 5 ) 天文近红外相机关键技术的研究, 负责人, 国家任务, 2015-01--2018-12( 6 ) 柔性可延展光电器件关键技术, 负责人, 地方任务, 2015-06--2016-06( 7 ) 可延展柔性无机器件的微纳构筑, 负责人, 国家任务, 2015-01--2019-12( 8 ) II类超晶格红外探测器, 负责人, 其他任务, 2014-07--2016-06( 9 ) 低维半导体异质结构光电探测材料及器件验证, 参与, 国家任务, 2016-07--2020-12( 10 ) 高品质全光谱无机半导体照明材料器件灯具产业化制造技术, 参与, 国家任务, 2016-07--2020-06( 11 ) 光电器件, 负责人, 国家任务, 2018-01--2020-12( 12 ) 光电器件, 参与, 国家任务, 2019-01--2021-12( 13 ) 半导体光电器件, 负责人, 国家任务, 2021-01--2025-12( 14 ) 半导体光电器件, 参与, 国家任务, 2021-01--2024-12( 15 ) 半导体光电器件, 负责人, 国家任务, 2020-01--2024-12( 16 ) 光电器件工艺及集成技术, 参与, 国家任务, 2020-12--2024-11( 17 ) 光电融合集成结构物理模型, 参与, 中国科学院计划, 2020-07--2024-01
指导学生
已指导学生
敖志光 硕士研究生 085208-电子与通信工程
王博 硕士研究生 085208-电子与通信工程
陆韦 硕士研究生 080903-微电子学与固体电子学
苏大鸿 博士研究生 080903-微电子学与固体电子学
张林奥 博士研究生 080903-微电子学与固体电子学
杜雅楠 博士研究生 080903-微电子学与固体电子学
吴玮桐 博士研究生 080903-微电子学与固体电子学
现指导学生
张虓 博士研究生 080903-微电子学与固体电子学
张劭春 博士研究生 080903-微电子学与固体电子学
陈志昊 硕士研究生 080903-微电子学与固体电子学
肖宇 博士研究生 080903-微电子学与固体电子学
姚晶菁 硕士研究生 085400-电子信息
吴秉超 硕士研究生 080903-微电子学与固体电子学
朱淑娟 硕士研究生 080903-微电子学与固体电子学
张元龙 博士研究生 080903-微电子学与固体电子学
黄凯 博士研究生 080903-微电子学与固体电子学