基本信息

许晶禹 博士生导师
中国科学院 力学研究所 研究员
中国科学院大学   岗位教授
TEL: 0086-010-82544179
Email: xujingyu@imech.ac.cn

研究领域

主要研究方向:多相流体动力学、石油工程

学术论文发表在International Journal of Multiphase Flow, Experimental Thermal and Fluid Science,Chemical Engineering Journal, Journal of Petroleum Science and Engineering, Separation and Purification Technology等杂志上。截止到目前已发表学术论文200余篇(其中第一作者或通讯作者被SCI收录60余篇),出版一部专著《管道式油气水分离技术》,已获得授权国家发明专利15项,美国PCT专利1项,加拿大PCT专利1项。

招生信息

招生专业

  • 080104-工程力学

  • 120100-管理科学与工程 

招生方向

  • 超常环境下多相流体力学

  • 油气储运理论与技术

工作经历

  • 2015-12~现在, 中国科学院力学研究所, 研究员
  • 2010-12~2015-12,中国科学院力学研究所, 副研究员
  • 2007-07~2010-12,中国科学院力学研究所, 助理研究员

社会兼职

  • 全国流变学专业委员》 第九届委员会委员
  • 中国计量测试学会》 第八届理事会理事
  • 《水动力学研究与进展》杂志编委
  • 《中国海洋平台》杂志编委
  • 《石油钻探技术》杂志编委
  • 《Journal of Hydrodynamics 杂志编委

International Journal of Multiphase Flow, Chemical Engineering Communications, Chemical Engineering Research & Design, Industrial & Engineering Chemistry Research, Oil & Gas Science and Technology等四十余国际学术杂志审稿人

教授课程

非牛顿流与多相流体力学

专利与奖励

   
专利成果

(1). 油气水多相分离系统及其应用方法(ZL201510468150.X),排名1/8.

(2). 油水分离装置和油水分离方法(ZL201510114511),排名2/13.

(3). Tubular Oil-water Separator and Spiral Flow Generator (US9901936B2, CA2841826C)(美国,加拿大专利),排名2/6.

(4). 一种含气、水原油的除水系统及应用方法(ZL201310003986.3),排名1/6

(5). 油水两相部分分离在线计量的装置的应用方法(ZL201210111513.0),排名1/3.

(6). 一种含油污水旋流气浮分离装置(ZL201310245879.1),排名3/12..

(7). 一种旋流气浮油水分离装置及气浮发生器(ZL201210122331.3),排名3/8.

(8). 管道式两级导流片型油水分离器及其应用方法(ZL201210191508.5),排名4/10.

(9). 一种管道式导流片型油水分离器的除水装置和油水旋流分离器(ZL201110220538.X),排名2/5.

(10).复合式油水分离系统(ZL201010146416.6),排名4/7.

(11).动态气浮油水分离装置和方法(ZL201010232658.7),排名3/8.

(12).一种完全分离型油、气、水多相流量计(ZL201110024176.7),排名3/5.

(13).一种螺旋片导流式相分离装置 (ZL201610951435.3),排名1/7.

(14). 一种管道式油气水分离与污水处理装置及应用方法 (ZL201910645217.0), 排名5/5.

(15). 一种天然气除湿装置 (ZL201610286371.X), 排名3/5.

 

出版信息

   
发表著作
(1) 管道式油气水分离技术, 科学出版社, 2017-03, 第 2 作者
发表论文-国际期刊

2022
[1]. Prediction of the liquid film reversal of annular flow in vertical and inclined pipes. International Journal of Multiphase Flow,146 (2022): 103853 (SCI/EI, Corresponding Author)

[2]. Wall Slip and Flow Characteristics of Gas–Liquid–Solid Phase Coupling Flowing in Horizontal Pipelines. Industrial & Engineering Chemistry Research 2022, 61(14), 4951–4970 (SCI/EI, Corresponding Author)

[3]. Effects of pressure control on droplet size distribution and flow regimes in gas–liquid cylindrical cyclone. Journal of Natural Gas Science and Engineering,100 (2022) 104465 (SCI/EI)

[4]. Oil-water separation in a cylindrical cyclone with vortex finder, Physics of Fluids 34 (2022)  033314 (SCI)

[5].  An investigation of a gas-liquid swirling flow with shear-thinning power-law liquids, Physics of Fluids 2022, 34(7), 073320 (SCI)

[6]. Viscoelastic Behavior and Constitutive Relation of Heavy Crude Oils, ACS Omega, 2022, 7(35), 30816–30822 (SCI)

[7]. Effect of oil properties on spilled oil recovery using a mechanism coupling surface vortices and cyclone separation, Ocean Engineering, 263, 2022, 112383, (SCI/EI)

2021

[1].  Mechanism Investigation on a Novel Oil Recovery Skimmer Coupling Free Surface Vortex and Cyclone Separation. ACS OMEGA,2021,6(31):20483-20491.(SCI)

[2].  Investigation on the variation regularity of the characteristic droplet diameters in the swirling flow field. Chemical Engineering Science, 2021, 229, 116153. (SCI/EI, Corresponding Author)

[3].  Research on Critical Liquid-Carrying Model in Wellbore and Laboratory Experimental Verification. Processes, 2021, 9, 923. (SCI, Corresponding Author)

[4].  Modeling Transient Flow in CO2 Injection Wells by Considering the Phase Change. Processes 2021, 9, 2164  (SCI, Corresponding Author)

2020

[1].  Separation mechanism and influential factor study on vane-type-associated petroleum gas separator, Separation and Purification Technology, 2020, 250, 117274 (SCI/EI, Corresponding Author)

[2]. Evaluation of the Behavioral Characteristics in a Gas and Heavy Oil Stratified Flow According to the Herschel-Bulkley Fluid Model. ACS OMEGA, 2020, 5, 17787-17800. (SCI, Corresponding Author)

[3]. Investigation of the Gas–Liquid Two-Phase Flow and Separation Behaviors at Inclined T-Junction Pipelines. ACS Omega, 5, 21443–21450 (SCI, Corresponding Author)

[4].  Investigation on separation performance of vane-type gas-liquid tube separator. Chemical Industry & Chemical Engineering Quarterly, 2020,26(3):227−236.

[5].  Coalescence, and Migration Regularity of Bubbles under Gas-Liquid Swirling Flow in Gas-Liquid Cylindrical Cyclone. Industrial & Engineering Chemistry Research, 2020, 59, 2068-2082. (SCI/EI)

[6].  Experimental and numerical study of separation characteristics in gas-liquid cylindrical cyclone. Chemical Engineering Science, 2020, 214, 115362 (SCI/EI, Corresponding Author)

[7].  Investigation into atomization spray blending property in heavy crude oil extraction under laboratory conditions. Journal of Petroleum Science and Engineering, 2020,184, 106494 (SCI/EI, Corresponding Author)

[8]. Study on Breakage Mechanism in the Swirl Generating Stage of an Oil-Water Separator for Marine Oil Extraction and Its Verification. JOURNAL OF COASTAL RESEARCH,2020:417-420.  (SCI, Corresponding Author)

[9]. Numerical and Experimental Studies of an Oil Slick Recovery Method That Uses a Free Surface Vortex. ACS Omega,2020,5(48):31332-31341. (SCI, Corresponding Author)

[10]. Experimental Investigation of the Flow Characteristics in Crude Oil Containing Sand and Gas Flowing Along Vertical Pipelines. ACS Omega,2020,5(48):31262-31271.(SCI, Corresponding Author)

2019

[1].   Rheological characteristics of unstable heavy crude oil-water dispersed mixtures. Journal of Petroleum Science and Engineering, 2019, 182, 106299 (SCI/EI, Corresponding Author)

[2].   Apparent viscosity characteristics and prediction model of an unstable oil-in-water or water-in-oil dispersion system. Journal of Dispersion Science and Technology, 2019, 40, 1645-1656 (SCI/EI, Corresponding Author)

[3].   Viscoelastic characteristics of heavy crude oil-water two-phase dispersed mixtures. Journal of Petroleum Science and Engineering, 2019, 176:141-149 (SCI/EI, Corresponding Author)

2018

[1].   Separation characteristics of the gas and liquid phases in a vane-type swirling flow field. International Journal of Multiphase flow, 2018, 107, 131-145 (SCI/EI, Corresponding author)

[2]. A Study of the Swirling Flow Field Induced by Guide Vanes Using Electrical Resistance Tomography and Numerical Simulations, Chemical Engineering Communications, 2018, 205, 1351-1364 (SCI/EI, Corresponding author)

[3]. Breakup and coalescence regularity of non-dilute oil drops in a vane-type swirling flow field. Chemical Engineering Research and Design 2018, 129, 35-54 (SCI/EI, Corresponding author)

[4]. Characteristics of air-water upward intermittent flows with surfactant additive in a pipeline-riser system. Journal of Hydrodynamics 2018, 30, 287-295 (SCI/EI, Corresponding author)

[5]. Gas-liquid flow splitting in T-junction with inclined lateral arm. Journal of Hydrodynamics 2018, 30, 173-176 (SCI/EI)

2017

[1]. Rheological behavior and viscosity reduction of heavy crude oil and its blends from the Sui-zhong oilfield in China. Journal of Petroleum Science and Engineering. 2017, 156, 563-574 (SCI/EI, Corresponding author)

[2]. Rheological properties of heavy crude oil containing sand from Bo-hai oilfield in China. Appl. Rheol. 27, 2 (2017) 24849-9 (SCI, Corresponding author)

[3]. An experimental study on gas and liquid separation at Y-junction tubes by pressure control. Separation Science and Technology 2017, 52, 1496-1503 (SCI/EI, Corresponding author)

[4]. A study on pure IL VIV of a free spanning pipeline with general boundary conditions. China Ocean Engineering 2017, 31, 114-122 (SCI/EI)

2016

[1]. Characteristics of water holdup for oil and water mixture flows in horizontal, vertical, and inclined pipes. The Canadian Journal of Chemical Engineering 2016, 94, 2417-2426 (SCI/EI, Corresponding Author)

[2]. Rheological behavior of oil and water emulsions and theirs flow characterization in horizontal pipes. The Canadian Journal of Chemical Engineering 2016, 94, 324-331 (SCI/EI, Corresponding Author)

[3]. A simple model for predicting the two-phase heavy crude oil horizontal flow with low gas fraction. Chemical Engineering Communications 2016, 203, 1131 - 1138 (SCI/EI, Corresponding Author)

[4]. Rheological study of mudflows at Lianyungang in China. International Journal of Sediment Research 2016, 31, 71-78 (SCI/EI, Corresponding Author))

2015

[1]. A Study on Flow Characteristics of Heavy Crude Oil for Pipeline Transportation. Petroleum Science and Technology 2015, 33, 1425-1433 (SCI/EI, Corresponding Author)

[2]. Measurement of an oil-water flow via the correlation of turbine flow meter, gamma ray densitometry and drift-flux model. Journal of Hydrodynamics 2015, 27, 548- 555 (SCI/EI, Corresponding Author)

[3]. Flow field of continuous phase in a vane-type pipe oi-water separator. Experimental Thermal and Fluid Science 2015, 60, 208-212. (SCI/EI, Corresponding Author)

2014

[1]. Pressure Drop Models for Gas/Non-Newtonian Power-Law Fluids Flow in Horizontal Pipes. Chemical Engineering & Technology 2014, 37, 717-722 (SCI/EI, Corresponding Author)

[2]. Experimental investigation on yield stress of water-in-heavy crude oil emulsions in order to improve pipeline flow. Journal of Dispersion Science and Technology 2014, 35, 593-598 (SCI/EI, Corresponding Author)

2013

[1]. A simple correlation for prediction of the liquid slug holdup in gas/non-Newtonian fluids: horizontal to upward inclined flow. Experimental Thermal and Fluid Science 2013, 44, 893-896 (SCI/EI, Corresponding Author)

[2]. Experimental validation of the calculation of phase holdup for an oil-water two-phase vertical flow based on the measurement of pressure drops. Flow Measurement and Instrumentation. 2013, 31, 96-101 (SCI/EI, Corresponding Author)

[3]. Apparent viscosity of oil-water (coarse) emulsion and its rheological characterization during the phase inversion region. Journal of Dispersion Science and Technology 2013, 34, 1148-1160 (SCI/EI, Corresponding Author)

2012

[1]. Oil-gas-water three-phase upward flow through a vertical pipe: influence of gas injection on the pressure gradient. International Journal of Multiphase Flow 2012, 46, 1-8 (SCI/EI, Corresponding Author)

[2]. Experimental study of a vane-type pipe separator for oil-water separation, Chemical Engineering Research and Design 2012, 90, 1652-1659 (SCI/EI)

[3]. Investigation on Oil-Water Separation in a Liquid-Liquid Cylindrical Cyclone. Journal of Hydrodynamics, 2012, 24,116-123 (SCI/EI)

[4]. Investigations of phase inversion and frictional pressure gradients in upward and downward oil-water flow in vertical pipes. International Journal of Multiphase flow 2012, 36, 930-939 (SCI/EI, Corresponding Author)

2010

[1]. Investigation on average void fraction for air/non-Newtonian power-law fluids two-phase flow in downward inclined pipes. Experimental Thermal and Fluid Science 2010, 34, 1484-1487 (SCI/EI, Corresponding Author)

2009

[1]. Influence of gas injection on in-situ oil fraction of an oil-water flow in horizontal pipes. Chemical Engineering and Technology 2009, 32, 1922-1928 (SCI/EI, Corresponding Author)

[2]. Correlation of electromagnetic flow Meter, electrical resistance tomography and mechanistic modelling for a new solution of solid slurry measurement. Journal of Hydrodynamics 2009, 21, 557-563. (SCI/EI, Corresponding Author)

[3]. Study of drag reduction by gas injection for power-law fluid flow in horizontal stratified and slug flow regimes. Chemical Engineering Journal 2009, 147, 235-244. (SCI/EI, Corresponding Author)

[4]. A simple model for predicting the void fraction of gas/non-Newtonian fluid intermittent flows in upward inclined pipes. Chemical Engineering Communications 2009, 196, 746-753. (SCI/EI, Corresponding Author)

2008

[1]. Experimental investigation on the slip between oil and water in horizontal pipes. Experimental Thermal and Fluid Science 2008, 33, 178-183. (SCI/EI, Corresponding Author)

[2]. Experimental investigation on the holdup distribution of oil-water two-phase flow in horizontal parallel tubes. Chemical Engineering and Technology 2008, 31, 1536-1540. (SCI/EI, Corresponding Author)

2007

[1]. Studies on two-phase co-current air/non-Newtonian shear-thinning fluid flows in inclined smooth pipes. International Journal of Multiphase flow 2007, 33, 948-969.  (SCI/EI, Corresponding Author)

[2]. An experimental study of in-situ phase fraction in jet-pump using electrical resistance tomography technique. Chinese Physics Letters 2007, 24, 512-515. (SCI, Corresponding Author)

[3]. Effects of non-Newtonian liquid properties on pressure drop during horizontal gas-liquid flow. Journal of Central South University of Technology. 2007, 14:112-115 (SCI/EI, Corresponding Author)

发表论文-国内期刊

[1].    小型航煤储罐的吸瘪机理[J]. 油气储运,2021,40(01):33-38+65.
[2].    导流片型旋流场内油滴聚并影响因素研究[J]. 水动力学研究与进展. A,2020,35(4):420-427.
[3].    雾化液滴掺混稠油的实验和数值模拟研究[J]. 水动力学研究与进展. A,2019,34(01):45-52.
[4].    旋流分离器在去除航空煤油固相杂质中的应用研究[J]. 水动力学研究与进展. A,2018,33(1):73-80.
[5].    高含气井下气液混合输送技术研究[J]. 水动力学研究与进展. A,2018,33(6):759-765.
[6].    气体/高黏液体两相间歇流动时液相含率的变化特性研究[J]. 水动力学研究与进展. A,2018,33(6):726-730.
[7].    低温环境下管道法兰连接的应力分析[J]. 管道技术与设备,2017(1):32-35.
[8].    稠油动力黏度预测研究[J]. 水动力学研究与进展. A,2017,32(1):11-18.
[9].    海上油田含聚生产水旋流气浮装置试验研究[J]. 油气田地面工程,2016,35(10):22-25.
[10].新型两级气浮旋流设备结构优化与性能研究[J]. 石油机械,2016,44(01):103-107.
[11].考虑管土耦合的机坪垂直管道应力分析[J]. 力学与实践,2016,38(6):624-630.
[12].机坪管网输送低温介质时流固耦合分析[J]. 水动力学研究与进展(A),2016,31(6):739-744.
[13].超稠原油的流变学特性及流动特征研究[J]. 水动力学研究与进展. A,2016,31(2):145-150.
[14].乳化剂添加对气液垂直管流中压降影响的研究[J]. 水动力学研究与进展(A),2016,31(6):673-680.
[15].柱状气浮分离器处理含油污水实验研究[J]. 水动力学研究与进展. A,2016,31(3):334-340.
[16].稠油降黏减阻及其流变学性质[J]. 油气储运,2015,34(11):1171-1176.
[17].管道式油气水高效分离技术[J]. 科技促进发展,2015(3):374-379.
[18].油水分离技术现状及发展趋势[J]. 力学进展,2015,45:179-216.
[19].立管系统泡状流和段塞流的流动特性研究[J]. 水动力学研究与进展. A,2014,29(6):635-641.
[20].英国北海地区采油成本同业对标分析[J]. 石油化工技术与经济,2014,30(4):6-10.
[21].粗油水乳状液的流变特性[J]. 油气储运,2014,33(5):531-537.
[22].-固旋流器分离过程的数值模拟[J]. 油气储运,2014,33(4):412-417.
[23].垂直管道内油-水两相环状流的流动特征[J]. 水动力学研究与进展. A,2014,29(2):225-231.
[24].管道式油水分离系统分离特性研究[J]. 水动力学研究与进展. A,2013,28(6):637-643.
[25].圆柱结构顺流向第一不稳定区内涡激振动的研究[J]. 水动力学研究与进展. A,2013,28(2):123-127.
[26].T 型管内油水两相流动规律及其应用[J]. 油气储运,2012,31(12):923-926.
[27].超稠油水在倾斜管路中两相流动的研究[J]. 水动力学研究与进展. A,2012,27(6):742-748.
[28].气液混输管线间歇流动压降研究[J]. 管道技术与设备,2011(1):4-8.
[29].动态微气泡浮选除油技术研究[J]. 工业水处理,2011,31(4):89-90.
[30].柱型旋流器内单相流场压降的实验研究[J]. 水动力学研究与进展. A,2010,25(6):851-856.
[31].油水井带压作业装置中环形密封胶芯的设计[J]. 石油化工高等学校学报,2009(3):79-82.
[32].水平分支管路中油水两相流动研究[J]. 水动力学研究与进展. A,2008,23(6):702-708.
[33].天然气水合物热激励法开采模型研究[J]. 西安石油大学学报(自然科学版),2008,23(2):44-47+118.
[34].液相介质对水平气液间歇流动压降的影响[J]. 过程工程学报,2006,6(2):161-166.
[35].利用射流泵输送油水两相管流的实验研究[J]. 实验流体力学,2005,19(4):49-55.

科研活动

   
主持的项目

承担并完成了国家重大仪器开发专项子任务、院重大项目子课题、863子课题,国家自然科学基金,以及中海油、中航油、中石油等企业委托项目等。目前正在承担中科院先导专项(B类)的课题研究,以及中海油、中航油等企业委托的科研项目。