基本信息
谷战军  男  博导  中国科学院高能物理研究所
电子邮件: zjgu@ihep.ac.cn
通信地址: 北京石景山玉泉路19号乙中科院高能物理所
邮政编码:

研究领域

1. 制备和表征具有优良物理化学性能的纳米材料。

2. 研究纳米材料的光学,电学,催化等特性。

3. 组装纳米材料单元成多级纳米结构,构件纳米器件和纳米系统。

4. 应用各种发光纳米材料进行生物成像和生物检测的研究。

招生信息

   
招生专业
070301-无机化学
0703J1-纳米科学与技术
招生方向
纳米材料
生物成像

教育背景

2002-09--2007-07 中国科学院化学研究所 博士
1998-09--2002-07 华中科技大学 学生

工作经历

   
工作简历
2009-10--2011-07 中国科学院高能物理研究所 副研究员
2009-07--2011-10 美国佐治亚大学 博士后

专利与奖励

   
专利成果
[1] 谷战军, 吴晓辰, 董兴华. 基于透明闪烁体薄膜的显微成像方法和系统. CN: CN113866192A, 2021-12-31.
[2] 谷战军, 纪超, 赵茂如, 董兴华. 钽纳米复合物及包含该钽纳米复合物的淋巴示踪剂、放疗增敏剂. CN: CN113842395A, 2021-12-28.

出版信息

   
发表论文
[1] Shuang Zhu, Yaping Liu, Zhanjun Gu, Yuliang Zhao. Research trends in biomedical applications of two-dimensional nanomaterials over the last decade – A bibliometric analysis. Advanced Drug Delivery Reviews. 2022, 188: http://dx.doi.org/10.1016/j.addr.2022.114420.
[2] Ji, Chao, Zhu, Shuang, Zhang, Enshuang, Li, Wenjing, Liu, Yuanyuan, Zhang, Wanlin, Su, Chunjian, Gu, Zhanjun, Zhang, Hao. Research progress and applications of silica-based aerogels - a bibliometric analysis. RSC ADVANCESnull. 2022, 12(22): 14137-14153, http://dx.doi.org/10.1039/d2ra01511k.
[3] Yan, Haili, Gao, Long, Liao, You, Wang, Dongmei, Feng, Duiping, Li, Jianguo, Du, Jiangfeng, Gu, Zhanjun, Zhang, Hui. Hexagonal NaxWO3 nanocrystals with reversible valence states for microwave thermal and chemodynamic combined cancer therapy. CHEMICAL ENGINEERING JOURNAL[J]. 2022, 446: http://dx.doi.org/10.1016/j.cej.2022.136869.
[4] Xie, Jiani, Zhao, Maoru, Wang, Chengyan, Yong, Yuan, Gu, Zhanjun. Recent advances in understanding the effects of nanomaterials on gut microbiota. CHEMICAL ENGINEERING JOURNALnull. 2022, 435: http://dx.doi.org/10.1016/j.cej.2022.134976.
[5] Zhou, Zhan, Wang, Yanlong, Peng, Feng, Meng, Fanqi, Zha, Jiajia, Ma, Lu, Du, Yonghua, Peng, Na, Ma, Lufang, Zhang, Qinghua, Gu, Lin, Yin, Wenyan, Gu, Zhanjun, Tan, Chaoliang. Intercalation-Activated Layered MoO3 Nanobelts as Biodegradable Nanozymes for Tumor-Specific Photo-Enhanced Catalytic Therapy. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2022, 61(16): http://dx.doi.org/10.1002/anie.202115939.
[6] Ji, Chao, Zhao, Maoru, Wang, Chengyan, Liu, Ruixue, Zhu, Shuang, Dong, Xinghua, Su, Chunjian, Gu, Zhanjun. Biocompatible Tantalum Nanoparticles as Radiosensitizers for Enhancing Therapy Efficacy in Primary Tumor and Metastatic Sentinel Lymph Nodes. ACS NANO[J]. 2022, 16(6): 9428-9441, [7] Liu, Ruixue, Gong, Linji, Zhu, Xianyu, Zhu, Shuang, Wu, Xiaochen, Xue, Tingyu, Yan, Liang, Du, Jiangfeng, Gu, Zhanjun. Transformable Gallium-Based Liquid Metal Nanoparticles for Tumor Radiotherapy Sensitization. ADVANCED HEALTHCARE MATERIALS[J]. 2022, 11(11): http://dx.doi.org/10.1002/adhm.202102584.
[8] Xie, Jiani, Zhao, Maoru, Wang, Chengyan, Zhu, Shuang, Niu, Wenchao, Yong, Yuan, Zhao, Lina, Gu, Zhanjun. External use of Nano-graphdiyne hydrogel for skin radioprotection via both physically shielding of Low-energy X-ray and chemically scavenging of Broad-spectrum free radicals. CHEMICAL ENGINEERING JOURNAL[J]. 2022, 430: http://dx.doi.org/10.1016/j.cej.2021.132866.
[9] 顾铖璐, 王志强, 潘雅文, 朱双, 谷战军. Tungsten-based Nanomaterials in the Biomedical Field: A Bibliometric Analysis of Research Progress and Prospects. Advanced Materials[J]. 2022, [10] 祖艳, 王一凡, 姚惠琴, 晏亮, 尹文艳, 谷战军. A Copper Peroxide Fenton Nanoagent-Hydrogel as an In Situ pH-Responsive Wound Dressing for Effectively Trapping and Eliminating Bacteria. ACS Appl. Bio Mater.[J]. 2022, https://doi.org/10.1021/acsabm.2c00138.
[11] Liao, You, Wang, Dongmei, Zhu, Shuang, Zhou, Ruyi, Rahbarizadeh, Fatemeh, Gu, Zhanjun. Piezoelectric materials for synergistic piezo- and radio-catalytic tumor therapy. NANO TODAY[J]. 2022, 44: http://dx.doi.org/10.1016/j.nantod.2022.101510.
[12] Chen, Xia, Yang, Junling, Li, Minghui, Zhu, Shuang, Zhao, Maoru, Yang, Cao, Liu, Bo, Gao, Hui, Lu, Ao, Ge, Lingling, Mo, Lingyue, Gu, Zhanjun, Xu, Haiwei. Fullerenol protects cornea from ultraviolet B exposure. REDOX BIOLOGY[J]. 2022, 54: http://dx.doi.org/10.1016/j.redox.2022.102360.
[13] Zheng, Zaiyong, Zhu, Shuang, Lv, Mingming, Gu, Zhanjun, Hu, Houxiang. Harnessing nanotechnology for cardiovascular disease applications-a comprehensive review based on bibliometric analysis. NANO TODAYnull. 2022, 44: http://dx.doi.org/10.1016/j.nantod.2022.101453.
[14] Li Li, Rendong He, Haili Yan, Zhengwei Leng, Shuang Zhu, Zhanjun Gu. Nanotechnology for the diagnosis and treatment of Alzheimer's disease: A bibliometric analysis. Nano Today. 2022, 47: http://dx.doi.org/10.1016/j.nantod.2022.101654.
[15] Wu, Xiaochen, Guo, Zhao, Zhu, Shuang, Zhang, Bingbing, Guo, Sumin, Dong, Xinghua, Mei, Linqiang, Liu, Ruixue, Su, Chunjian, Gu, Zhanjun. Ultrathin, Transparent, and High Density Perovskite Scintillator Film for High Resolution X-Ray Microscopic Imaging. ADVANCED SCIENCE[J]. 2022, 9(17): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000794241400001.
[16] Gao, Long, Yan, Haili, Zhu, Shuang, Wang, Xiaochun, Tan, Yan, Du, Jiangfeng, Feng, Duiping, Zhang, Hui, Gu, Zhanjun. Targeted delivery of Bi2Se3 Nanoflowers to orthotopic liver tumor via transarterial infusion for enhanced microwave ablation sensibilization. NANO TODAY[J]. 2021, 41: http://dx.doi.org/10.1016/j.nantod.2021.101314.
[17] Zhang, Chenyang, Wang, Xin, Du, Jiangfeng, Gu, Zhanjun, Zhao, Yuliang. Reactive Oxygen Species-Regulating Strategies Based on Nanomaterials for Disease Treatment. ADVANCED SCIENCE[J]. 2021, 8(3): http://dx.doi.org/10.1002/advs.202002797.
[18] Zhu, Shuang, Meng, Huan, Gu, Zhanjun, Zhao, Yuliang. Research trend of nanoscience and nanotechnology - A bibliometric analysis of Nano Today. NANO TODAYnull. 2021, 39: http://dx.doi.org/10.1016/j.nantod.2021.101233.
[19] Xie, Jiani, Zhao, Maoru, Wang, Chengyan, Yong, Yuan, Gu, Zhanjun, Zhao, Yuliang. Rational Design of Nanomaterials for Various Radiation-Induced Diseases Prevention and Treatment. ADVANCED HEALTHCARE MATERIALSnull. 2021, 10(6): http://dx.doi.org/10.1002/adhm.202001615.
[20] Mei, Linqiang, Zhu, Shuang, Liu, Yaping, Yin, Wenyan, Gu, Zhanjun, Zhao, Yuliang. An overview of the use of nanozymes in antibacterial applications. CHEMICAL ENGINEERING JOURNAL[J]. 2021, 418: http://dx.doi.org/10.1016/j.cej.2021.129431.
[21] Zhang, Chenyang, Wang, Xin, Dong, Xinghua, Mei, Linqiang, Wu, Xiaochen, Gu, Zhanjun, Zhao, Yuliang. X-ray-facilitated redox cycling of nanozyme possessing peroxidase-mimicking activity for reactive oxygen species-enhanced cancer therapy. BIOMATERIALS[J]. 2021, 276: http://dx.doi.org/10.1016/j.biomaterials.2021.121023.
[22] Zhu, Shuang, Liu, Yaping, Gu, Zhanjun, Zhao, Yuliang. A Bibliometric Analysis of Advanced Healthcare Materials: Research Trends of Biomaterials in Healthcare Application. ADVANCED HEALTHCARE MATERIALS[J]. 2021, 10(10): http://dx.doi.org/10.1002/adhm.202002222.
[23] Zhao, Maoru, Wang, Chengyan, Xie, Jiani, Ji, Chao, Gu, Zhanjun. Eco-Friendly and Scalable Synthesis of Fullerenols with High Free Radical Scavenging Ability for Skin Radioprotection. SMALL[J]. 2021, 17(37): http://dx.doi.org/10.1002/smll.202102035.
[24] Zhou, Ruyi, Yan, Liang, Dong, Xinghua, Zhu, Shuang, Chen, Kui, Wu, Yuanzheng, Xiang, Huandong, Li, Lele, Zhang, Guangjin, Gu, Zhanjun, Zhao, Yuliang. Fractionated regimen-suitable immunoradiotherapy sensitizer based on ultrasmall Fe4Se2W18 nanoclusters enable tumor-specific radiosensitization augment and antitumor immunity boost. NANO TODAY[J]. 2021, 36: http://dx.doi.org/10.1016/j.nantod.2020.101003.
[25] Gu Zhanjun. Fullerenol@nano montmorillonite Nanocomposite as an Efficient Radioprotective Agent for Ameliorating Radioactive Duodenal Injury. Chemical Engineering Journal. 2021, [26] Liu, Yaping, Zhu, Shuang, Gu, Zhanjun, Zhao, Yuliang. A bibliometric analysis: Research progress and prospects on transition metal dichalcogenides in the biomedical field. CHINESE CHEMICAL LETTERS[J]. 2021, 32(12): 3762-3770, http://dx.doi.org/10.1016/j.cclet.2021.04.023.
[27] Wang, Tao, Zhang, Xiao, Mei, Linqiang, Ma, Dongqing, Liao, You, Zu, Yan, Xu, Peng, Yin, Wenyan, Gu, Zhanjun. A two-step gas/liquid strategy for the production of N-doped defect-rich transition metal dichalcogenide nanosheets and their antibacterial applications. NANOSCALE[J]. 2020, 12(15): 8415-8424, http://dx.doi.org/10.1039/d0nr00192a.
[28] Xie, Jiani, Wang, Chengyan, Wang, Ning, Zhu, Shuang, Mei, Linqiang, Zhang, Xiao, Yong, Yuan, Li, Lele, Chen, Chunying, Huang, Changshui, Gu, Zhanjun, Li, Yuliang, Zhao, Yuliang. Graphdiyne nanoradioprotector with efficient free radical scavenging ability for mitigating radiation-induced gastrointestinal tract damage. BIOMATERIALS[J]. 2020, 244: http://dx.doi.org/10.1016/j.biomaterials.2020.119940.
[29] Fu, Wenhui, Zhang, Xiao, Mei, Linqiang, Zhou, Ruyi, Yin, Wenyan, Wang, Qiang, Gu, Zhanjun, Zhao, Yuliang. Stimuli-Responsive Small-on-Large Nanoradiosensitizer for Enhanced Tumor Penetration and Radiotherapy Sensitization. ACS NANO[J]. 2020, 14(8): 10001-10017, [30] Zhang, Chenyang, Yan, Liang, Wang, Xin, Zhu, Shuang, Chen, Chunying, Gu, Zhanjun, Zhao, Yuliang. Progress, challenges, and future of nanomedicine. NANO TODAYnull. 2020, 35: http://dx.doi.org/10.1016/j.nantod.2020.101008.
[31] Luo, Min, Xiang, Ziying, Gu, Zhanjun. Take precautions against potential threats that carbon nanotubes may bring to you. SCIENCE CHINA-CHEMISTRY[J]. 2020, 63(2): 141-142, http://lib.cqvip.com/Qikan/Article/Detail?id=7101121159.
[32] Mei, Linqiang, Zhu, Shuang, Yin, Wenyan, Chen, Chunying, Nie, Guangjun, Gu, Zhanjun, Zhao, Yuliang. Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. THERANOSTICSnull. 2020, 10(2): 757-781, http://dx.doi.org/10.7150/thno.39701.
[33] Wang, Chengyan, Xie, Jiani, Dong, Xinghua, Mei, Linqiang, Zhao, Maoru, Leng, Zhengwei, Hu, Houxiang, Li, Lele, Gu, Zhanjun, Zhao, Yuliang. Clinically Approved Carbon Nanoparticles with Oral Administration for Intestinal Radioprotection via Protecting the Small Intestinal Crypt Stem Cells and Maintaining the Balance of Intestinal Flora. SMALL[J]. 2020, 16(16): https://www.webofscience.com/wos/woscc/full-record/WOS:000520260800001.
[34] Zhu, Shuang, Li, Lele, Gu, Zhanjun, Chen, Chunying, Zhao, Yuliang. 15 Years of Small: Research Trends in Nanosafety. SMALL[J]. 2020, 16(36): https://www.webofscience.com/wos/woscc/full-record/WOS:000528632500001.
[35] Dong, Xinghua, Cheng, Ran, Zhu, Shuang, Liu, Huimin, Zhou, Ruyi, Zhang, Chenyang, Chen, Kui, Mei, Linqiang, Wang, Chengyan, Su, Chunjian, Liu, Xiangfeng, Gu, Zhanjun, Zhao, Yuliang. A Heterojunction Structured WO2.9-WSe2 Nanoradiosensitizer Increases Local Tumor Ablation and Checkpoint Blockade Immunotherapy upon Low Radiation Dose. ACS NANO[J]. 2020, 14(5): 5400-5416, https://www.webofscience.com/wos/woscc/full-record/WOS:000537682300027.
[36] Chen, Xia, Zhu, Shuang, Hu, Xisu, Sun, Dayu, Yang, Junling, Yang, Cao, Wu, Wei, Li, Yijian, Gu, Xianliang, Li, Minghui, Liu, Bo, Ge, Lingling, Gu, Zhanjun, Xu, Haiwei. Toxicity and mechanism of mesoporous silica nanoparticles in eyes. NANOSCALE[J]. 2020, 12(25): 13637-13653, https://www.webofscience.com/wos/woscc/full-record/WOS:000545253700037.
[37] Liu, Huimin, Cheng, Ran, Dong, Xinghua, Zhu, Shuang, Zhou, Ruyi, Yan, Liang, Zhang, Chenyang, Wang, Qing, Gu, Zhanjun, Zhao, Yuliang. BiO2-x Nanosheets as Radiosensitizers with Catalase-Like Activity for Hypoxia Alleviation and Enhancement of the Radiotherapy of Tumors. INORGANIC CHEMISTRY[J]. 2020, 59(6): 3482-3493, http://dx.doi.org/10.1021/acs.inorgchem.9b03280.
[38] Mei, Linqiang, Ma, Dongqing, Gao, Qin, Zhang, Xiao, Fu, Wenhui, Dong, Xinghua, Xing, Gengmei, Yin, Wenyan, Gu, Zhanjun, Zhao, Yuliang. Glucose-responsive cascaded nanocatalytic reactor with self-modulation of the tumor microenvironment for enhanced chemo-catalytic therapy. MATERIALS HORIZONS[J]. 2020, 7(7): 1834-1844, https://www.webofscience.com/wos/woscc/full-record/WOS:000545519100009.
[39] Cao, Jitao, Guo, Zhao, Zhu, Shuang, Fu, Yanyan, Zhang, Hao, Wang, Qing, Gu, Zhanjun. Preparation of Lead-free Two-Dimensional-Layered (C8H17NH3)(2)SnBr4 Perovskite Scintillators and Their Application in X-ray Imaging. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(17): 19797-19804, https://www.webofscience.com/wos/woscc/full-record/WOS:000529924800059.
[40] Cheng, Ran, Liu, Huimin, Dong, Xinghua, Zhu, Shuang, Zhou, Ruyi, Wang, Chengyan, Wang, Ye, Wang, Xin, Su, Chunjian, Gu, Zhanjun. Semiconductor heterojunction-based radiocatalytic platforms for tumors treatment by enhancing radiation response and reducing radioresistance. CHEMICAL ENGINEERING JOURNAL[J]. 2020, 394: http://dx.doi.org/10.1016/j.cej.2020.124872.
[41] Liu, Chang, Liu, Bei, Zhao, Jian, Di, Zhenghan, Chen, Daquan, Gu, Zhanjun, Li, Lele, Zhao, Yuliang. Nd3+-Sensitized Upconversion Metal-Organic Frameworks for Mitochondria-Targeted Amplified Photodynamic Therapy. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2020, 59(7): 2634-2638, https://www.webofscience.com/wos/woscc/full-record/WOS:000506217400001.
[42] Wang, Xin, Guo, Zhao, Zhang, Chenyang, Zhu, Shuang, Li, Lele, Gu, Zhanjun, Zhao, Yuliang. Ultrasmall BiOI Quantum Dots with Efficient Renal Clearance for Enhanced Radiotherapy of Cancer. ADVANCED SCIENCE[J]. 2020, 7(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000507437400001.
[43] Zhou, Ruyi, Wang, Huamei, Yang, Yufei, Zhang, Chenyang, Dong, Xinghua, Du, Jiangfeng, Yan, Liang, Zhang, Guangjin, Gu, Zhanjun, Zhao, Yuliang. Tumor microenvironment-manipulated radiocatalytic sensitizer based on bismuth heteropolytungstate for radiotherapy enhancement. BIOMATERIALS[J]. 2019, 189: 11-22, http://ir.ipe.ac.cn/handle/122111/27564.
[44] Zhu, Shuang, Gong, Linji, Li, Yijian, Xu, Haiwei, Gu, Zhanjun, Zhao, Yuliang. Safety Assessment of Nanomaterials to Eyes: An Important but Neglected Issue. ADVANCED SCIENCE[J]. 2019, 6(16): https://doaj.org/article/5ac199461254409881be24440d672d52.
[45] Zhang, Xiao, Du, Jiangfeng, Guo, Zhao, Yu, Jie, Gao, Qin, Yin, Wenyan, Zhu, Shuang, Gu, Zhanjun, Zhao, Yuliang. Efficient Near Infrared Light Triggered Nitric Oxide Release Nanocomposites for Sensitizing Mild Photothermal Therapy. ADVANCED SCIENCE[J]. 2019, 6(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000458118100012.
[46] Yan, Liang, Zhao, Feng, Wang, Jing, Zu, Yan, Gu, Zhanjun, Zhao, Yuliang. A Safe-by-Design Strategy towards Safer Nanomaterials in Nanomedicines. ADVANCED MATERIALSnull. 2019, 31(45): https://www.webofscience.com/wos/woscc/full-record/WOS:000496187400026.
[47] Zhang, Chenyang, Yan, Liang, Wang, Xin, Dong, Xinghua, Zhou, Ruyi, Gu, Zhanjun, Zhao, Yuliang. Tumor Microenvironment-Responsive Cu-2(OH)PO4 Nanocrystals for Selective and Controllable Radiosentization via the X-ray-Triggered Fenton-like Reaction. NANO LETTERS[J]. 2019, 19(3): 1749-1757, https://www.webofscience.com/wos/woscc/full-record/WOS:000461537600044.
[48] Wang, Xin, Zhang, Chenyang, Du, Jiangfeng, Dong, Xinghua, Jian, Shan, Yan, Liang, Gu, Zhanjun, Zhao, Yuliang. Enhanced Generation of Non-Oxygen Dependent Free Radicals by Schottky-type Heterostructures of Au-Bi2S3 Nanoparticles via X-ray-Induced Catalytic Reaction for Radiosensitization. ACS NANO[J]. 2019, 13(5): 5947-5958, https://www.webofscience.com/wos/woscc/full-record/WOS:000469886300102.
[49] Zhang, Chenyang, Yan, Liang, Gu, Zhanjun, Zhao, Yuliang. Strategies based on metal-based nanoparticles for hypoxic-tumor radiotherapy. CHEMICAL SCIENCE[J]. 2019, 10(29): 6932-6943, [50] 张晨阳, 晏亮, 谷战军. 基于上转换荧光纳米材料的智能响应药物系统在肿瘤治疗中的应用. 中国科学:化学[J]. 2019, 49(9): 1179-1191, http://lib.cqvip.com/Qikan/Article/Detail?id=7100100871.
[51] Xie, Jiani, Gong, Linji, Zhu, Shuang, Yong, Yuan, Gu, Zhanjun, Zhao, Yuliang. Emerging Strategies of Nanomaterial-Mediated Tumor Radiosensitization. ADVANCED MATERIALSnull. 2019, 31(3): http://dx.doi.org/10.1002/adma.201802244.
[52] Gu Zhanjun. Translocation, Biotransformation-Related Degradation, and Toxicity Assessment of Polyvinylpyrrolidone Modified 2H Nano-MoS2.. Nanoscale. 2019, [53] Zang, Yuan, Gong, Linji, Mei, Linqiang, Gu, Zhanjun, Wang, Qing. Bi2WO6 Semiconductor Nanoplates for Tumor Radiosensitization through High-Z Effects and Radiocatalysis. ACS APPLIED MATERIALS & INTERFACES[J]. 2019, 11(21): 18942-18952, https://www.webofscience.com/wos/woscc/full-record/WOS:000470034700007.
[54] Zhang, Xingyuan, Guo, Zhao, Zhang, Xiao, Gong, Linji, Dong, Xinghua, Fu, Yanyan, Wang, Qing, Gu, Zhanjun. Mass production of poly(ethylene glycol) monooleate-modified core-shell structured upconversion nanoparticles for bio-imaging and photodynamic therapy. SCIENTIFIC REPORTS[J]. 2019, 9(1): http://www.corc.org.cn/handle/1471x/2160645.
[55] Gu Zhanjun. Enhanced radiosensitization of ternary Cu3BiSe3 nanoparticles by photo-induced hyperthermia at the second near-infrared biological window.. Nanoscale. 2019, [56] Gu Zhanjun. Recent advance of stimuli- responsive systems based on transition metal dichalcogenides for smart cancer therapy.. Journal of Materials Chemistry B. 2019, [57] Yan, Haili, Du, Jiangfeng, Zhu, Shuang, Nie, Guangjun, Zhang, Hui, Gu, Zhanjun, Zhao, Yuliang. Emerging Delivery Strategies of Carbon Monoxide for Therapeutic Applications: from CO Gas to CO Releasing Nanomaterials. SMALLnull. 2019, 15(49): https://www.webofscience.com/wos/woscc/full-record/WOS:000493163900001.
[58] Dayu Sun, Linji Gong, Jing xie, Xianliang Gu, Yijian Li, Qinglin Cao, Qiyou Li, Luodan A., Zhanjun Gu, Haiwei Xu. Toxicity of silicon dioxide nanoparticles with varying sizes on the cornea and protein corona as a strategy for therapy. 科学通报:英文版[J]. 2018, 63(14): 907-916, http://lib.cqvip.com/Qikan/Article/Detail?id=676053916.
[59] Gu Zhanjun, Zhu Shuang, Yan Liang, Zhao Feng, Zhao Yuliang. Graphene-Based Smart Platforms for Combined Cancer Therapy.. Advanced materials (Deerfield Beach, Fla.). 2018, [60] 赵宇亮. Biodegradable MoO x nanoparticles with efficient near-infrared photothermal and photodynamic synergetic cancer therapy at the second biological window. Nanoscale[J]. 2018, 10(3): 1517-1531, http://www.corc.org.cn/handle/1471x/2177947.
[61] Jiani Xie, Ning Wang, Xinghua Dong, Chengyan Wang, Zhen Du, Linqiang Mei, Yuan Yong, Changshui Huang, Yuliang Li, Zhanjun Gu, Yuliang Zhao. Graphdiyne Nanoparticles with High Free Radical Scavenging Activity for Radiation Protection. ACS Applied Materials and Interfaces. 2018, http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=2&recid=&FileName=SBQKBC4EF14AEF01D1C9B8E8A8BE2A7657F0&DbName=SBQKLAST&DbCode=SBQK&yx=&pr=&URLID=&bsm=.
[62] Du, Zhen, Zhang, Xiao, Guo, Zhao, Xie, Jiani, Dong, Xinghua, Zhu, Shuang, Du, Jiangfeng, Gu, Zhanjun, Zhao, Yuliang. X-Ray-Controlled Generation of Peroxynitrite Based on Nanosized LiLuF4:Ce3+ Scintillators and their Applications for Radiosensitization. ADVANCED MATERIALS[J]. 2018, 30(43): https://www.webofscience.com/wos/woscc/full-record/WOS:000448786000024.
[63] Gu Zhanjun. Lanthanide-doped materials as dual imaging and therapeutic agents. Martín-Ramos, Pablo. In: Silva MR, editor.. Lanthanide-Based Multifunctional Materials. 2018, [64] Ma, Dongqing, Yu, Jie, Yin, Wenyan, Zhang, Xiao, Mei, Linqiang, Zu, Yan, An, Lijuan, Gu, Zhanjun. Synthesis of Surface-Modification-Oriented Nanosized Molybdenum Disulfide with High Peroxidase-Like Catalytic Activity for H2O2 and Cholesterol Detection. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2018, 24(59): 15868-15878, http://dx.doi.org/10.1002/chem.201803040.
[65] Ji, Chendong, Gao, Qin, Dong, Xinghua, Yin, Wenyan, Gu, Zhanjun, Gan, Zhihua, Zhao, Yuliang, Yin, Meizhen. A Size-Reducible Nanodrug with an Aggregation-Enhanced Photodynamic Effect for Deep Chemo-Photodynamic Therapy. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2018, 57(35): 11384-11388, https://www.webofscience.com/wos/woscc/full-record/WOS:000442340000048.
[66] Fu J, Gao J, Gong L, Ma Y, Xu H, Gu Z, Zhu J, Fan X. Silica nanoparticle exposure during the neonatal period impairs hippocampal precursor proliferation and social behavior later in life. INTERNATIONAL JOURNAL OF NANOMEDICINE[J]. 2018, 13: 3593-3608, https://doaj.org/article/87a72571fa8e4faea24b3d4d197624db.
[67] Wu, Wei, Yan, Liang, Chen, Siyu, Li, Qiyou, Gu, Zhanjun, Xu, Haiwei, Yin, Zheng Qin. Investigating oxidation state-induced toxicity of PEGylated graphene oxide in ocular tissue using gene expression profiles. NANOTOXICOLOGY[J]. 2018, 12(8): 819-835, http://dx.doi.org/10.1080/17435390.2018.1480813.
[68] Song, Li, Dong, Xinghua, Zhu, Shuang, Zhang, Chunfang, Yin, Wenyan, Zhang, Xiao, Liu, Xiangfeng, Gu, Zhanjun. Bi2S3-Tween 20 Nanodots Loading PI3K Inhibitor, LY294002, for Mild Photothermal Therapy of LoVo Cells In Vitro and In Vivo. ADVANCED HEALTHCARE MATERIALS[J]. 2018, 7(22): http://dx.doi.org/10.1002/adhm.201800830.
[69] Zhu, Shuang, Gu, Zhanjun, Zhao, Yuliang. Harnessing Tumor Microenvironment for Nanoparticle-Mediated Radiotherapy. ADVANCED THERAPEUTICS[J]. 2018, 1(5): http://dx.doi.org/10.1002/adtp.201800050.
[70] Gu Zhanjun. Enhanced green upconversion luminescence in tetrahedral LiYF4:Yb/Er nanoparticles by manganese(II)-doping:The key role of host lattice.. Nanoscale.. 2018, [71] 赵宇亮. Peroxidase-like activity of MoS2 nanoflakes with different modifications and their application for H2O2 and glucose detection. JOURNAL OF MATERIALS CHEMISTRY B[J]. 2018, 6(3): 487-498, http://www.corc.org.cn/handle/1471x/2177908.
[72] Xie, Jiani, Wang, Chengyan, Zhao, Feng, Gu, Zhanjun, Zhao, Yuliang. Application of Multifunctional Nanomaterials in Radioprotection of Healthy Tissues. ADVANCED HEALTHCARE MATERIALS[J]. 2018, 7(20): https://www.webofscience.com/wos/woscc/full-record/WOS:000448900700012.
[73] 谢佳妮, 朱双, 赵宇亮, Zhao YL, Gu ZJ, 龚林吉, 赵宇亮, Gong LJ, Xie JN, Zhu S. 多功能纳米材料在肿瘤放疗增敏中的应用. 物理化学学报[J]. 2018, 34(2): 140-167, http://lib.cqvip.com/Qikan/Article/Detail?id=674347778.
[74] Gao, Qin, Zhang, Xiao, Yin, Wenyan, Ma, Dongqing, Xie, Changjian, Zheng, Lirong, Dong, Xinghua, Mei, Linqiang, Yu, Jie, Wang, Chaozhan, Gu, Zhanjun, Zhao, Yuliang. Functionalized MoS2 Nanovehicle with Near-Infrared Laser-Mediated Nitric Oxide Release and Photothermal Activities for Advanced Bacteria-Infected Wound Therapy. SMALL[J]. 2018, 14(45): http://dx.doi.org/10.1002/smll.201802290.
[75] Zhang, Chenyang, Du, Zhen, Zhou, Ruyi, Xu, Peng, Dong, Xinghua, Fu, Yanyan, Wang, Qing, Su, Chunjian, Yan, Liang, Gu, Zhanjun. Cu-2(OH)PO4/reduced graphene oxide nanocomposites for enhanced photocatalytic degradation of 2,4-dichlorophenol under infrared light irradiation. RSC ADVANCES[J]. 2018, 8(7): 3611-3618, http://www.corc.org.cn/handle/1471x/2177915.
[76] Gu Zhanjun. Nanoparticle Ligand Exchange and Its Effects at the Nanoparticle–Cell Membrane Interface.. Nano Letters.. 2018, [77] Dong, Xinghua, Yin, Wenyan, Zhang, Xiao, Zhu, Shuang, He, Xiao, Yu, Jie, Xie, Jiani, Guo, Zhao, Yan, Liang, Liu, Xiangfeng, Wang, Qing, Gu, Zhanjun, Zhao, Yuliang. Intelligent MoS2 Nanotheranostic for Targeted and Enzyme-/pH-/NIR-Responsive Drug Delivery To Overcome Cancer Chemotherapy Resistance Guided by PET Imaging. ACS APPLIED MATERIALS & INTERFACES[J]. 2018, 10(4): 4271-4284, http://www.corc.org.cn/handle/1471x/2178046.
[78] Chen, Huabing, Gu, Zhanjun, An, Hongwei, Chen, Chunying, Chen, Jie, Cui, Ran, Chen, Siqin, Chen, Weihai, Chen, Xuesi, Chen, Xiaoyuan, Chen, Zhuo, Ding, Baoquan, Dong, Qian, Fan, Qin, Fu, Ting, Hou, Dayong, Jiang, Qiao, Ke, Hengte, Jiang, Xiqun, Liu, Gang, Li, Suping, Li, Tianyu, Liu, Zhuang, Nie, Guangjun, Ovais, Muhammad, Pang, Daiwen, Qiu, Nasha, Shen, Youqing, Tian, Huayu, Wang, Chao, Wang, Hao, Wang, Ziqi, Xu, Huaping, Xu, JiangFei, Yang, Xiangliang, Zhu, Shuang, Zheng, Xianchuang, Zhang, Xianzheng, Zhao, Yanbing, Tan, Weihong, Zhang, Xi, Zhao, Yuliang. Precise nanomedicine for intelligent therapy of cancer. SCIENCE CHINA-CHEMISTRY[J]. 2018, 61(12): 1503-1552, http://lib.cqvip.com/Qikan/Article/Detail?id=6100154608.
[79] 赵宇亮. Elemental Bismuth–Graphene Heterostructures for Photocatalysis from Ultraviolet to Infrared Light. ACS Catalysis[J]. 2017, 7(10): 7043-7050, http://www.corc.org.cn/handle/1471x/2177134.
[80] 赵宇亮. Therapeutic Nanoparticles Based on Curcumin and Bamboo Charcoal Nanoparticles for Chemo-Photothermal Synergistic Treatment of Cancer and Radioprotection of Normal Cells. ACS APPLIED MATERIALS & INTERFACES[J]. 2017, 9(16): 14281-14291, http://www.corc.org.cn/handle/1471x/2177226.
[81] Sun, Dayu, Gong, Linji, Xie, Jing, He, Xiao, Chen, Siyu, Luodan, A, Li, Qiyou, Gu, Zhanjun, Xu, Haiwei. Evaluating the toxicity of silicon dioxide nanoparticles on neural stem cells using RNA-Seq. RSC ADVANCES[J]. 2017, 7(75): 47552-47564, http://www.corc.org.cn/handle/1471x/2177124.
[82] Zhang, Xiao, Guo, Zhao, Liu, Jing, Tian, Gan, Chen, Kui, Yu, Shicang, Gu, Zhanjun. Near infrared light triggered nitric oxide releasing platform based on upconversion nanoparticles for synergistic therapy of cancer stem-like cells. SCIENCE BULLETIN[J]. 2017, 62(14): 985-996, http://www.corc.org.cn/handle/1471x/2177014.
[83] 赵宇亮. Design of TPGS-functionalized Cu 3 BiS 3 nanocrystals with strong absorption in the second near-infrared window for radiation therapy enhancement. Nanoscale[J]. 2017, 9(24): 8229-8239, http://www.corc.org.cn/handle/1471x/2177326.
[84] 赵宇亮. Polyoxometalate-based radiosensitization platform for treating hypoxic tumors by attenuating radioresistance and enhancing radiation response. ACS nano[J]. 2017, 11(7): 7164-7176, http://www.irgrid.ac.cn/handle/1471x/1763709.
[85] 赵宇亮. Synthesis of BSA-Coated BiOI@Bi2S3 Semiconductor Heterojunction Nanoparticles and Their Applications for Radio/Photodynamic/Photothermal Synergistic Therapy of Tumor. ADVANCED MATERIALS[J]. 2017, 29(44): http://www.corc.org.cn/handle/1471x/2177472.
[86] 赵宇亮. Poly (Vinylpyrollidone)‐and Selenocysteine‐Modified Bi2Se3 Nanoparticles Enhance Radiotherapy Efficacy in Tumors and Promote Radioprotection in Normal Tissues. Advanced Materials[J]. 2017, 29(34): http://www.corc.org.cn/handle/1471x/2177025.
[87] 赵宇亮. Design, Synthesis, and Surface Modification of Materials Based on Transition-Metal Dichalcogenides for Biomedical Applications. SMALL METHODSnull. 2017, 1(12): http://dx.doi.org/10.1002/smtd.201700224.
[88] Gu, Zhanjun, Liu, Feng, Li, Xufan, Pan, Zheng Wei. Luminescent Zn2GeO4 nanorod arrays and nanowires. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2013, 15(20): 7488-7493, http://ir.ihep.ac.cn/handle/311005/224299.
[89] Yan, Liang, Chang, YaNan, Zhao, Lina, Gu, Zhanjun, Liu, Xiaoxiao, Tian, Gan, Zhou, Liangjun, Ren, Wenlu, Jin, Shan, Yin, Wenyan, Chang, Huaiqiu, Xing, Gengmei, Gao, Xingfa, Zhao, Yuliang. The use of polyethylenimine-modified graphene oxide as a nanocarrier for transferring hydrophobic nanocrystals into water to produce water-dispersible hybrids for use in drug delivery. CARBON[J]. 2013, 57: 120-129, http://dx.doi.org/10.1016/j.carbon.2013.01.042.
[90] Gu, Zhanjun, Liu, Feng, Li, Xufan, Pan, Zheng Wei. Luminescent GeO2-Zn2GeO4 hybrid one dimensional nanostructures. CRYSTENGCOMM[J]. 2013, 15(15): 2904-2908, http://ir.ihep.ac.cn/handle/311005/224216.
[91] Tian, Gan, Ren, Wenlu, Yan, Liang, Jian, Shan, Gu, Zhanjun, Zhou, Liangjun, Jin, Shan, Yin, Wenyan, Li, Shoujian, Zhao, Yuliang. Red-Emitting Upconverting Nanoparticles for Photodynamic Therapy in Cancer Cells Under Near-Infrared Excitation. SMALL[J]. 2013, 9(11): 1929-1938, http://dx.doi.org/10.1002/smll.201201437.
[92] Zhou, Liangjun, Gu, Zhanjun, Liu, Xiaoxiao, Yin, Wenyan, Tian, Gan, Yan, Liang, Jin, Shan, Ren, Wenlu, Xing, Gengmei, Li, Wei, Chang, Xueling, Hu, Zhongbo, Zhao, Yuliang. Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging. JOURNAL OF MATERIALS CHEMISTRY[J]. 2012, 22(3): 966-974, http://ir.ihep.ac.cn/handle/311005/224086.
[93] Gu Zhanjun. Enhanced Red Emission from GdF3: Yb3+, Er3+ Upconversion Nanocrystals by Li+ Ions Doping and Their Application for Bioimaging. Chem. Eur. J.. 2012, [94] Yin, Wenyan, Zhou, Liangjun, Gu, Zhanjun, Tian, Gan, Jin, Shan, Yan, Liang, Liu, Xiaoxiao, Xing, Gengmei, Ren, Wenlu, Liu, Feng, Pan, Zhengwei, Zhao, Yuliang. Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging. JOURNAL OF MATERIALS CHEMISTRY[J]. 2012, 22(14): 6974-6981, http://dx.doi.org/10.1039/c2jm16152d.
[95] Gu Zhanjun. Water-soluble Organic J-aggregate Nanoparticle as an Efficient Two-Photon Fluorescent Nano-Probe for Bio-Imaging. Journal of Materials Chemistry. 2012, [96] Tian, Gan, Gu, Zhanjun, Zhou, Liangjun, Yin, Wenyan, Liu, Xiaoxiao, Yan, Liang, Jin, Shan, Ren, Wenlu, Xing, Gengmei, Li, Shoujian, Zhao, Yuliang. Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery. ADVANCED MATERIALS[J]. 2012, 24(9): 1226-1231, http://ir.ihep.ac.cn/handle/311005/224120.
[97] 赵宇亮. Lanthanide ion-doped GdPO 4 nanorods with dual-modal bio-optical and magnetic resonance imaging properties. Nanoscale[J]. 2012, 4(12): 3754-3760, http://ir.ihep.ac.cn/handle/311005/224242.
[98] Gu Zhanjun. TWEEN coated NaYF4:Yb,Er/ NaYF4 core/shell upconversion nanoparticles for bioimaging and drug deliver. RSC Advances. 2012, [99] Gu Zhanjun. Ultra-Tough Carbon Nanotube Reinforced Silicon Carbide Composites. Carbon. 2011, [100] Tian, Gan, Gu, Zhanjun, Liu, Xiaoxiao, Zhou, Liangjun, Yin, Wenyan, Yan, Liang, Jin, Shan, Ren, Wenlu, Xing, Gengmei, Li, Shoujian, Zhao, Yuliang. Facile Fabrication of Rare-Earth-Doped Gd2O3 Hollow Spheres with Upconversion Luminescence, Magnetic Resonance, and Drug Delivery Properties. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2011, 115(48): 23790-23796, http://www.corc.org.cn/handle/1471x/2176222.
[101] Gu Zhanjun. Red, Green, and Blue (RGB) Luminescence from ZnGa2O4Nanowire Arrays. 2010, [102] Gu, Zhanjun, Liu, Feng, Howe, Jane Y, Paranthaman, M Parans, Pan, Zhengwei. Germanium-catalyzed hierarchical Al2O3 and SiO2 nanowire bunch arrays. NANOSCALE[J]. 2009, 1(3): 347-354, https://www.webofscience.com/wos/woscc/full-record/WOS:000275164200006.
[103] Gu, Zhanjun, Liu, Feng, Howe, Jane Y, Paranthaman, M Parans, Pan, Zhengwei. Three-Dimensional Germanium Oxide Nanowire Networks. CRYSTAL GROWTH & DESIGN[J]. 2009, 9(1): 35-39, https://www.webofscience.com/wos/woscc/full-record/WOS:000262332700009.
[104] Gu Zhanjun. Aligned Zinc Oxide Nanorod Arrays Grown Directly on Zinc Foils and Zinc Microspheres by a Low-Temperature Oxidization Method. ACS NANO. 2009, [105] Gu, Zhanjun, Paranthaman, M Parans, Pan, Zhengwei. Vapor-Phase Synthesis of Gallium Phosphide Nanowires. CRYSTAL GROWTH & DESIGN[J]. 2009, 9(1): 525-527, https://www.webofscience.com/wos/woscc/full-record/WOS:000262332700081.
[106] Gu Zhanjun. Controlled hydrothermal synthesis of nickel phosphite nanocrystals with hierarchical superstructure. Crystal Growth and Design. 2007, [107] Gu Zhanjun. Larege-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals. J. Solid State Chem. 2007, [108] Gu Zhanjun. A Simple Hydrothermal Method for the Large-Scale Synthesis of Single-Crystal Potassium Tungsten Bronze Nanowies. Chem. Eur. J.. 2006, [109] Gu, Zhanjun, Zhai, Tianyou, Gao, Bifen, Sheng, Xiaohai, Wang, Yaobing, Fu, Hongbing, Ma, Ying, Yao, Jiannian. Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures. JOURNAL OF PHYSICAL CHEMISTRY B[J]. 2006, 110(47): 23829-23836, http://www.corc.org.cn/handle/1471x/2379925.
[110] Gu, ZJ, Ma, Y, Yang, WS, Zhang, GJ, Yao, JN. Self-assembly of highly oriented one-dimensional h-WO3 nanostructures. CHEMICAL COMMUNICATIONS[J]. 2005, 3597-3599, 

科研活动

   
科研项目
(1) 多功能近红外纳米光敏粒子的设计合成及在光动力治疗癌症的研究,主持,国家级,2011-01--2013-01
(2) 长余辉纳米材料在生物成像中的应用,主持,部委级,2010-09--2012-09
(3) 荧光上转换纳米材料的可控合成,主持,研究所(学校)级,2009-11--2011-11