基本信息

许志强 男 汉族 硕导 数学与系统科学研究院
电子邮件:
联系电话
手机号码:
通信地址:中科院数学与系统科学研究院
邮政编码:100190
电子邮件:
联系电话
手机号码:
通信地址:中科院数学与系统科学研究院
邮政编码:100190
研究领域
计算调和分析;
机器学习
逼近论;
压缩感知;
样条函数
招生信息
计算数学
-
-
-
-
-
招生方向
教育背景
学历
-- 研究生
学位
-- 博士
出版信息
发表论文
[1] IEEE Transactions on Signal Processin. 2024, 第 2 作者[2] Information and Inference: A Journal of the IMA. 2024, 第 2 作者 通讯作者 [3] Jianfeng Cai, Zhiqiang Xu, Zili Xu. Asymptotically Sharp Upper Bound for the Column Subset Selection Problem,. International Mathematics Research Notices[J]. 2024, 第 2 作者null(null): [4] International Mathematics Research Notices. 2024, 第 2 作者[5] Math. Comp. 2024, 第 2 作者 通讯作者 [6] Applied and Computational Harmonic Analysis. 2024, 第 2 作者[7] Lai, MingJun, Xie, Jiaxin, Xu, Zhiqiang. GRAPH SPARSIFICATION BY UNIVERSAL GREEDY ALGORITHMS. JOURNAL OF COMPUTATIONAL MATHEMATICS[J]. 2023, 第 3 作者41(4): 741-770, http://dx.doi.org/10.4208/jcm.2201-m2021-0130.[8] 许志强, Zili Xu, Ziheng Zhu. Improved bounds in Weaver's KS_r conjecture for high rank positive semidefinite matrices. Journal of Functional Analysis[J]. 2023, 第 1 作者[9] Huang, Meng, Sun, Shixiang, Xu, Zhiqiang. Affine Phase Retrieval for Sparse Signals via L(1 )Minimization. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS[J]. 2023, 第 3 作者29(3): http://dx.doi.org/10.1007/s00041-023-10022-6.[10] Lai, MingJun, Xie, Jiaxin, Xu, Zhiqiang. GRAPH SPARSIFICATION BY UNIVERSAL GREEDY ALGORITHMS. JOURNAL OF COMPUTATIONAL MATHEMATICS[J]. 2023, 第 3 作者41(4): 741-770, http://dx.doi.org/10.4208/jcm.2201-m2021-0130.[11] 许志强, Zili Xu, Ziheng Zhu. Improved bounds in Weaver's KS_r conjecture for high rank positive semidefinite matrices. Journal of Functional Analysis[J]. 2023, 第 1 作者[12] Huang, Meng, Sun, Shixiang, Xu, Zhiqiang. Affine Phase Retrieval for Sparse Signals via L(1 )Minimization. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS[J]. 2023, 第 3 作者29(3): http://dx.doi.org/10.1007/s00041-023-10022-6.[13] Jiaxin Xie, 许志强, Ziheng zhu. Upper and Lower Bounds for Matrix Discrepancy. Journal of Fourier Analysis and Applications[J]. 2022, 第 2 作者 通讯作者 [14] Jiaxin Xie, 许志强, Ziheng zhu. Upper and Lower Bounds for Matrix Discrepancy. Journal of Fourier Analysis and Applications[J]. 2022, 第 11 作者[15] Rong, Yi, Wang, Yang, Xu, Zhiqiang. Almost everywhere injectivity conditions for the matrix recovery problem. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS[J]. 2021, 第 3 作者 通讯作者 50: 386-400, http://dx.doi.org/10.1016/j.acha.2019.09.002.[16] Huang, Meng, Rong, Yi, Wang, Yang, Xu, Zhiqiang. Almost everywhere generalized phase retrieval. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS[J]. 2021, 第 4 作者 通讯作者 50: 16-33, http://dx.doi.org/10.1016/j.acha.2020.08.002.[17] Xu, Zhiqiang, Xu, Zili. The minimizers of the p-frame potential. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS[J]. 2021, 第 1 作者52: 366-379, http://dx.doi.org/10.1016/j.acha.2020.04.003.[18] Xie, Jiaxin, Xu, Zhiqiang, Zhu, Ziheng. Upper and Lower bounds for matrix discrepancy. 2021, 第 2 作者http://arxiv.org/abs/2006.12083.[19] Xia, Yu, Xu, Zhiqiang. The recovery of complex sparse signals from few phaseless measurements. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS[J]. 2021, 第 2 作者50: 1-15, http://dx.doi.org/10.1016/j.acha.2020.08.001.[20] Huang, Meng, Xu, Zhiqiang. Phase retrieval from the norms of affine transformations. ADVANCES IN APPLIED MATHEMATICS[J]. 2021, 第 2 作者130: [21] Xu, Zhiqiang, Xu, Zili, Yu, WeiHsuan. Bounds on antipodal spherical designs with few angles. ELECTRONIC JOURNAL OF COMBINATORICS[J]. 2021, 第 1 作者 通讯作者 28(3): [22] Xia, Yu, Xu, Zhiqiang. Sparse Phase Retrieval Via PhaseLiftOff. IEEE TRANSACTIONS ON SIGNAL PROCESSING[J]. 2021, 第 2 作者69: 2129-2143, http://dx.doi.org/10.1109/TSP.2021.3067164.[23] Rong, Yi, Wang, Yang, Xu, Zhiqiang. Almost everywhere injectivity conditions for the matrix recovery problem. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS[J]. 2021, 第 11 作者50: 386-400, http://dx.doi.org/10.1016/j.acha.2019.09.002.[24] Huang, Meng, Rong, Yi, Wang, Yang, Xu, Zhiqiang. Almost everywhere generalized phase retrieval. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS[J]. 2021, 第 11 作者50: 16-33, http://dx.doi.org/10.1016/j.acha.2020.08.002.[25] Xu, Zhiqiang, Xu, Zili. The minimizers of the p-frame potential. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS[J]. 2021, 第 1 作者52: 366-379, http://dx.doi.org/10.1016/j.acha.2020.04.003.[26] Xie, Jiaxin, Xu, Zhiqiang, Zhu, Ziheng. Upper and Lower bounds for matrix discrepancy. 2021, 第 2 作者http://arxiv.org/abs/2006.12083.[27] Xia, Yu, Xu, Zhiqiang. The recovery of complex sparse signals from few phaseless measurements. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS[J]. 2021, 第 2 作者50: 1-15, http://dx.doi.org/10.1016/j.acha.2020.08.001.[28] Huang, Meng, Xu, Zhiqiang. Phase retrieval from the norms of affine transformations. ADVANCES IN APPLIED MATHEMATICS[J]. 2021, 第 2 作者130: [29] Xu, Zhiqiang, Xu, Zili, Yu, WeiHsuan. Bounds on antipodal spherical designs with few angles. ELECTRONIC JOURNAL OF COMBINATORICS[J]. 2021, 第 11 作者28(3): [30] Xia, Yu, Xu, Zhiqiang. Sparse Phase Retrieval Via PhaseLiftOff. IEEE TRANSACTIONS ON SIGNAL PROCESSING[J]. 2021, 第 2 作者69: 2129-2143, http://dx.doi.org/10.1109/TSP.2021.3067164.[31] Huang, Meng, Xu, Zhiqiang. The Estimation Performance of Nonlinear Least Squares for Phase Retrieval. IEEE TRANSACTIONS ON INFORMATION THEORY[J]. 2020, 第 2 作者 通讯作者 66(12): 7967-7977, http://dx.doi.org/10.1109/TIT.2020.2983562.[32] Gao, Bing, Sun, Xinwei, Wang, Yang, Xu, Zhiqiang. Perturbed Amplitude Flow for Phase Retrieval. IEEE TRANSACTIONS ON SIGNAL PROCESSING[J]. 2020, 第 4 作者 通讯作者 68: 5427-5440, http://dx.doi.org/10.1109/TSP.2020.3022817.[33] Huang, Meng, Xu, Zhiqiang. SOLVING SYSTEMS OF QUADRATIC EQUATIONS VIA EXPONENTIAL-TYPE GRADIENT DESCENT ALGORITHM. JOURNAL OF COMPUTATIONAL MATHEMATICS[J]. 2020, 第 2 作者38(4): 638-660, http://lib.cqvip.com/Qikan/Article/Detail?id=7102194626.[34] Huang, Meng, Xu, Zhiqiang. The Estimation Performance of Nonlinear Least Squares for Phase Retrieval. IEEE TRANSACTIONS ON INFORMATION THEORY[J]. 2020, 第 11 作者66(12): 7967-7977, http://dx.doi.org/10.1109/TIT.2020.2983562.[35] Gao, Bing, Sun, Xinwei, Wang, Yang, Xu, Zhiqiang. Perturbed Amplitude Flow for Phase Retrieval. IEEE TRANSACTIONS ON SIGNAL PROCESSING[J]. 2020, 第 11 作者68: 5427-5440, http://dx.doi.org/10.1109/TSP.2020.3022817.[36] Huang, Meng, Xu, Zhiqiang. SOLVING SYSTEMS OF QUADRATIC EQUATIONS VIA EXPONENTIAL-TYPE GRADIENT DESCENT ALGORITHM. JOURNAL OF COMPUTATIONAL MATHEMATICS[J]. 2020, 第 2 作者38(4): 638-660, http://lib.cqvip.com/Qikan/Article/Detail?id=7102194626.[37] Zhou, Heng, Xu, Zhiqiang. On Generalizations of p-Sets and their Applications. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS[J]. 2019, 第 2 作者12(2): 453-466, http://ir.amss.ac.cn/handle/2S8OKBNM/31987.[38] Wang, Yang, Xu, Zhiqiang. Generalized phase retrieval: Measurement number, matrix recovery and beyond. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS[J]. 2019, 第 2 作者47(2): 423-446, http://ir.amss.ac.cn/handle/2S8OKBNM/35303, http://www.irgrid.ac.cn/handle/1471x/6870921, http://ir.amss.ac.cn/handle/2S8OKBNM/35304, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000477689000006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.[39] Zhou, Heng, Xu, Zhiqiang. On Generalizations of p-Sets and their Applications. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS[J]. 2019, 第 2 作者12(2): 453-466, http://ir.amss.ac.cn/handle/2S8OKBNM/31987.[40] Wang, Yang, Xu, Zhiqiang. Generalized phase retrieval: Measurement number, matrix recovery and beyond. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS[J]. 2019, 第 2 作者47(2): 423-446, http://ir.amss.ac.cn/handle/2S8OKBNM/35303, http://www.irgrid.ac.cn/handle/1471x/6870921, http://ir.amss.ac.cn/handle/2S8OKBNM/35304, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000477689000006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.[41] Xu, Zhiqiang, Zhou, Tao. A Gradient-Enhanced l(1) Approach for the Recovery of Sparse Trigonometric Polynomials. COMMUNICATIONS IN COMPUTATIONAL PHYSICS[J]. 2018, 第 1 作者24(1): 286-308, http://ir.amss.ac.cn/handle/2S8OKBNM/32279.[42] Cai, JianFeng, Rong, Yi, Wang, Yang, Xu, Zhiqiang. Data recovery on a manifold from linear samples: theory and computation. ANNALS OF MATHEMATICAL SCIENCES AND APPLICATIONS[J]. 2018, 第 4 作者3(1): 337-365, [43] Xu, Zhiqiang. The minimal measurement number for low-rank matrix recovery. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS[J]. 2018, 第 1 作者 通讯作者 44(2): 497-508, http://dx.doi.org/10.1016/j.acha.2017.01.005.[44] Gao, Bing, Sun, Qiyu, Wang, Yang, Xu, Zhiqiang. Phase retrieval from the magnitudes of affine linear measurements. ADVANCES IN APPLIED MATHEMATICS[J]. 2018, 第 4 作者 通讯作者 93: 121-141, http://dx.doi.org/10.1016/j.aam.2017.09.004.[45] 曹礼群, 陈志明, 许志强, 袁亚湘, 张林波, 郑伟英, 周爱辉. 科学与工程计算的方法和应用———基于国家自然科学基金创新研究群体项目研究成果的综述. 中国科学基金[J]. 2018, 第 3 作者32(2): 141, http://lib.cqvip.com/Qikan/Article/Detail?id=674827424.[46] Xu, Zhiqiang, Zhou, Tao. A Gradient-Enhanced l(1) Approach for the Recovery of Sparse Trigonometric Polynomials. COMMUNICATIONS IN COMPUTATIONAL PHYSICS[J]. 2018, 第 1 作者24(1): 286-308, http://ir.amss.ac.cn/handle/2S8OKBNM/32279.[47] Cai, JianFeng, Rong, Yi, Wang, Yang, Xu, Zhiqiang. Data recovery on a manifold from linear samples: theory and computation. ANNALS OF MATHEMATICAL SCIENCES AND APPLICATIONS[J]. 2018, 第 4 作者3(1): 337-365, [48] Xu, Zhiqiang. The minimal measurement number for low-rank matrix recovery. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS[J]. 2018, 第 11 作者44(2): 497-508, http://dx.doi.org/10.1016/j.acha.2017.01.005.[49] Gao, Bing, Sun, Qiyu, Wang, Yang, Xu, Zhiqiang. Phase retrieval from the magnitudes of affine linear measurements. ADVANCES IN APPLIED MATHEMATICS[J]. 2018, 第 11 作者93: 121-141, http://dx.doi.org/10.1016/j.aam.2017.09.004.[50] 曹礼群, 陈志明, 许志强, 袁亚湘, 张林波, 郑伟英, 周爱辉. ���������������������������������������������������������������������������������������������������������������������������. 中国科学基金[J]. 2018, 第 3 作者32(2): 141, http://lib.cqvip.com/Qikan/Article/Detail?id=674827424.[51] Xu Zhiqiang. The Minimal Measurement Number Problem in Phase Retrieval:A Review of Recent Developments. JOURNAL OF MATHEMATICAL RESEARCH WITH APPLICATIONS[J]. 2017, 第 1 作者37(1): 40-46, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=5926817&detailType=1.[52] Zhou Heng, Xu Zhiqiang. Improvement of the lower bound of the PCM quantization error for vectors in R 2. JOURNAL OF APPROXIMATION THEORY[J]. 2017, 第 2 作者[53] Bin HAN, ZhiQiang XU. Robustness properties of dimensionality reduction with Gaussian random matrices. SCIENCE CHINA Mathematics[J]. 2017, 第 2 作者 通讯作者 60(10): 1753-1778, https://www.sciengine.com/doi/10.1007/s11425-016-9018-x.[54] Gao, Bing, Xu, Zhiqiang. Phaseless Recovery Using the Gauss-Newton Method. IEEE TRANSACTIONS ON SIGNAL PROCESSING[J]. 2017, 第 2 作者 通讯作者 65(22): 5885-5896, https://www.webofscience.com/wos/woscc/full-record/WOS:000411680100005.[55] Xu Zhiqiang. The Minimal Measurement Number Problem in Phase Retrieval:A Review of Recent Developments. JOURNAL OF MATHEMATICAL RESEARCH WITH APPLICATIONS[J]. 2017, 第 1 作者37(1): 40-46, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=5926817&detailType=1.[56] Zhou Heng, Xu Zhiqiang. Improvement of the lower bound of the PCM quantization error for vectors in R 2. JOURNAL OF APPROXIMATION THEORY[J]. 2017, 第 2 作者[57] Han, Bin, Xu, ZhiQiang. Robustness properties of dimensionality reduction with Gaussian random matrices. SCIENCE CHINA-MATHEMATICS[J]. 2017, 第 11 作者60(10): 1753-1778, http://ir.amss.ac.cn/handle/2S8OKBNM/44787, http://www.irgrid.ac.cn/handle/1471x/6871110, http://ir.amss.ac.cn/handle/2S8OKBNM/44788.[58] Gao, Bing, Xu, Zhiqiang. Phaseless Recovery Using the Gauss-Newton Method. IEEE TRANSACTIONS ON SIGNAL PROCESSING[J]. 2017, 第 11 作者65(22): 5885-5896, https://www.webofscience.com/wos/woscc/full-record/WOS:000411680100005.[59] Voroninski, Vladislav, Xu, Zhiqiang. A strong restricted isometry property, with an application to phaseless compressed sensing. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS[J]. 2016, 第 2 作者 通讯作者 40(2): 386-395, https://www.webofscience.com/wos/woscc/full-record/WOS:000368317100007.[60] Liu, Wenhui, Gong, Da, Xu, Zhiqiang. One-Bit Compressed Sensing by Greedy Algorithms. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS[J]. 2016, 第 3 作者 通讯作者 9(2): 169-184, http://ir.amss.ac.cn/handle/2S8OKBNM/46025, http://www.irgrid.ac.cn/handle/1471x/6871134, http://ir.amss.ac.cn/handle/2S8OKBNM/46026.[61] Gao, Bing, Wang, Yang, Xu, Zhiqiang. Stable Signal Recovery from Phaseless Measurements. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS[J]. 2016, 第 3 作者 通讯作者 22(4): 787-808, https://www.webofscience.com/wos/woscc/full-record/WOS:000381080700003.[62] Voroninski, Vladislav, Xu, Zhiqiang. A strong restricted isometry property, with an application to phaseless compressed sensing. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS[J]. 2016, 第 11 作者40(2): 386-395, https://www.webofscience.com/wos/woscc/full-record/WOS:000368317100007.[63] Liu, Wenhui, Gong, Da, Xu, Zhiqiang. One-Bit Compressed Sensing by Greedy Algorithms. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS[J]. 2016, 第 11 作者9(2): 169-184, http://ir.amss.ac.cn/handle/2S8OKBNM/46025, http://www.irgrid.ac.cn/handle/1471x/6871134, http://ir.amss.ac.cn/handle/2S8OKBNM/46026.[64] Gao, Bing, Wang, Yang, Xu, Zhiqiang. Stable Signal Recovery from Phaseless Measurements. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS[J]. 2016, 第 11 作者22(4): 787-808, https://www.webofscience.com/wos/woscc/full-record/WOS:000381080700003.[65] Xu, Guangwu, Xu, Zhiqiang. Compressed Sensing Matrices From Fourier Matrices. IEEE TRANSACTIONS ON INFORMATION THEORY[J]. 2015, 第 2 作者61(1): 469-478, https://www.webofscience.com/wos/woscc/full-record/WOS:000346980400029.[66] Xu, Guangwu, Xu, Zhiqiang. Compressed Sensing Matrices From Fourier Matrices. IEEE TRANSACTIONS ON INFORMATION THEORY[J]. 2015, 第 2 作者61(1): 469-478, https://www.webofscience.com/wos/woscc/full-record/WOS:000346980400029.[67] Wang, Yang, Xu, Zhiqiang. Phase retrieval for sparse signals. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS[J]. 2014, 第 2 作者 通讯作者 37(3): 531-544, https://www.webofscience.com/wos/woscc/full-record/WOS:000342187700008.[68] Xu, Zhiqiang, Zhou, Tao. ON SPARSE INTERPOLATION AND THE DESIGN OF DETERMINISTIC INTERPOLATION POINTS. SIAM JOURNAL ON SCIENTIFIC COMPUTING[J]. 2014, 第 1 作者 通讯作者 36(4): A1752-A1769, https://www.webofscience.com/wos/woscc/full-record/WOS:000344743800017.[69] 陈发来, 高小山, 罗钟铉, 许志强. 序言. 中国科学(数学). 2014, 第 4 作者44(7): 前插3, https://d.wanfangdata.com.cn/periodical/zgkx-ca201407001.[70] Zhou, Tao, Narayan, Akil, Xu, Zhiqiang. MULTIVARIATE DISCRETE LEAST-SQUARES APPROXIMATIONS WITH A NEW TYPE OF COLLOCATION GRID. SIAM JOURNAL ON SCIENTIFIC COMPUTING[J]. 2014, 第 3 作者36(5): A2401-A2422, https://www.webofscience.com/wos/woscc/full-record/WOS:000346123200013.[71] Wang, Yang, Xu, Zhiqiang. Phase retrieval for sparse signals. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS[J]. 2014, 第 11 作者37(3): 531-544, https://www.webofscience.com/wos/woscc/full-record/WOS:000342187700008.[72] Xu, Zhiqiang, Zhou, Tao. ON SPARSE INTERPOLATION AND THE DESIGN OF DETERMINISTIC INTERPOLATION POINTS. SIAM JOURNAL ON SCIENTIFIC COMPUTING[J]. 2014, 第 11 作者36(4): A1752-A1769, https://www.webofscience.com/wos/woscc/full-record/WOS:000344743800017.[73] 陈发来, 高小山, 罗钟铉, 许志强. ������. 中国科学(数学). 2014, 第 4 作者44(7): 前插3, https://d.wanfangdata.com.cn/periodical/zgkx-ca201407001.[74] Zhou, Tao, Narayan, Akil, Xu, Zhiqiang. MULTIVARIATE DISCRETE LEAST-SQUARES APPROXIMATIONS WITH A NEW TYPE OF COLLOCATION GRID. SIAM JOURNAL ON SCIENTIFIC COMPUTING[J]. 2014, 第 3 作者36(5): A2401-A2422, https://www.webofscience.com/wos/woscc/full-record/WOS:000346123200013.[75] Shen, Zuowei, Xu, Zhiqiang. ON B-SPLINE FRAMELETS DERIVED FROM THE UNITARY EXTENSION PRINCIPLE. SIAM JOURNAL ON MATHEMATICAL ANALYSIS[J]. 2013, 第 2 作者45(1): 127-151, https://www.webofscience.com/wos/woscc/full-record/WOS:000315577500007.[76] Wang, Yang, Xu, Zhiqiang. The regularity of refinable functions. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS[J]. 2013, 第 11 作者34(1): 142-147, https://www.webofscience.com/wos/woscc/full-record/WOS:000310671700008.[77] Shen, Zuowei, Xu, Zhiqiang. ON B-SPLINE FRAMELETS DERIVED FROM THE UNITARY EXTENSION PRINCIPLE. SIAM JOURNAL ON MATHEMATICAL ANALYSIS[J]. 2013, 第 2 作者45(1): 127-151, http://dx.doi.org/10.1137/110860604.[78] Wang, Yang, Xu, Zhiqiang. The regularity of refinable functions. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS[J]. 2013, 第 2 作者 通讯作者 34(1): 142-147, https://www.webofscience.com/wos/woscc/full-record/WOS:000310671700008.[79] 许志强. ������������. 中国科学数学[J]. 2012, 第 1 作者42(9): 865, https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2012&filename=JAXK201209002&v=MDM2NDl1WnRGQ3JsVkx6UEx5elRaYkc0SDlQTXBvOUZab1I4ZVgxTHV4WVM3RGgxVDNxVHJXTTFGckNVUjdxZmI=.[80] 许志强. 压缩感知. 中国科学: 数学[J]. 2012, 第 1 作者42(9): 865, https://www.sciengine.com/doi/10.1360/012011-1043.[81] 许志强. ���������������������������������������������������������. 数学进展[J]. 2007, 第 1 作者36(3): 257, http://lib.cqvip.com/Qikan/Article/Detail?id=24793887.[82] 许艳, 王仁宏, 许志强. ���������������������������������������. 计算数学[J]. 2007, 第 3 作者29(1): 81, http://lib.cqvip.com/Qikan/Article/Detail?id=23919675.[83] 许志强. 多元样条与离散数学相关问题研究进展综述. 数学进展[J]. 2007, 第 1 作者36(3): 257, http://lib.cqvip.com/Qikan/Article/Detail?id=24793887.[84] 许艳, 王仁宏, 许志强. 一类超收敛数值差商公式研究. 计算数学[J]. 2007, 第 3 作者29(1): 81, http://lib.cqvip.com/Qikan/Article/Detail?id=23919675.[85] 陈玉福, 许志强, 贾屹峰. ���������������lagrange���hamilton������������������. 应用数学和力学[J]. 2006, 第 2 作者27(10): 1226, http://ir.amss.ac.cn/handle/2S8OKBNM/38889, http://www.irgrid.ac.cn/handle/1471x/6870999, http://ir.amss.ac.cn/handle/2S8OKBNM/38890.[86] 贾屹峰, 陈玉福, 许志强. ���������������������������������������lagrange������������������. 中国科学院研究生院学报[J]. 2006, 第 3 作者23(6): 721, http://ir.amss.ac.cn/handle/2S8OKBNM/48075, http://www.irgrid.ac.cn/handle/1471x/6871164, http://ir.amss.ac.cn/handle/2S8OKBNM/48076.[87] 许志强. ������popoviciu������. 中国科学A辑数学[J]. 2006, 第 1 作者36(12): 1431, http://ir.amss.ac.cn/handle/2S8OKBNM/39430, http://www.irgrid.ac.cn/handle/1471x/6871012, http://ir.amss.ac.cn/handle/2S8OKBNM/39431.[88] JIA Yifeng, CHEN Yufu, XU Zhiqiang. applicationofwueliminationmethodtoconstraineddynamics. APPLIEDMATHEMATICSANDMECHANICS[J]. 2006, 第 3 作者27(10): 1399, http://ir.amss.ac.cn/handle/2S8OKBNM/45567, http://www.irgrid.ac.cn/handle/1471x/6871124, http://ir.amss.ac.cn/handle/2S8OKBNM/45568.[89] 陈玉福, 许志强, 贾屹峰. 吴消元法在lagrange和hamilton方程中的应用. 应用数学和力学[J]. 2006, 第 2 作者27(10): 1226, http://ir.amss.ac.cn/handle/2S8OKBNM/38889, http://www.irgrid.ac.cn/handle/1471x/6870999, http://ir.amss.ac.cn/handle/2S8OKBNM/38890.[90] 贾屹峰, 陈玉福, 许志强. 吴消元法和吴微分特征列法在lagrange系统中的应用. 中国科学院研究生院学报[J]. 2006, 第 3 作者23(6): 721, http://ir.amss.ac.cn/handle/2S8OKBNM/48075, http://www.irgrid.ac.cn/handle/1471x/6871164, http://ir.amss.ac.cn/handle/2S8OKBNM/48076.[91] 许志强. 高维popoviciu公式. 中国科学A辑数学[J]. 2006, 第 1 作者36(12): 1431, http://ir.amss.ac.cn/handle/2S8OKBNM/39430, http://www.irgrid.ac.cn/handle/1471x/6871012, http://ir.amss.ac.cn/handle/2S8OKBNM/39431.[92] JIA Yifeng, CHEN Yufu, XU Zhiqiang. applicationofwueliminationmethodtoconstraineddynamics. APPLIEDMATHEMATICSANDMECHANICS[J]. 2006, 第 3 作者27(10): 1399, http://ir.amss.ac.cn/handle/2S8OKBNM/45567, http://www.irgrid.ac.cn/handle/1471x/6871124, http://ir.amss.ac.cn/handle/2S8OKBNM/45568.[93] Zhou, Heng, Xu, Zhiqiang. The lower bound of the PCM quantization error in high dimension. 第 2 作者http://arxiv.org/abs/1403.4311.[94] Zhou, Heng, Xu, Zhiqiang. The lower bound of the PCM quantization error in high dimension. 第 2 作者http://arxiv.org/abs/1403.4311.