基本信息
吴刚 男 硕导 数学科学学院
电子邮件: wugang2011@ucas.ac.cn
通信地址: 北京市石景山区玉泉路19号(甲)科研楼422房间
邮政编码: 100049
电子邮件: wugang2011@ucas.ac.cn
通信地址: 北京市石景山区玉泉路19号(甲)科研楼422房间
邮政编码: 100049
研究领域
- Littlewood-Paley 理论及其在不可压Navier-Stokes 方程、Euler 方程、Quasigeostrophic(QG)方程和Magnetohydrodynamics(MHD)方程等流体动力学方程中的应用
- 非线性抛物方程和分数阶耗散方程
招生信息
招生专业
070101-基础数学
招生方向
偏微分方程
教育背景
2006-09--2009-07 中国工程物理研究院 理学博士2001-09--2003-07 吉林大学 理学硕士1997-09--2001-07 吉林大学 理学学士
工作经历
工作简历
2015-11~现在, 中国科学院大学, 副教授2011-06~2015-11,中国科学院大学, 讲师2009-07~2011-06,中国科学院数学与系统科学研究院, 博士后2003-07~2006-07,东北大学东软信息学院, 讲师
教授课程
微积分II-A微积分II习题课-A01-1微积分I习题-A01-1微积分I-A微积分Ⅲ习题-A02-1微积分III微积分II习题课-A02-1微积分Ⅲ习题-A01-1微积分I习题-A02-1微积分II习题课-A03-1微积分Ⅱ-A微积分I习题-A03-1微积分II习题课-B01-1微积分Ⅱ-B微积分II-B微积分I习题-B01-1微积分I-B微积分I习题课-B01-1微积分Ⅲ-B01-2微积分III-B微积分III习题课-B01-1偏微分方程概论Ⅱ数学物理方程(电子与通信类)抛物型偏微分方程
出版信息
发表论文
[1] Cannone, Marco, Karch, Grzegorz, Pilarczyk, Dominika, Wu, Gang. Stability of singular solutions to the Navier-Stokes system. JOURNAL OF DIFFERENTIAL EQUATIONS[J]. 2022, 第 4 作者314: 316-339, http://dx.doi.org/10.1016/j.jde.2022.01.010.[2] Wang, Yanqing, Wei, Wei, Wu, Gang, Ye, Yulin. ON CONTINUATION CRITERIA FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS IN LORENTZ SPACES. ACTA MATHEMATICA SCIENTIA[J]. 2022, 第 3 作者42(2): 671-689, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=7177454&detailType=1.[3] Min, Dezai, Wu, Gang, Yao, Zhuoya. Global well-posedness of strong solution to 2D MHD equations in critical Fourier-Herz spaces. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS[J]. 2021, 第 2 作者504(1): http://dx.doi.org/10.1016/j.jmaa.2021.125345.[4] Wang, Yanqing, Wu, Gang, Zhou, Daoguo. epsilon-Regularity criteria in anisotropic Lebesgue spaces and Leray's self-similar solutions to the 3D Navier-Stokes equations. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK[J]. 2020, 第 2 作者71(5): http://dx.doi.org/10.1007/s00033-020-01400-x.[5] Wang, Yanqing, Wu, Gang, Zhou, Daoguo. A regularity criterion at one scale without pressure for suitable weak solutions to the Navier-Stokes equations. JOURNAL OF DIFFERENTIAL EQUATIONS[J]. 2019, 第 2 作者267(8): 4673-4704, http://dx.doi.org/10.1016/j.jde.2019.05.003.[6] Wang, Wei Hua, Wu, Gang. Global Mild Solution of Stochastic Generalized Navier-Stokes Equations with Coriolis Force. ACTA MATHEMATICA SINICA-ENGLISH SERIES[J]. 2018, 第 2 作者34(11): 1635-1647, http://lib.cqvip.com/Qikan/Article/Detail?id=676492916.[7] Wang, Wei Hua, Wu, Gang. Global Well-posedness of the 3D Generalized Rotating Magnetohydrodynamics Equations. ACTA MATHEMATICA SINICA-ENGLISH SERIES[J]. 2018, 第 2 作者34(6): 992-1000, https://www.webofscience.com/wos/woscc/full-record/WOS:000432413400005.[8] 南志杰, 吴刚. 三维广义磁流体方程组解的最优衰减率. 数学学报[J]. 2018, 第 2 作者61(1): 1-18, http://lib.cqvip.com/Qikan/Article/Detail?id=674185924.[9] Men, Yueyang, Wang, Wendong, Wu, Gang. Endpoint regularity criterion for weak solutions of the 3D incompressible liquid crystals system. MATHEMATICAL METHODS IN THE APPLIED SCIENCES[J]. 2018, 第 3 作者41(10): 3672-3683, https://www.webofscience.com/wos/woscc/full-record/WOS:000435801200012.[10] Wang, Weihua, Wu, Gang. Global mild solution of the generalized Navier-Stokes equations with the Coriolis force. APPLIED MATHEMATICS LETTERS[J]. 2018, 第 2 作者76: 181-186, http://dx.doi.org/10.1016/j.aml.2017.09.001.[11] Wang, Yanqing, Wu, Gang, Zhou, Daoguo. Some Interior Regularity Criteria Involving Two Components for Weak Solutions to the 3D Navier-Stokes Equations. JOURNAL OF MATHEMATICAL FLUID MECHANICS[J]. 2018, 第 2 作者20(4): 2147-2159, https://www.webofscience.com/wos/woscc/full-record/WOS:000451973300031.[12] Ren, Wei, Wang, Yanqing, Wu, Gang. Remarks on the singular set of suitable weak solutions for the three-dimensional Navier-Stokes equations. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS[J]. 2018, 第 3 作者467(2): 807-824, http://dx.doi.org/10.1016/j.jmaa.2018.07.003.[13] Wang, Yanqing, Wu, Gang. On the box-counting dimension of the potential singular set for suitable weak solutions to the 3D Navier-Stokes equations. NONLINEARITY[J]. 2017, 第 2 作者30(5): 1762-1772, https://www.webofscience.com/wos/woscc/full-record/WOS:000398755600002.[14] Ren, Wei, Wang, Yanqing, Wu, Gang. Partial regularity of suitable weak solutions to the multi-dimensional generalized magnetohydrodynamics equations. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS[J]. 2016, 第 3 作者18(6): http://www.corc.org.cn/handle/1471x/2375074.[15] Wang, Yanqing, Wu, Gang, Zhou, Daoguo. Refined regularity class of suitable weak solutions to the 3D magnetohydrodynamics equations with an application. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK[J]. 2016, 第 2 作者67(6): http://dx.doi.org/10.1007/s00033-016-0731-2.[16] Jiu, Quansen, Wang, Yanqing, Wu, Gang. Partial Regularity of the Suitable Weak Solutions to the Multi-dimensional Incompressible Boussinesq Equations. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS[J]. 2016, 第 3 作者28(2): 567-591, https://www.webofscience.com/wos/woscc/full-record/WOS:000376266900012.[17] Wang, Yanqing, Wu, Gang. Anisotropic Regularity Conditions for the Suitable Weak Solutions to the 3D Navier-Stokes Equations. JOURNAL OF MATHEMATICAL FLUID MECHANICS[J]. 2016, 第 2 作者18(4): 699-716, http://www.corc.org.cn/handle/1471x/2374955.[18] Wang, Yanqing, Wu, Gang. Local regularity criteria of the 3D Navier-Stokes and related equations. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS[J]. 2016, 第 2 作者140: 130-144, http://dx.doi.org/10.1016/j.na.2016.03.014.[19] Ren, Wei, Wu, Gang. Partial Regularity for the 3D Magneto-hydrodynamics System with Hyper-dissipation. ACTA MATHEMATICA SINICA-ENGLISH SERIES[J]. 2015, 第 2 作者31(7): 1097-1112, http://www.corc.org.cn/handle/1471x/2376420.[20] Wang, Yanqing, Wu, Gang. A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier-Stokes equations. JOURNAL OF DIFFERENTIAL EQUATIONS[J]. 2014, 第 2 作者256(3): 1224-1249, http://dx.doi.org/10.1016/j.jde.2013.10.014.[21] Wu, Gang, Zhang, Qian. Global well-posedness of the aggregation equation with supercritical dissipation in Besov spaces. ZAMMZEITSCHRIFTFURANGEWANDTEMATHEMATIKUNDMECHANIK[J]. 2013, 第 1 作者93(12): 882-894, https://www.webofscience.com/wos/woscc/full-record/WOS:000329941900003.[22] Wu, Gang, Zheng, Xiaoxin. Global well-posedness for the two-dimensional nonlinear Boussinesq equations with vertical dissipation. JOURNAL OF DIFFERENTIAL EQUATIONS[J]. 2013, 第 1 作者 通讯作者 255(9): 2891-2926, http://dx.doi.org/10.1016/j.jde.2013.07.023.[23] Wu, Gang, Xue, Liutang. Global well-posedness for the 2D inviscid Benard system with fractional diffusivity and Yudovich's type data. JOURNAL OF DIFFERENTIAL EQUATIONS[J]. 2012, 第 1 作者253(1): 100-125, https://www.webofscience.com/wos/woscc/full-record/WOS:000303789600005.[24] Cannone, Marco, Wu, Gang. Global well-posedness for Navier-Stokes equations in critical Fourier-Herz spaces. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS[J]. 2012, 第 2 作者75(9): 3754-3760, http://dx.doi.org/10.1016/j.na.2012.01.029.[25] Wu, Gang, Zheng, Xiaoxin. On the well-posedness for Keller-Segel system with fractional diffusion. MATHEMATICAL METHODS IN THE APPLIED SCIENCES[J]. 2011, 第 1 作者 通讯作者 34(14): 1739-1750, https://www.webofscience.com/wos/woscc/full-record/WOS:000294324900007.[26] Wu, Gang, Zhang, Bo. A remark on the Lipschitz estimates of solutions to Navier-Stokes equations. MATHEMATICAL METHODS IN THE APPLIED SCIENCES[J]. 2010, 第 1 作者 通讯作者 33(16): 2011-2018, https://www.webofscience.com/wos/woscc/full-record/WOS:000283640500009.[27] Wu, Gang. Inviscid limit for axisymmetric flows without swirl in a critical Besov space. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK[J]. 2010, 第 1 作者 通讯作者 61(1): 63-72, https://www.webofscience.com/wos/woscc/full-record/WOS:000274658400005.[28] Wu, Gang, Zhang, Bo. Local well-posedness of the viscous rotating shallow water equations with a term of capillarity. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK[J]. 2010, 第 1 作者 通讯作者 90(6): 489-501, https://www.webofscience.com/wos/woscc/full-record/WOS:000278970700002.[29] Wu, Gang. Regularity criteria for the 3D generalized MHD equations in terms of vorticity. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS[J]. 2009, 第 1 作者 通讯作者 71(9): 4251-4258, http://dx.doi.org/10.1016/j.na.2009.02.115.[30] Miao, Changxing, Wu, Gang. Global well-posedness of the critical Burgers equation in critical Besov spaces. JOURNAL OF DIFFERENTIAL EQUATIONS[J]. 2009, 第 2 作者247(6): 1673-1693, http://dx.doi.org/10.1016/j.jde.2009.03.028.[31] Biler, Piotr, Wu, Gang. Two-dimensional chemotaxis models with fractional diffusion. MATHEMATICAL METHODS IN THE APPLIED SCIENCES[J]. 2009, 第 2 作者32(1): 112-126, http://dx.doi.org/10.1002/mma.1036.[32] Wu, Gang, Yuan, Ha. Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS[J]. 2008, 第 1 作者 通讯作者 340(2): 1326-1335, http://dx.doi.org/10.1016/j.jmaa.2007.09.060.[33] Wu Gang. On the inviscid limit of the two-dimensional Navier-Stokes equations with fractional diffusion. 2008, 第 1 作者[34] Wu Gang. Local well-posedness of the Cauchy problem for the generalized Camassa-Holm equation in Besov spaces. 2007, 第 1 作者[35] 袁洪君, 吴刚. 以Dirac测度为源的拟线性退化抛物方程. 数学年刊A辑[J]. 2005, 第 2 作者26(4): 515-526, http://lib.cqvip.com/Qikan/Article/Detail?id=20018766.[36] Wei Ren, Yanqing Wang, Gang Wu. Remarks on the singular set of suitable weak solutions to the 3D Navier-Stokes equations. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. 第 3 作者http://dx.doi.org/10.1016/j.jmaa.2018.07.003.
科研活动
科研项目
( 1 ) 流体动力学方程的调和分析方法, 负责人, 国家任务, 2012-01--2014-12( 2 ) 几类非线性发展方程的数学理论, 参与, 其他国际合作项目, 2012-05--2014-04( 3 ) 微分算子特征值的最优估计, 参与, 国家任务, 2017-01--2020-12( 4 ) 关于一些流体动力学方程的数学理论, 负责人, 国家任务, 2018-01--2021-12
指导学生
现指导学生
敏德载 硕士研究生 070101-基础数学
姚卓雅 硕士研究生 070101-基础数学