基本信息
梁文杰  男  博导  中国科学院物理研究所
电子邮件: wjliang@aphy.iphy.ac.cn
通信地址: 北京市海淀区中关村南三街8号
邮政编码: 100190

研究领域

当粒子或准粒子被限制在一定的结构和尺寸下,通常表现出与经典物理图象不同的性质。在经典条件下可以忽略的相互作用成为决定性的关系,从而展现出崭新的物理和惊人的物性。我们的研究兴趣主要着眼在受限体系下的量子传输效应,粒子和准粒子如何相干的通过受限结构(比如单个分子,单个量子点,纳米线以及其他低维结构),研究在这个过程重要的物理过程和关联作用,并着眼与寻找与其相关的新奇器件性能。

目前的研究方向包含:

单分子和双分子中的输运和关联耦合

量子相变与非费米液体行为

二维关联材料中的巡游电子耦合行为

低维材料的声子输运以及热电性质研究

超灵敏纳米传感阵列


办公地点: 中科院物理所M楼1031

办公电话: 010-82648159

电子邮箱:wjliang@ucas.ac.cn



招生信息

   
招生专业
070205-凝聚态物理
招生方向
单分电子学
量子输运
受限体系物性

教育背景

1999-09--2005-06   美国哈佛大学   获得博士学位
1996-09--1999-07   清华大学   硕士学位
1991-09--1996-07   清华大学   学士学位

工作经历

   
工作简历
2006-07~2008-12,美国劳伦斯伯克利国家实验室, 博士后研究员
2005-07~2006-06,加州大学伯克利分校, 博士后研究员

教授课程

固体物理学

专利与奖励

   
专利成果
[1] 梁文杰, 宗肖航, 吕文刚, 赵利平. 一种半导体薄膜气体传感器. CN: CN114324494A, 2022-04-12.
[2] 赵宇鑫, 梁文杰, 牟善军, 刘全桢, 孙昊田, 胡适. 混合气体的组分浓度识别方法及系统. CN: CN110161181B, 2022-03-04.
[3] 赵宇鑫, 胡适, 牟善军, 刘全桢, 王林, 张健中, 梁文杰, 霍子扬. 气体传感模块及其制备方法和应用. CN: CN110161091B, 2022-02-15.
[4] 赵宇鑫, 胡适, 牟善军, 刘全桢, 王林, 张健中, 梁文杰, 霍子扬. 气体传感模块及其制备方法和应用. CN: CN110161091A, 2019-08-23.
[5] 赵宇鑫, 梁文杰, 牟善军, 刘全桢, 孙昊田, 胡适. 混合气体的组分浓度识别方法及系统. CN: CN110161181A, 2019-08-23.
[6] 赵宇鑫, 牟善军, 梁文杰, 刘全桢, 霍子扬, 苏悦, 王林. 微传感芯片及其制备方法、气体检测方法和应用. CN: CN110161084A, 2019-08-23.
[7] 张余春, 赵尚骞, 梁文杰. 定位裁剪多壁碳纳米管的方法. CN: CN104392902A, 2015-03-04.
[8] 赵尚骞, 梁文杰, 吕文刚, 张余春, 吕燕. 一种具有纳米间隙的异质电极对的制作方法. CN: CN103903970A, 2014-07-02.

出版信息

   
发表论文
[1] Yu, Wei, Guo, Xiao, Cai, Yuwen, Yu, Xiaotian, Liang, Wenjie. Controlled crossover of electron transport in graphene nanoconstriction: From Coulomb blockade to electron interference. CHINESE PHYSICS B[J]. 2023, 32(7): 489-494, http://dx.doi.org/10.1088/1674-1056/accf67.
[2] 梁文杰. 物理学不存在了?. 科学世界. 2023, 1-1, http://lib.cqvip.com/Qikan/Article/Detail?id=7109329103.
[3] 许秀来, 梁文杰, 孙方稳. 固态单量子体系的调控与应用专题编者按. 物理学报[J]. 2022, 71(6): 1-1, http://lib.cqvip.com/Qikan/Article/Detail?id=7106833094.
[4] 朱秋毫, 梁文杰. Accurate determination of anisotropic thermal conductivity for ultrathin composite film. 中国物理B[J]. 2022, 31: 108102-, [5] 张茹轩, 梁文杰. Detection and identification of gas components based on nano sensor array. 物理学报[J]. 2022, 71(18): 180702-, [6] Wang, Xinhe, Cong, Lin, Zhu, Dong, Yuan, Zi, Lin, Xiaoyang, Zhao, Weisheng, Bai, Zaiqiao, Liang, Wenjie, Sun, Ximing, Deng, GuangWei, Jiang, Kaili. Visualizing nonlinear resonance in nanomechanical systems via single-electron tunneling. NANO RESEARCH[J]. 2021, 14(4): 1156-1161, http://lib.cqvip.com/Qikan/Article/Detail?id=7103998721.
[7] 梁文杰. Evolution and universality of two stage Kondo effet in single manganese phthalocyanine molecule transistors. Nature Communications. 2021, [8] Xiao Guo, Qiuhao Zhu, Liyan Zhou, Wei Yu, Wengang Lu, Wenjie Liang. Evolution and universality of two-stage Kondo effect in single manganese phthalocyanine molecule transistors. NATURE COMMUNICATIONS[J]. 2021, 12(1): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7946881/.
[9] Zhou, LiYan, Zheng, Qi, Bao, LiHong, Liang, WenJie. Bipolar Thermoelectrical Transport of SnSe Nanoplate in Low Temperature. CHINESE PHYSICS LETTERS[J]. 2020, 37(1): 69-73, http://lib.cqvip.com/Qikan/Article/Detail?id=7100982694.
[10] Su, Yue, Chen, Peng, Wang, Pengjian, Ge, Jing, Hu, Shi, Zhao, Yuxin, Xie, Gang, Liang, Wenjie, Song, Peng. Pd-loaded SnO2 hierarchical nanospheres for a high dynamic range H2S micro sensor. RSC ADVANCES[J]. 2019, 9(11): 5987-5994, [11] Guo, Xiao, Liang, Wenjie. The Unconventional Influence of a Nearby Molecule onto Transport of Single C60 Molecule Transistor. CHINESE PHYSICS LETTERS[J]. 2019, 36(12): 62-66, http://lib.cqvip.com/Qikan/Article/Detail?id=7100635039.
[12] Lin, Jiannan, Hu, Zheng, Li, Hui, Qu, Jianqiang, Zhang, Miao, Liang, Wenjie, Hu, Shi. Ultrathin Nanotubes of Bi5O7I with a Reduced Band Gap as a High-Performance Photocatalyst. INORGANIC CHEMISTRY[J]. 2019, 58(15): 9833-9843, [13] Wang, Pengjian, Hui, Junfeng, Yuan, Tingbiao, Chen, Peng, Su, Yue, Liang, Wenjie, Chen, Fulin, Zheng, Xiaoyan, Zhao, Yuxin, Hu, Shi. Ultrafine nanoparticles of W-doped SnO2 for durable H2S sensors with fast response and recovery. RSC ADVANCES[J]. 2019, 9(20): 11046-11053, https://www.webofscience.com/wos/woscc/full-record/WOS:000466756100005.
[14] Guo Xiao, Liang Wenjie. The Unconventional Influence of a Nearby Molecule onto Transport of Single C60 Molecule Transistor** Supported by the National Key R&D Program of China (2016YFA0200800), the Strategic Priority Research Program of Chinese Academy of Sciences under Grant Nos XDB30000000 and XDB07030100, the Sinopec Innovation Scheme (A-381), and the Rise-Sinopec Fund (No 10010104-18-ZC0609-0003).. CHINESE PHYSICS LETTERS[J]. 2019, 36(12): [15] 梁文杰. The unconventional influence of a nearby molecule onto transport of single C6- molecule transistor. Chin. Phys. Lett. express letter. 2019, [16] Lin, Weihua, Cao, En, Zhang, Liqiang, Xu, Xuefeng, Song, Yuzhi, Liang, Wenjie, Sun, Mengtao. Electrically enhanced hot hole driven oxidation catalysis at the interface of a plasmon-exciton hybrid. NANOSCALE[J]. 2018, 10(12): 5482-5488, https://www.webofscience.com/wos/woscc/full-record/WOS:000428787600010.
[17] Cao, En, Lin, Weihua, Sun, Mengtao, Liang, Wenjie, Song, Yuzhi. Exciton-plasmon coupling interactions: from principle to applications. NANOPHOTONICSnull. 2018, 7(1): 145-167, https://doaj.org/article/bfa7740e6e8e40828711054c2b4dad35.
[18] Yang, Xianzhong, Li, Jing, Zhao, Yuxin, Yang, Jianhua, Zhou, Liyan, Dai, Zhigao, Guo, Xiao, Mu, Shanjun, Liu, Quanzhen, Jiang, Chunming, Sun, Mengtao, Wang, Jianfang, Liang, Wenjie. Self-assembly of Au@Ag core-shell nanocuboids into staircase superstructures by droplet evaporation. NANOSCALE[J]. 2018, 10(1): 142-149, https://www.webofscience.com/wos/woscc/full-record/WOS:000418621000013.
[19] Wang, Xinhe, Zhu, Dong, Yang, Xinhe, Yuan, Long, Li, Haiou, Wang, Jiangtao, Chen, Mo, Deng, Guangwei, Liang, Wenjie, Li, Qunqing, Fan, Shoushan, Guo, Guoping, Jiang, Kaili. Stressed carbon nanotube devices for high tunability, high quality factor, single mode GHz resonators. NANO RESEARCH[J]. 2018, 11(11): 5812-5822, http://lib.cqvip.com/Qikan/Article/Detail?id=676662681.
[20] Cao, En, Sun, Mengtao, Song, Yuzhi, Liang, Wenjie. Exciton-plasmon hybrids for surface catalysis detected by SERS. NANOTECHNOLOGYnull. 2018, 29(37): https://www.webofscience.com/wos/woscc/full-record/WOS:000438624500001.
[21] Xinhe Wang, Dong Zhu, Xinhe Yang, Long Yuan, Haiou Li, Jiangtao Wang, Mo Chen, Guangwei Deng, Wenjie Liang, Qunqing Li, Shoushan Fan, Guoping Guo, Kaili Jiang. Stressed carbon nanotube devices for high tunability,high quality factor, single mode GHz resonators. 纳米研究:英文版[J]. 2018, 11(11): 5812-5822, http://lib.cqvip.com/Qikan/Article/Detail?id=676662681.
[22] Ren, Xin, Cao, En, Lin, Weihua, Song, Yuzhi, Liang, Wenjie, Wang, Jingang. Recent advances in surface plasmon-driven catalytic reactions (vol 7, pg 31189, 2017). RSC ADVANCESnull. 2018, 8(52): 30049-30049, https://www.webofscience.com/wos/woscc/full-record/WOS:000443624500063.
[23] Wang, Jingang, Mu, Xijiao, Wang, Xinxin, Wang, Nan, Ma, Fengcai, Liang, Wenjie, Sun, Mengtao. The thermal and thermoelectric properties of in-plane C-BN hybrid structures and graphene/h-BN van der Waals heterostructures. MATERIALS TODAY PHYSICSnull. 2018, 5: 29-57, http://dx.doi.org/10.1016/j.mtphys.2018.05.006.
[24] Cao, En, Guo, Xiao, Zhang, Liqiang, Shi, Ying, Lin, Weihua, Liu, Xiaochun, Fang, Yurui, Zhou, Liyan, Sun, Yinghui, Song, Yuzhi, Liang, Wenjie, Sun, Mengtao. Electrooptical Synergy on Plasmon-Exciton-Codriven Surface Reduction Reactions. ADVANCEDMATERIALSINTERFACES[J]. 2017, 4(24): [25] Yang, Xianzhong, Yu, Hua, Guo, Xiao, Ding, Qianqian, Pullerits, Tonu, Wang, Rongming, Zhang, Guangyu, Liang, Wenjie, Sun, Mengtao. Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction. MATERIALS TODAY ENERGY[J]. 2017, 5: 72-78, http://dx.doi.org/10.1016/j.mtener.2017.05.005.
[26] Wang, Jiangcai, Cao, En, Lin, Weihua, Song, Peng, Zhou, Qiao, Zhang, Xiaofang, Sun, Yinghui, Liang, Wenjie, Sun, Mengtao. Fluorescence Resonance Energy Transfer of Monomer via Photoisomerization. CHEMISTRYSELECT[J]. 2017, 2(22): 6446-6451, https://www.webofscience.com/wos/woscc/full-record/WOS:000407471900034.
[27] Wang, Jingang, Ma, Fengcai, Liang, Wenjie, Sun, Mengtao. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures. MATERIALS TODAY PHYSICSnull. 2017, 2: 6-34, http://dx.doi.org/10.1016/j.mtphys.2017.07.001.
[28] Lin, Weihua, Shi, Ying, Yang, Xianzhong, Li, Jing, Cao, En, Xu, Xuefeng, Pullerits, Tonu, Liang, Wenjie, Sun, Mengtao. Physical mechanism on exciton-plasmon coupling revealed by femtosecond pump-probe transient absorption spectroscopy. MATERIALS TODAY PHYSICS[J]. 2017, 3: 33-40, http://dx.doi.org/10.1016/j.mtphys.2017.12.001.
[29] Wang, Jiangcai, Lin, Weihua, Cao, En, Xu, Xuefeng, Liang, Wenjie, Zhang, Xiaofang. Surface Plasmon Resonance Sensors on Raman and Fluorescence Spectroscopy. SENSORS[J]. 2017, 17(12): https://doaj.org/article/bccde46f02ad406999353abf77308b98.
[30] Wang, Jingang, Ma, Fengcai, Liang, Wenjie, Wang, Rongming, Sun, Mengtao. Optical, photonic and optoelectronic properties of graphene, h-NB and their hybrid materials. NANOPHOTONICSnull. 2017, 6(5): 943-976, https://www.webofscience.com/wos/woscc/full-record/WOS:000407233400009.
[31] Cui, Lin, Ren, Xin, Yang, Xianzhong, Wang, Peijie, Qu, Yingqi, Liang, Wenjie, Sun, Mengtao. Plasmon-driven catalysis in aqueous solutions probed by SERS spectroscopy. JOURNAL OF RAMAN SPECTROSCOPYnull. 2016, 47(8): 877-883, https://www.webofscience.com/wos/woscc/full-record/WOS:000380949500001.
[32] Ding, Qianqian, Shi, Ying, Chen, Maodu, Li, Hui, Yang, Xianzhong, Qu, Yingqi, Liang, Wenjie, Sun, Mengtao. Ultrafast Dynamics of Plasmon-Exciton Interaction of Ag Nanowire-Graphene Hybrids for Surface Catalytic Reactions. SCIENTIFIC REPORTS[J]. 2016, 6: https://www.webofscience.com/wos/woscc/full-record/WOS:000382613000001.
[33] Zhang, Zhenglong, Xu, Ping, Yang, Xianzhong, Liang, Wenjie, Sun, Mengtao. Surface plasmon-driven photocatalysis in ambient, aqueous and high-vacuum monitored by SERS and TERS. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWSnull. 2016, 27: 100-112, http://dx.doi.org/10.1016/j.jphotochemrev.2016.04.001.
[34] Zhao, Yuxin, Mu, Shanjun, Sun, Wanfu, Liu, Quanzhen, Li, Yanpeng, Yan, Zifeng, Huo, Ziyang, Liang, Wenjie. Growth of copper oxide nanocrystals in metallic nanotubes for high performance battery anodes. NANOSCALE[J]. 2016, 8(48): 19994-20000, https://www.webofscience.com/wos/woscc/full-record/WOS:000390660000006.
[35] Zhenglong Zhang, Ping Xu, Xianzhong Yang, Wenjie Liang, Mengtao Sun. Surface plasmon-driven photocatalysis in ambient, aqueous and high-vacuum monitored by SERS and TERS. JOURNAL OF PHOTOCHEMISTRY & PHOTOBIOLOGY, C: PHOTOCHEMISTRY REVIEWS. 2016, 27: 100-112, http://dx.doi.org/10.1016/j.jphotochemrev.2016.04.001.
[36] 王恩哥. Modulating magnetism of nitrogen-doped zigzag graphene nanoribbons. CHINESE PHYSICS B[J]. 2014, 23(6): 511-517, http://ir.iphy.ac.cn/handle/311004/58998.
[37] Zhao, Shangqian, Lu, Yan, Zhang, Yuchun, Lu, Wengang, Liang, Wenjie, Wang, Enge. Piezo-antiferromagnetic effect of sawtooth-like graphene nanoribbons. APPLIED PHYSICS LETTERS[J]. 2014, 104(20): http://ir.iphy.ac.cn/handle/311004/58910.
[38] Lu, Yan, Zhao, Shangqian, Zhang, Yuchun, Liu, Hong, Lu, Wengang, Liang, Wenjie. Valley-polarized insulating states in zigzag silicene nanoribbons. MATERIALS RESEARCH EXPRESS[J]. 2014, 1(4): 045009-, http://download.archive.nstl.gov.cn:80/download/getArticle.do?md=a1598e5b56c65dd97cacd9298ea51714df70ab15331744322cbebe4b41c7c4e5948d35e0bbefb03986840514b930a5c8625d9afdcdbedaf6486189809a1db701.
[39] Lu, Yan, Zhao, Shangqian, Lu, Wengang, Liu, Hong, Liang, Wenjie. Excitonic effects of E11, E22, and E33 in armchair-edged graphene nanoribbons. JOURNAL OF APPLIED PHYSICS[J]. 2014, 115(10): http://ir.iphy.ac.cn/handle/311004/59169.
[40] Zhang YuChun, Yan Jing, Zhao ShangQian, Wang WenLong, Liang WenJie. Engineering Double-Walled Carbon Nanotubes by Ar Plasma. CHINESE PHYSICS LETTERS[J]. 2014, 31(8): http://ir.iphy.ac.cn/handle/311004/59026.
[41] Zhao ShangQian, Lu Yan, Lu WenGang, Liang WenJie, Wang EnGe. Transport Properties of Surface-Modulated Gold Atomic-Chains and Nanofilms: Ab initio Calculations. CHINESE PHYSICS LETTERS[J]. 2014, 31(6): http://ir.iphy.ac.cn/handle/311004/59036.
[42] Zhang, Yuchun, Zhou, Liyan, Zhao, Shangqian, Wang, Wenlong, Wang, Enge, Liang, Wenjie. Electronic transport properties of inner and outer shells in near ohmic-contacted double-walled carbon nanotube transistors. JOURNAL OF APPLIED PHYSICS[J]. 2014, 115(22): http://ir.iphy.ac.cn/handle/311004/59147.
[43] Lu, Yan, Lu, Wengang, Liang, Wenjie, Liu, Hong. Energy splitting and optical activation of triplet excitons in zigzag-edged graphene nanoribbons. PHYSICAL REVIEW B[J]. 2013, 88(16): http://ir.iphy.ac.cn/handle/311004/56965.
[44] 王恩哥. Ferroelectric Gated Electrical Transport in CdS Nanotetrapods. NANO LETTERS[J]. 2011, 11(5): 1913-1918, http://ir.iphy.ac.cn/handle/311004/38089.
发表著作
(1) 神奇的物理学, 中国轻工业出版社, 2016-10, 第 3 作者
(2) 外星来信, 科学出版社, 2019-03, 第 5 作者

指导学生

已指导学生

吕燕  博士研究生  070205-凝聚态物理  

张余春  博士研究生  070205-凝聚态物理  

杨先中  博士研究生  070205-凝聚态物理  

郭潇  博士研究生  070205-凝聚态物理  

周利艳  博士研究生  070205-凝聚态物理  

现指导学生

朱秋毫  博士研究生  070205-凝聚态物理  

李苇珂  博士研究生  070205-凝聚态物理  

余炜  博士研究生  070205-凝聚态物理  

孙万梓  博士研究生  070205-凝聚态物理  

俞晓天  硕士研究生  070205-凝聚态物理  

蔡煜文  硕士研究生  070205-凝聚态物理