基本信息
唐贻发  男  博导  中国科学院数学与系统科学研究院
电子邮件: tyf@lsec.cc.ac.cn
通信地址: 北京中关村东路55号中科院数学院南楼712室
邮政编码: 100190

研究领域

哈密尔顿系统的辛几何算法、分数阶微分方程数值分析及其应用、机器学习与动力系统

招生信息

   
招生专业
070102-计算数学
070104-应用数学
招生方向
哈密尔顿系统的辛几何算法
机器学习与动力系统
分数阶微分方程数值分析及其应用

教育背景

1993-02--1997-07   中国科学院计算中心、计算数学与科学工程计算研究所   理学博士
1987-09--1990-07   中国科学院计算中心   理学硕士
1983-09--1987-07   复旦大学   理学学士
学历
-- 研究生
学位
-- 博士

工作经历

   
工作简历
2007-11~2008-11,西班牙马德里Complutense大学, 访问教授
2004-03~现在, 中国科学院数学与系统科学研究院, 研究员
1999-02~2004-03,中国科学院数学与系统科学研究院, 副研究员
1997-07~1999-02,中国科学院计算数学与科学工程计算研究所, 助理研究员、副研究员
1995-09~1996-06,美国Los Alamos国家实验室, Staff Research Assistant
1994-06~1995-09,西班牙马德里Complutense大学, 访问学者
1990-07~1993-02,中国科学院计算中心, 研究助理
社会兼职
2016-10-25-今,Progress in Fractional Differentiation and Applications, Member of Editorial Board
2014-08-08-今,Simulation: Transactions of the Society for Modeling and Simulation International, Associate Editor
2014-07-18-今,《计算数学》, 编委
2014-06-05-2021-02-28,International Journal of Computer Mathematics, Associate Editor
2012-08-28-今,《系统仿真学报》, 编委
2012-08-16-2017-08-16,中国计算物理学会, 理事
2010-01-01-今,International Journal of Modeling, Simulation, and Scientific Computing, Associate Editor
2009-11-05-今,中国仿真学会, 常务理事

教授课程

动力系统的几何算法和机器学习方法
微积分II-A
微积分I-A
常微分方程
哈密尔顿系统的辛几何算法

出版信息

   
发表论文
[1] Zhang, Jingna, Lv, Jingyun, Huang, Jianfei, Tang, Yifa. A fast Euler-Maruyama method for Riemann-Liouville stochastic fractional nonlinear differential equations. PHYSICA D-NONLINEAR PHENOMENA[J]. 2023, 446: http://dx.doi.org/10.1016/j.physd.2023.133685.
[2] Weiping Bu, Huimin Yang, Yifa Tang. Two fast numerical methods for a generalized Oldroyd-B fluid model. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION. 2023, 117: http://dx.doi.org/10.1016/j.cnsns.2022.106963.
[3] Arshad, Sadia, Saleem, Iram, Akgul, Ali, Huang, Jianfei, Tang, Yifa, Eldin, Sayed M. A novel numerical method for solving the Caputo-Fabrizio fractional differential equation. AIMS MATHEMATICS[J]. 2023, 8(4): 9535-9556, http://dx.doi.org/10.3934/math.2023481.
[4] Zhang, Jingna, Tang, Yifa, Huang, Jianfei. A fast Euler-Maruyama method for fractional stochastic differential equations. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING[J]. 2023, 69(1): 273-291, [5] Yao, C H, Fan, H J, Zhao, Y M, Tang, Y F. Finite element approximation for Maxwell?s equations with Debye memory under a nonlinear boundary feedback with delay. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION[J]. 2023, 119: http://dx.doi.org/10.1016/j.cnsns.2022.107082.
[6] Zhu, Beibei, Liu, Jian, Zhang, Jiawei, Zhu, Aiqing, Tang, Yifa. Adaptive energy-preserving algorithms for guiding center system. PLASMA SCIENCE & TECHNOLOGY[J]. 2023, 25(4): 11-22, http://dx.doi.org/10.1088/2058-6272/ac9c4a.
[7] Zhu, Beibei, Ji, Lun, Zhu, Aiqing, Tang, Yifa. Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems. CHINESE PHYSICS B[J]. 2023, 32(2): 60-79, http://lib.cqvip.com/Qikan/Article/Detail?id=7109047814.
[8] Wei, Yabing, Zhao, Yanmin, Wang, Fenling, Tang, Yifa. Superconvergence analysis of nonconforming finite element method for two-dimensional time-fractional Allen-Cahn equation. APPLIED MATHEMATICS LETTERS[J]. 2023, 140: http://dx.doi.org/10.1016/j.aml.2023.108569.
[9] Beibei Zhu, Yifa Tang, Jian Liu. Energy-preserving methods for guiding center system based on averaged. Physics of Plasmas[J]. 2022, [10] Wu, Sidi, Zhu, Aiqing, Lu, Benzhuo. On convergence of neural network methods for solving elliptic interface problems. 2022, http://arxiv.org/abs/2203.03407.
[11] Xiongbiao Tu, Qiao Wang, Yifa Tang. Highly Efficient Numerical Integrator for the Circular Restricted Three-Body Problem. SYMMETRY[J]. 2022, 14: https://doaj.org/article/e5d24dc3506a44828ac74f4b536dafe4.
[12] Beibei Zhu, Lun Ji, Aiqing Zhu, Yifa Tang. Poisson Integrators Based on Splitting Method for Poisson Systems. 计算物理通讯(英文)[J]. 2022, 32(9): 1129-1155, http://lib.cqvip.com/Qikan/Article/Detail?id=7109980156.
[13] Chen, Hu, Chen, Mengyi, Sun, Tao, Tang, Yifa. Local error estimate of L1 scheme for linearized time fractional KdV equation with weakly singular solutions. APPLIED NUMERICAL MATHEMATICS[J]. 2022, 179: 183-190, http://dx.doi.org/10.1016/j.apnum.2022.04.021.
[14] Zhu, Aiqing, Jin, Pengzhan, Tang, Yifa. Approximation capabilities of measure-preserving neural networks. NEURAL NETWORKS[J]. 2022, 147: 72-80, [15] Zhao, Yue, Mao, Zhiping, Guo, Ling, Tang, Yifa, Karniadakis, George Em. A spectral method for stochastic fractional PDEs using dynamically-orthogonal/bi-orthogonal decomposition. JOURNAL OF COMPUTATIONAL PHYSICS[J]. 2022, 461: 17-, http://dx.doi.org/10.1016/j.jcp.2022.111213.
[16] Zhu, Beibei, Ji, Lun, Zhu, Aiqing, Tang, Yifa. Poisson Integrators based on splitting method for Poisson systems. 2022, [17] Huang, Jianfei, Huo, Zhenyang, Zhang, Jingna, Tang, Yifa. An Euler-Maruyama method and its fast implementation for multiterm fractional stochastic differential equations. MATHEMATICAL METHODS IN THE APPLIED SCIENCES. 2022, 46(2): [18] Zhu, Aiqing, Zhu, Beibei, Zhang, Jiawei, Tang, Yifa, Liu, Jian. VPNets: Volume-preserving neural networks for learning source-free dynamics. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS[J]. 2022, 416: http://dx.doi.org/10.1016/j.cam.2022.114523.
[19] Zhang, Jingna, Huang, Jianfei, Aleroev, Temirkhan S, Tang, Yifa. A linearized ADI scheme for two-dimensional time-space fractional nonlinear vibration equations. INTERNATIONALJOURNALOFCOMPUTERMATHEMATICS[J]. 2021, 98(12): 2378-2392, https://www.webofscience.com/wos/woscc/full-record/WOS:000628036300001.
[20] Zhu, Aiqing, Jin, Pengzhan, Zhu, Beibei, Tang, Yifa. Inverse modified differential equations for discovery of dynamics. 2021, http://arxiv.org/abs/2009.01058.
[21] Zhang, Jingna, Aleroev, Temirkhan S, Tang, Yifa, Huang, Jianfei. Numerical Schemes for Time-Space Fractional Vibration Equations. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS[J]. 2021, 13(4): 806-826, http://dx.doi.org/10.4208/aamm.OA-2020-0066.
[22] Huang, Jianfei, Zhang, Jingna, Arshad, Sadia, Tang, Yifa. A superlinear convergence scheme for the multi-term and distribution-order fractional wave equation with initial singularity. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS[J]. 2021, 37(4): 2833-2848, http://dx.doi.org/10.1002/num.22773.
[23] Huang, Jianfei, Qiao, Zhi, Zhang, Jingna, Arshad, Sadia, Tang, Yifa. Two linearized schemes for time fractional nonlinear wave equations with fourth-order derivative. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING[J]. 2021, 66(1-2): 561-579, http://dx.doi.org/10.1007/s12190-020-01449-x.
[24] Huang, Jianfei, Zhang, Jingna, Arshad, Sadia, Tang, Yifa. A numerical method for two-dimensional multi-term time-space fractional nonlinear diffusion-wave equations. APPLIED NUMERICAL MATHEMATICS[J]. 2021, 159: 159-173, http://dx.doi.org/10.1016/j.apnum.2020.09.003.
[25] Fan, Huijun, Zhao, Yanmin, Wang, Fenling, Shi, Yanhua, Tang, Yifa. A Superconvergent Nonconforming Mixed FEM for Multi-Term Time-Fractional Mixed Diffusion and Diffusion-Wave Equations with Variable Coefficients. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS[J]. 2021, 11(1): 63-92, https://www.webofscience.com/wos/woscc/full-record/WOS:000593119800004.
[26] Sadia Arshad, Iram Saleem, Ozlem Defterli, Yifa Tang, Dumitru Baleanu. Simpson's method for fractional differential equations with a non-singular kernel applied to a chaotic tumor model. Physica Scripta[J]. 2021, [27] Wei, Yabing, Zhao, Yanmin, Wang, Fenling, Tang, Yifa, Yang, Jiye. Superconvergence Analysis of Anisotropic FEMs for Time Fractional Variable Coefficient Diffusion Equations. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY[J]. 2020, 43(6): 4411-4429, https://www.webofscience.com/wos/woscc/full-record/WOS:000521901700001.
[28] 祝爱卿, 金鹏展, 唐贻发. 基于辛格式的深度哈密尔顿神经网络. 计算数学[J]. 2020, 42(3): 370-384, http://lib.cqvip.com/Qikan/Article/Detail?id=7102636856.
[29] Barletti, Luigi, Brugnano, Luigi, Tang, Yifa, Zhu, Beibei. Spectrally accurate space-time solution of Manakov systems. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS[J]. 2020, 377: http://dx.doi.org/10.1016/j.cam.2020.112918.
[30] Jin, Pengzhan, Zhang, Zhen, Zhu, Aiqing, Tang, Yifa, Karniadakis, George Em. SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems. NEURAL NETWORKS[J]. 2020, 132: 166-179, http://dx.doi.org/10.1016/j.neunet.2020.08.017.
[31] Arshad, Sadia, Yildiz, Tugba Akman, Baleanu, Dumitru, Tang, Yifa. THE ROLE OF OBESITY IN FRACTIONAL ORDER TUMOR-IMMUNE MODEL. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS[J]. 2020, 82(2): 181-196, [32] Jin, Pengzhan, Tang, Yifa, Zhu, Aiqing. UNIT TRIANGULAR FACTORIZATION OF THE MATRIX SYMPLECTIC GROUP. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS[J]. 2020, 41(4): 1630-1650, https://www.webofscience.com/wos/woscc/full-record/WOS:000600630900008.
[33] Bu, Weiping, Ji, Lun, Tang, Yifa, Zhou, Jie. Space-time finite element method for the distributed-order time fractional reaction diffusion equations. APPLIED NUMERICAL MATHEMATICS[J]. 2020, 152: 446-465, http://dx.doi.org/10.1016/j.apnum.2019.11.010.
[34] Tu, Xiongbiao, Murua, Ander, Tang, Yifa. New high order symplectic integrators via generating functions with its application in many-body problem. BIT NUMERICAL MATHEMATICS[J]. 2020, 60(2): 509-535, http://dx.doi.org/10.1007/s10543-019-00785-0.
[35] Jin, Pengzhan, Lu, Lu, Tang, Yifa, Karniadakis, George Em. Quantifying the generalization error in deep learning in terms of data distribution and neural network smoothness. NEURAL NETWORKS[J]. 2020, 130: 85-99, http://dx.doi.org/10.1016/j.neunet.2020.06.024.
[36] Zhao, Yanmin, Wang, Fenling, Hu, Xiaohan, Shi, Zhengguang, Tang, Yifa. Anisotropic linear triangle finite element approximation for multi-term time-fractional mixed diffusion and diffusion-wave equations with variable coefficient on 2D bounded domain. COMPUTERS & MATHEMATICS WITH APPLICATIONS[J]. 2019, 78(5): 1705-1719, http://ir.amss.ac.cn/handle/2S8OKBNM/35379, http://www.irgrid.ac.cn/handle/1471x/6870924, http://ir.amss.ac.cn/handle/2S8OKBNM/35380, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000482248100035&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[37] Jianfei Huang, Yue Zhao, Sadia Arshad, Kuangying Li, Yifa Tang. ALTERNATING DIRECTION IMPLICIT SCHEMES FOR THE TWO-DIMENSIONAL TIME FRACTIONAL NONLINEAR SUPER-DIFFUSION EQUATIONS. 计算数学:英文版[J]. 2019, 37(3): 297-315, http://lib.cqvip.com/Qikan/Article/Detail?id=7002015321.
[38] Zhu, Beibei, Tang, Yifa, Zhang, Ruili, Zhang, Yihao. Symplectic simulation of dark solitons motion for nonlinear Schrodinger equation. NUMERICAL ALGORITHMS[J]. 2019, 81(4): 1485-1503, http://ir.amss.ac.cn/handle/2S8OKBNM/35355, http://www.irgrid.ac.cn/handle/1471x/6865799, http://ir.amss.ac.cn/handle/2S8OKBNM/35356, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000478001200019&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[39] Huang, Jianfei, Zhao, Yue, Arshad, Sadia, Li, Kuangying, Tang, Yifa. ALTERNATING DIRECTION IMPLICIT SCHEMES FOR THE TWO-DIMENSIONAL TIME FRACTIONAL NONLINEAR SUPER-DIFFUSION EQUATIONS. JOURNAL OF COMPUTATIONAL MATHEMATICS[J]. 2019, 37(3): 297-315, http://lib.cqvip.com/Qikan/Article/Detail?id=7002015321.
[40] Hu Chen, Xiaohan Hu, Jincheng Ren, Tao Sun, Yifa Tang. L1 scheme on graded mesh for the linearized time fractional KdV equation with initial singularity. 建模、仿真和科学计算国际期刊(英文)[J]. 2019, 10(1): 77-94, http://lib.cqvip.com/Qikan/Article/Detail?id=7107790369.
[41] Wang, Fenling, Zhao, Yanmin, Shi, Zhengguang, Shi, Yanhua, Tang, Yifa. High Accuracy Analysis of an Anisotropic Nonconforming Finite Element Method for Two-Dimensional Time Fractional Wave Equation. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS[J]. 2019, 9(4): 797-817, http://ir.amss.ac.cn/handle/2S8OKBNM/35789, http://www.irgrid.ac.cn/handle/1471x/6870936, http://ir.amss.ac.cn/handle/2S8OKBNM/35790, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000489324500009&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[42] Zhang, Ruili, Liu, Jian, Qin, Hong, Tang, Yifa. Energy-preserving algorithm for gyrocenter dynamics of charged particles. NUMERICAL ALGORITHMS[J]. 2019, 81(4): 1521-1530, http://ir.amss.ac.cn/handle/2S8OKBNM/35288, http://www.irgrid.ac.cn/handle/1471x/6865750, http://ir.amss.ac.cn/handle/2S8OKBNM/35289, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000478001200021&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[43] Wang, Fenling, Zhao, Yanmin, Chen, Chen, Wei, Yabing, Tang, Yifa. A novel high-order approximate scheme for two-dimensional time-fractional diffusion equations with variable coefficient. COMPUTERS & MATHEMATICS WITH APPLICATIONS[J]. 2019, 78(5): 1288-1301, http://ir.amss.ac.cn/handle/2S8OKBNM/35477, http://www.irgrid.ac.cn/handle/1471x/6870927, http://ir.amss.ac.cn/handle/2S8OKBNM/35478, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000482248100005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[44] Fenling Wang, Yanmin Zhao, Chen Chen, Yabing Wei, Yifa Tang. A novel high-order approximate scheme for two-dimensional time-fractional diffusion equations with variable coefficient. COMPUTERS AND MATHEMATICS WITH APPLICATIONS. 2019, 1288-1301, http://dx.doi.org/10.1016/j.camwa.2018.11.029.
[45] Huang, Jianfei, Arshad, Sadia, Jiao, Yandong, Tang, Yifa. Convolution Quadrature Methods for Time-Space Fractional Nonlinear Diffusion-Wave Equations. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS[J]. 2019, 9(3): 538-557, http://ir.amss.ac.cn/handle/2S8OKBNM/34851, http://www.irgrid.ac.cn/handle/1471x/6870898, http://ir.amss.ac.cn/handle/2S8OKBNM/34852, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000470088100008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[46] Yanmin Zhao, Fenling Wang, Xiaohan Hu, Zhengguang Shi, Yifa Tang. Anisotropic linear triangle finite element approximation for multi-term time-fractional mixed diffusion and diffusion-wave equations with variable coefficient on 2D bounded domain. COMPUTERS AND MATHEMATICS WITH APPLICATIONS. 2019, 78(5): 1705-1719, http://ir.amss.ac.cn/handle/2S8OKBNM/35379, http://www.irgrid.ac.cn/handle/1471x/6870924, http://ir.amss.ac.cn/handle/2S8OKBNM/35380, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000482248100035&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[47] Sheng, Qin, Tang, Yifa, Wade, Bruce A, Wang, Yushun. Recent trends in highly accurate and structure-preserving numerical methods for partial differential equations PREFACE. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS. 2018, 95(1): 1-2, https://www.webofscience.com/wos/woscc/full-record/WOS:000428749300001.
[48] 魏亚冰, 赵艳敏, 唐贻发, 王芬玲, 史争光, 李匡郢. 两项时间混合分数阶扩散波动方程的有限元高精度分析. 中国科学信息科学[J]. 2018, 48(7): 871-, https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2018&filename=PZKX201807009&v=MjM1MDU3cWZidVp0RkNqaFZMdlBOVGZBZHJHNEg5bk1xSTlGYllSOGVYMUx1eFlTN0RoMVQzcVRyV00xRnJDVVI=.
[49] Shi, Zhengguang, Zhao, Yanmin, Tang, Yifa, Wang, Fenling, Shi, Yanhua. Superconvergence analysis of an H-1-Galerkin mixed finite element method for two-dimensional multi-term time fractional diffusion equations. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS[J]. 2018, 95(9): 1845-1857, https://www.webofscience.com/wos/woscc/full-record/WOS:000436081400008.
[50] Wei Yabing, Zhao Yanmin, Shi Zhengguang, Wang Fenling, Tang Yifa. Spatial High Accuracy Analysis of FEM for Two-dimensional Multi-term Time-fractional Diffusion-wave Equations. 应用数学学报英文版[J]. 2018, 34(4): 828-, http://lib.cqvip.com/Qikan/Article/Detail?id=676567774.
[51] Arshad, Sadia, Baleanu, Dumitru, Huang, Jianfei, Al Qurashi, Maysaa Mohamed, Tang, Yifa, Zhao, Yue. Finite Difference Method for Time-Space Fractional Advection-Diffusion Equations with Riesz Derivative. ENTROPY[J]. 2018, 20(5): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512840/.
[52] Arshad, Sadia, Baleanu, Dumitru, Huang, Jianfei, Tang, Yifa, Zhao, Yue. A Fourth Order Finite Difference Method for Time-Space Fractional Diffusion Equations. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS[J]. 2018, 8(4): 764-781, http://ir.amss.ac.cn/handle/2S8OKBNM/32317.
[53] Arshad, Sadia, Bu, Weiping, Huang, Jianfei, Tang, Yifa, Zhao, Yue. Finite difference method for time-space linear and nonlinear fractional diffusion equations. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS[J]. 2018, 95(1): 202-217, https://www.webofscience.com/wos/woscc/full-record/WOS:000428749300013.
[54] Zhang, Ruili, Wang, Yulei, He, Yang, Xiao, Jianyuan, Liu, Jian, Qin, Hong, Tang, Yifa. Explicit symplectic algorithms based on generating functions for relativistic charged particle dynamics in time-dependent electromagnetic field. PHYSICS OF PLASMAS[J]. 2018, 25(2): http://dx.doi.org/10.1063/1.5012767.
[55] Wei, Yabing, Zhao, Yanmin, Shi, Zhengguang, Wang, Fenling, Tang, Yifa. Spatial High Accuracy Analysis of FEM for Two-dimensional Multi-term Time-fractional Diffusion-wave Equations. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES[J]. 2018, 34(4): 828-841, http://lib.cqvip.com/Qikan/Article/Detail?id=676567774.
[56] Arshad, Sadia, Huang, Jianfei, Khaliq, Abdul Q M, Tang, Yifa. Trapezoidal scheme for time-space fractional diffusion equation with Riesz derivative. JOURNAL OF COMPUTATIONAL PHYSICS[J]. 2017, 350: 1-15, http://dx.doi.org/10.1016/j.jcp.2017.08.038.
[57] Zhao, Yue, Bu, Weiping, Zhao, Xuan, Tang, Yifa. Galerkin finite element method for two-dimensional space and time fractional Bloch-Torrey equation. JOURNAL OF COMPUTATIONAL PHYSICS[J]. 2017, 350: 117-135, http://dx.doi.org/10.1016/j.jcp.2017.08.051.
[58] Zhao, Yanmin, Zhang, Yadong, Liu, F, Turner, I, Tang, Yifa, Anh, V. Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations. COMPUTERS & MATHEMATICS WITH APPLICATIONS[J]. 2017, 73(6): 1087-1099, http://dx.doi.org/10.1016/j.camwa.2016.05.005.
[59] Arshad, Sadia, Baleanu, Dumitru, Bu, Weiping, Tang, Yifa. Effects of HIV infection on CD4(+) T-cell population based on a fractional-order model. ADVANCES IN DIFFERENCE EQUATIONS[J]. 2017, 92(1): https://doaj.org/article/71d3794ba76844148ac25e22be5ce3a9.
[60] Aleroev, Temirkhan S, Aleroeva, Hedi T, Huang, Jianfei, Tamm, Mikhail V, Tang, Yifa, Zhao, Yue. Boundary value problems of fractional Fokker-Planck equations. COMPUTERS & MATHEMATICS WITH APPLICATIONS[J]. 2017, 73(6): 959-969, http://dx.doi.org/10.1016/j.camwa.2016.06.038.
[61] Zhao, Yanmin, Chen, Pan, Bu, Weiping, Liu, Xiangtao, Tang, Yifa. Two Mixed Finite Element Methods for Time-Fractional Diffusion Equations. JOURNAL OF SCIENTIFIC COMPUTING[J]. 2017, 70(1): 407-428, https://www.webofscience.com/wos/woscc/full-record/WOS:000391930500017.
[62] Beibei Zhu, Zhenxuan Hu, Yifa Tang, Ruili Zhang. Symmetric and symplectic methods for gyrocenter dynamics in time-independent magnetic fields. 建模、仿真和科学计算国际期刊(英文)[J]. 2016, 7(2): 139-151, http://lib.cqvip.com/Qikan/Article/Detail?id=7107817833.
[63] Zhang, Ruili, Qin, Hong, Tang, Yifa, Liu, Jian, He, Yang, Xiao, Jianyuan. Explicit symplectic algorithms based on generating functions for charged particle dynamics. PHYSICAL REVIEW E[J]. 2016, 94(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000380117600009.
[64] Zhu, Beibei, Zhang, Ruili, Tang, Yifa, Tu, Xiongbiao, Zhao, Yue. Splitting K-symplectic methods for non-canonical separable Hamiltonian problems. JOURNAL OF COMPUTATIONAL PHYSICS[J]. 2016, 322: 387-399, http://dx.doi.org/10.1016/j.jcp.2016.06.044.
[65] Zhang RuiLi, Tang YiFa, Zhu BeiBei, Tu XiongBiao, Zhao Yue. Convergence analysis of the formal energies of symplectic methods for Hamiltonian systems. SCIENCE CHINA-MATHEMATICS[J]. 2016, 59(2): 379-396, https://www.sciengine.com/doi/10.1007/s11425-015-5003-7.
[66] Arshad, Sadia, Baleanu, Dumitru, Huang, Jianfei, Tang, Yifa, Al Qurashi, Maysaa Mohamed. Dynamical analysis of fractional order model of immunogenic tumors. ADVANCES IN MECHANICAL ENGINEERING[J]. 2016, 8(7): https://doaj.org/article/c1c0e2dffdd84ea8a04db2a6cfae504c.
[67] Zhang, Ruili, Liu, Jian, Qin, Hong, Tang, Yifa, He, Yang, Wang, Yulei. Application of Lie Algebra in Constructing Volume-Preserving Algorithms for Charged Particles Dynamics. COMMUNICATIONS IN COMPUTATIONAL PHYSICS[J]. 2016, 19(5): 1397-1408, https://www.webofscience.com/wos/woscc/full-record/WOS:000376456600015.
[68] Tu, Xiongbiao, Zhu, Beibei, Tang, Yifa, Qin, Hong, Liu, Jian, Zhang, Ruili. A family of new explicit, revertible, volume-preserving numerical schemes for the system of Lorentz force. PHYSICS OF PLASMAS[J]. 2016, 23(12): http://dx.doi.org/10.1063/1.4972878.
[69] Liu, Na, Eduardo Tobon, Luis, Zhao, Yanmin, Tang, Yifa, Liu, Qing Huo. Mixed Spectral-Element Method for 3-D Maxwell's Eigenvalue Problem. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES[J]. 2015, 63(2): 317-325, https://www.webofscience.com/wos/woscc/full-record/WOS:000349623300001.
[70] Liu, Na, Tobon, Luis, Tang, Yifa, Liu, Qing Huo. Mixed Spectral Element Method for 2D Maxwell's Eigenvalue Problem. COMMUNICATIONS IN COMPUTATIONAL PHYSICS[J]. 2015, 17(2): 458-486, https://www.webofscience.com/wos/woscc/full-record/WOS:000353693400006.
[71] Zhao, Yanmin, Bu, Weiping, Huang, Jianfei, Liu, DaYan, Tang, Yifa. Finite element method for two-dimensional space-fractional advection-dispersion equations. APPLIED MATHEMATICS AND COMPUTATION[J]. 2015, 257: 553-565, https://www.webofscience.com/wos/woscc/full-record/WOS:000350996000050.
[72] Weiping Bu, Xiangtao Liu, Yifa Tang, Jiye Yang. Finite element multigrid method for multi-term time fractional advection diffusion equations. 建模、仿真和科学计算国际期刊(英文)[J]. 2015, 6(1): 1-25, http://lib.cqvip.com/Qikan/Article/Detail?id=7107828312.
[73] Bu, Weiping, Tang, Yifa, Wu, Yingchuan, Yang, Jiye. Crank-Nicolson ADI Galerkin finite element method for two-dimensional fractional FitzHugh-Nagumo monodomain model. APPLIED MATHEMATICS AND COMPUTATION[J]. 2015, 257: 355-364, https://www.webofscience.com/wos/woscc/full-record/WOS:000350996000033.
[74] Liu, Na, Cai, Guoxiong, Zhu, Chunhui, Tang, Yifa, Liu, Qing Huo. The Mixed Spectral-Element Method for Anisotropic, Lossy, and Open Waveguides. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES[J]. 2015, 63(10): 3094-3102, http://dx.doi.org/10.1109/TMTT.2015.2472416.
[75] Bu, Weiping, Tang, Yifa, Wu, Yingchuan, Yang, Jiye. Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations. JOURNAL OF COMPUTATIONAL PHYSICS[J]. 2015, 293: 264-279, http://dx.doi.org/10.1016/j.jcp.2014.06.031.
[76] JianFei Huang, NingMing Nie, YiFa Tang. A second order finite difference-spectral method for space fractional diffusion equations. SCIENCE CHINA MATHEMATICS,[J]. 2014, 57(6): 1303-1317, http://ir.amss.ac.cn/handle/2S8OKBNM/39282, http://www.irgrid.ac.cn/handle/1471x/6871007, http://ir.amss.ac.cn/handle/2S8OKBNM/39283.
[77] Zhang, Ruili, Liu, Jian, Tang, Yifa, Qin, Hong, Xiao, Jianyuan, Zhu, Beibei. Canonicalization and symplectic simulation of the gyrocenter dynamics in time-independent magnetic fields. PHYSICS OF PLASMAS[J]. 2014, 21(3): 032504-1-032504-11, http://dx.doi.org/10.1063/1.4867669.
[78] Bu, Weiping, Tang, Yifa, Yang, Jiye. Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations. JOURNAL OF COMPUTATIONAL PHYSICS[J]. 2014, 276: 26-38, http://dx.doi.org/10.1016/j.jcp.2014.07.023.
[79] Jiang, Wei, Liu, Na, Tang, Yifa, Liu, Qing Huo. Mixed Finite Element Method for 2D Vector Maxwell's Eigenvalue Problem in Anisotropic Media. PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER[J]. 2014, 148: 159-170, https://www.webofscience.com/wos/woscc/full-record/WOS:000346151100014.
[80] Nie, Ningming, Huang, Jianfei, Wang, Wenjia, Tang, Yifa. Solving spatial-fractional partial differential diffusion equations by spectral method. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION[J]. 2014, 84(6): 1173-1189, https://www.webofscience.com/wos/woscc/full-record/WOS:000330705200003.
[81] Huang JianFei, Nie NingMing, Tang YiFa. A second order finite difference-spectral method for space fractional diffusion equations. SCIENCE CHINA-MATHEMATICS[J]. 2014, 57(6): 1303-1317, http://ir.amss.ac.cn/handle/2S8OKBNM/39282, http://www.irgrid.ac.cn/handle/1471x/6871007, http://ir.amss.ac.cn/handle/2S8OKBNM/39283.
[82] Huang, Jianfei, Tang, Yifa, Vazquez, Luis, Yang, Jiye. Two finite difference schemes for time fractional diffusion-wave equation. NUMERICAL ALGORITHMS[J]. 2013, 64(4): 707-720, http://dx.doi.org/10.1007/s11075-012-9689-0.
[83] Liu, Na, Tang, Yifa, Zhu, Xiaozhang, Tobon, Luis, Liu, Qinghuo, IEEE Antennas Propagat Soc. Higher-order Mixed Spectral Element Method for Maxwell Eigenvalue Problem. 2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI)null. 2013, 1646-+, [84] Huang, Jianfei, Tang, Yifa, Wang, Wenjia, Yang, Jiye, Xiao, TY, Zhang, L, Fei, M. A Compact Difference Scheme for Time Fractional Diffusion Equation with Neumann Boundary Conditions. ASIASIM 2012, PT Inull. 2012, 323: 273-+, [85] Bu, Weiping, Xiao, Aiguo, Tang, Yifa, Xiao, TY, Zhang, L, Ma, S. Finite Difference Methods for Space Fractional Advection-Diffusion Equations with Variable Coefficients. SYSTEM SIMULATION AND SCIENTIFIC COMPUTING, PT IInull. 2012, 327: 95-+, [86] Huang, Jianfei, Tang, Yifa, Vazquez, Luis. Convergence Analysis of a Block-by-Block Method for Fractional Differential Equations. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS[J]. 2012, 5(2): 229-241, http://lib.cqvip.com/Qikan/Article/Detail?id=7105132432.
[87] Chen, Yao, Sun, Yajuan, Tang, Yifa. Energy-preserving numerical methods for Landau-Lifshitz equation. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL[J]. 2011, 44(29): https://www.webofscience.com/wos/woscc/full-record/WOS:000292542100014.
[88] Scherer, Rudolf, Kalla, Shyam L, Tang, Yifa, Huang, Jianfei. The Grunwald-Letnikov method for fractional differential equations. COMPUTERS & MATHEMATICS WITH APPLICATIONS[J]. 2011, 62(3): 902-917, https://www.webofscience.com/wos/woscc/full-record/WOS:000294083500008.
[89] Zhu, Huajun, Song, Songhe, Tang, Yifa. Multi-symplectic wavelet collocation method for the nonlinear Schrodinger equation and the Camassa-Holm equation. COMPUTER PHYSICS COMMUNICATIONS[J]. 2011, 182(3): 616-627, https://www.webofscience.com/wos/woscc/full-record/WOS:000287432200008.
[90] 朱华君, 陈亚铭, 宋松和, 唐贻发. 二维非线性schrdinger方程的辛与多辛格式. 计算数学[J]. 2010, 32(3): 315-, http://ir.amss.ac.cn/handle/2S8OKBNM/42892, http://www.irgrid.ac.cn/handle/1471x/6871067, http://ir.amss.ac.cn/handle/2S8OKBNM/42893.
[91] Aleroev, T S, Aleroeva, H T, Huang, Jianfei, Nie, Ningming, Tang, Yifa, Zhang, Siyan. FEATURES OF SEEPAGE OF A LIQUID TO A CHINK IN THE CRACKED DEFORMABLE LAYER. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING[J]. 2010, 1(3): 333-347, [92] Zhu, Huajun, Tang, Lingyan, Song, Songhe, Tang, Yifa, Wang, Desheng. Symplectic wavelet collocation method for Hamiltonian wave equations. JOURNAL OF COMPUTATIONAL PHYSICS[J]. 2010, 229(7): 2550-2572, http://dx.doi.org/10.1016/j.jcp.2009.11.042.
[93] NINGMING NIE, YANMIN ZHAO, MIN LI, XIANGTAO LIU, SALVADOR JIMNEZ, YIFA TANG, LUIS VZQUEZ. SOLVING TWO-POINT BOUNDARY VALUE PROBLEMS OF FRACTIONAL DIFFERENTIAL EQUATIONS VIA SPLINE COLLOCATION METHODS. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING[J]. 2010, 1(1): 117-132, [94] Ding, Jiu, Tang, Yifa. NON-CONVEXITY OF THE DIMENSION FUNCTION FOR SIERPINSKI PEDAL TRIANGLES. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY[J]. 2010, 18(2): 191-195, http://dx.doi.org/10.1142/S0218348X10004889.
[95] 聂宁明, 赵艳敏, Salvador JimxE9nez, 李敏, 唐贻发, Luis VxE1zquez. 解Riemann-Liouville分数阶导数微分方程两点边值问题(英文). 系统仿真学报. 2010, http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=3&recid=&FileName=XTFZ201001005&DbName=CJFD2010&DbCode=CJFQ&yx=&pr=&URLID=&bsm=QK0201;.
[96] 赵艳敏, 何沧平, 唐贻发. 并行多重网格光滑子JGS与PGS的性能比较. 系统仿真学报[J]. 2010, 38-, http://lib.cqvip.com/Qikan/Article/Detail?id=32663025.
[97] QUANDONG FENG, JINGFANG HUANG, NINGMING NIE, ZAIJIU SHANG, YIFA TANG. IMPLEMENTING ARBITRARILY HIGH-ORDER SYMPLECTIC METHODS VIA KRYLOV DEFERRED CORRECTION TECHNIQUE. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING[J]. 2010, 1(2): 277-301, [98] He, PingAn, Zhang, YanPing, Yao, YuHua, Tang, YiFa, Nan, XuYing. The Graphical Representation of Protein Sequences Based on the Physicochemical Properties and Its Applications. JOURNAL OF COMPUTATIONAL CHEMISTRY[J]. 2010, 31(11): 2136-2142, https://www.doi.org/10.1002/jcc.21501.
[99] Song YunZhong, Tang YiFa. Hierarchical-control-based output synchronization of coexisting attractor networks. CHINESE PHYSICS B[J]. 2010, 19(2): http://lib.cqvip.com/Qikan/Article/Detail?id=32885920.
[100] 聂宁明, 赵艳敏, Salvador, Jimenez, 李敏, 唐贻发, Luis, Vazquez. 解Riemann-Liouville分数阶导数微分方程两点边值问题. 系统仿真学报[J]. 2010, 20-24, http://lib.cqvip.com/Qikan/Article/Detail?id=32663021.
[101] Guan, Hua, Jiao, Yandong, Liu, Ju, Tang, Yifa. Explicit Symplectic Methods for the Nonlinear Schrodinger Equation. COMMUNICATIONS IN COMPUTATIONAL PHYSICS[J]. 2009, 6(3): 639-654, https://www.webofscience.com/wos/woscc/full-record/WOS:000267111400011.
[102] Fu JingLi, Nie NingMing, Huang JianFei, Salvador, Jimenez, Tang YiFa, Luis, Vazquez, Zhao WeiJia. Noether conserved quantities and Lie point symmetries of difference Lagrange-Maxwell equations and lattices. CHINESE PHYSICS B[J]. 2009, 18(7): 2634-2641, http://lib.cqvip.com/Qikan/Article/Detail?id=31023176.
[103] Zhao, Yanmin, Dai, Guidong, Tang, Yifa, Liu, Qinghuo. Symplectic discretization for spectral element solution of Maxwell's equations. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL[J]. 2009, 42(32): https://www.webofscience.com/wos/woscc/full-record/WOS:000268342600010.
[104] Fu, Jingli, Jimenez, Salvador, Tang, Yifa, Vazquez, Luis. Construction of exact invariants of time-dependent linear nonholonomic dynamical systems. PHYSICS LETTERS A[J]. 2008, 372(10): 1555-1561, https://www.webofscience.com/wos/woscc/full-record/WOS:000254033900004.
[105] Jiao, Yandong, Dai, Guidong, Feng, Quandong, Tang, Yifa. Non-existence of conjugate-symplectic multi-step methods of odd order. JOURNAL OF COMPUTATIONAL MATHEMATICS[J]. 2007, 25(6): 690-696, http://lib.cqvip.com/Qikan/Article/Detail?id=25819160.
[106] Tang, Yifa, Cao, Jianwen, Liu, Xiangtao, Sun, Yuanchang. Symplectic methods for the Ablowitz-Ladik discrete nonlinear Schrodinger equation. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL[J]. 2007, 40(10): 2425-2437, http://dx.doi.org/10.1088/1751-8113/40/10/012.
[107] 唐贻发. Hamilton系统辛几何算法及其对非线性薛定谔方程的应用. 2005, http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=3583&recid=&FileName=AGLU200508002453&DbName=CPFD9908&DbCode=CPFD&yx=&pr=&URLID=&bsm=.
[108] Tang Yifa. expansionofsteptransitionoperatorofmultistepmethodanditsapplicationsi1. JOURNALOFCOMPUTATIONALMATHEMATICS[J]. 2002, 20(2): 185-, http://ir.amss.ac.cn/handle/2S8OKBNM/44734, http://www.irgrid.ac.cn/handle/1471x/6871108, http://ir.amss.ac.cn/handle/2S8OKBNM/44735.
[109] Tang, YF. On conjugate symplecticity of multi-step methods. JOURNAL OF COMPUTATIONAL MATHEMATICS[J]. 2000, 18(4): 431-438, http://lib.cqvip.com/Qikan/Article/Detail?id=1004393820.
[110] Tang, YF. A note on construction of higher-order symplectic schemes from lower-order one via formal energies. JOURNAL OF COMPUTATIONAL MATHEMATICS[J]. 1999, 17(6): 561-568, http://lib.cqvip.com/Qikan/Article/Detail?id=3000875991.
[111] Konotop, VV, PerezGarcia, VM, Tang, YF, Vazquez, L. Interaction of a dark soliton with a localized impurity. PHYSICS LETTERS A[J]. 1997, 236(4): 314-318, https://www.webofscience.com/wos/woscc/full-record/WOS:000071015500010.
[112] Tang, YF, PerezGarcia, VM, Vazquez, L. Symplectic methods for the Ablowitz-Ladik model. APPLIED MATHEMATICS AND COMPUTATION[J]. 1997, 82(1): 17-38, https://www.webofscience.com/wos/woscc/full-record/WOS:A1997WD49300002.
[113] Tang, YF, Vazquez, L, Zhang, F, PerezGarcia, VM. Symplectic methods for the nonlinear Schrodinger equation. COMPUTERS & MATHEMATICS WITH APPLICATIONS[J]. 1996, 32(5): 73-83, http://dx.doi.org/10.1016/0898-1221(96)00136-8.
[114] Y.-F. Tang. Formal energy of a symplectic scheme for hamiltonian systems and its applications (I). COMPUTERS AND MATHEMATICS WITH APPLICATIONS. 1994, 27(7): 31-39, http://dx.doi.org/10.1016/0898-1221(94)90147-3.
[115] Yi-Fa Tang, Yong-Hong Long. Formal energy of symplectic scheme for Hamiltonian systems and its applications (II). COMPUTERS AND MATHEMATICS WITH APPLICATIONS. 1994, 27(12): 31-39, http://dx.doi.org/10.1016/0898-1221(94)90083-3.
[116] Yi-Fa Tang. The symplecticity of multi-step methods. COMPUTERSANDMATHEMATICSWITHAPPLICATIONS. 1993, 25(3): 83-90, http://dx.doi.org/10.1016/0898-1221(93)90146-M.
[117] TANG, YF. THE NECESSARY CONDITION FOR A RUNGE-KUTTA SCHEME TO BE SYMPLECTIC FOR HAMILTONIAN-SYSTEMS. COMPUTERS & MATHEMATICS WITH APPLICATIONS[J]. 1993, 26(1): 13-20, http://dx.doi.org/10.1016/0898-1221(93)90082-7.
[118] TANG, YF. NON-CONSERVATIVITY OF TRADITIONAL SCHEMES FOR LIOUVILLE AND CONTACT SYSTEMS. COMPUTERS & MATHEMATICS WITH APPLICATIONS[J]. 1993, 25(8): 89-94, http://dx.doi.org/10.1016/0898-1221(93)90174-T.
[119] TANG, YF. GEODESIC-FLOWS ON COMPACT SURFACES - AS AN APPLICATION OF HAMILTONIAN-FORMALISM. COMPUTERS & MATHEMATICS WITH APPLICATIONS[J]. 1993, 26(1): 21-33, http://dx.doi.org/10.1016/0898-1221(93)90083-8.
[120] Weiping Bu, Huimin Yang, Yifa Tang. Two fast numerical methods for a generalized Oldroyd-B fluid model. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION. http://dx.doi.org/10.1016/j.cnsns.2022.106963.

科研活动


科研项目
( 1 ) Hamilton系统的辛几何算法和对称算法的定性研究, 负责人, 国家任务, 2014-01--2017-12
( 2 ) 磁约束聚变等离子体模拟的几何方法及理论, 参与, 国家任务, 2014-03--2019-02
( 3 ) 等离子体物理中的辛算法与平均方法, 负责人, 国家任务, 2018-01--2021-12
( 4 ) 非完全动态信息自适应博弈, 参与, 国家任务, 2019-12--2022-12
( 5 ) 动力系统的保结构深度神经网络研究, 负责人, 国家任务, 2022-01--2025-12
( 6 ) 典型电力电子系统仿真算例的辛几何算法设计算函数的程序开发服务, 负责人, 境内委托项目, 2022-12--2024-06
( 7 ) 电力系统故障暂态的保结构数值模拟, 负责人, 境内委托项目, 2024-01--2025-06
参与会议
(1)深度神经网络中的几何结构   AI数学理论研讨会   2021-11-11

指导学生

已指导学生

戴桂冬  博士研究生  070102-计算数学  

丰全东  博士研究生  070102-计算数学  

焦艳东  博士研究生  070102-计算数学  

赵艳敏  博士研究生  070104-应用数学  

李敏  博士研究生  070102-计算数学  

聂宁明  博士研究生  070102-计算数学  

何沧平  博士研究生  070102-计算数学  

黄健飞  博士研究生  070102-计算数学  

陈耀  博士研究生  070102-计算数学  

刘娜  博士研究生  070102-计算数学  

杨继业  博士研究生  070102-计算数学  

张瑞丽  博士研究生  070102-计算数学  

卜玮平  博士研究生  070102-计算数学  

赵越  硕士研究生  070102-计算数学  

朱贝贝  博士研究生  070102-计算数学  

涂雄标  博士研究生  070102-计算数学  

张宜浩  硕士研究生  070102-计算数学  

现指导学生

赵越  博士研究生  070102-计算数学  

金鹏展  博士研究生  070102-计算数学  

张嘉炜  博士研究生  070102-计算数学  

纪伦  博士研究生  070102-计算数学  

郭鑫祥  硕士研究生  070102-计算数学  

祝爱卿  博士研究生  070102-计算数学