基本信息
冯如勇 男 博导 中国科学院数学与系统科学研究院
电子邮件: ryfeng@amss.ac.cn
通信地址: 北京市中关村东路55号
邮政编码:
电子邮件: ryfeng@amss.ac.cn
通信地址: 北京市中关村东路55号
邮政编码:
研究领域
符号计算,微分代数
招生信息
招生专业
070104-应用数学
招生方向
符号计算,微分/差分Galois理论
教育背景
2000-09--2005-07 中科院数学与系统科学研究院 理学博士
1996-09--2000-07 中国科学技术大学 理学学士
1996-09--2000-07 中国科学技术大学 理学学士
学历
-- 研究生
学位
-- 博士
出国学习工作
2007.9-2008.12 美国北卡州立大学 访问学者
工作经历
2010.4 至今 中国科学院数学与系统科学研究院 副研究员
2005.7-2010.3 中国科学院数学与系统科学研究院 助理研究员
工作简历
2018-04~现在, 中国科学院数学与系统科学研究院, 研究员
2010-04~2018-03,中科院数学与系统科学研究院, 副研究员
2005-07~2010-03,中科院数学与系统科学研究院, 助理研究员
2010-04~2018-03,中科院数学与系统科学研究院, 副研究员
2005-07~2010-03,中科院数学与系统科学研究院, 助理研究员
教授课程
计算代数几何引论
专利与奖励
奖励信息
(1) 首届吴文俊计算机数学青年学者奖, , 其他, 2017
(2) 数学与系统科学研究院“突出科研成果奖”, 研究所(学校), 2014
(2) 数学与系统科学研究院“突出科研成果奖”, 研究所(学校), 2014
出版信息
发表论文
[1] 陈绍示, 冯如勇, 李子明, Michael F. Singer, Stephen M. Watt. Telescopers for differential forms with one parameter. Selecta Mathematica[J]. 2024, 第 2 作者 通讯作者 30(36):
[2] Proc.ISSAC2024. 2024, 第 2 作者
[3] 陈绍示, 冯如勇, 郭泽旺, 陆伟. Stability Problems on D-finite Functions. Proc. ISSAC2023. 2023, 第 2 作者 通讯作者
[4] 冯如勇, 陆伟. Galois groups of linear difference-differential equations. JOURNAL OF ALGEBRA[J]. 2023, 第 1 作者622: 742-776, http://dx.doi.org/10.1016/j.jalgebra.2023.02.017.
[5] 冯如勇, Shuang, Feng, Li-Yong Shen. Quasi-equivalence of heights in algebraic function fields of one variable. Advances in Applied Mathematics[J]. 2022, 第 1 作者139: 102373,
[6] Feng, Ruyong. Difference Galois groups under specialization. Transactions of the American Mathematical Society[J]. 2021, 第 1 作者 通讯作者 374(1): 61-96, https://www.webofscience.com/wos/woscc/full-record/WOS:000604947700003.
[7] 陈绍示, 冯如勇, 马平川. Separability problem in creative telescoping. Proc.ISSAC2021[J]. 2021, 第 2 作者
[8] Feng, Shuang, Feng, Ruyong. Descent of Ordinary Differential Equations with Rational General Solutions. 系统科学与复杂性学报英文版[J]. 2020, 第 2 作者33(6): 2114-2123, http://lib.cqvip.com/Qikan/Article/Detail?id=7104362036.
[9] Feng, Ruyong. On the computation of the Galois groups of linear difference equations. Mathematics of computation[J]. 2018, 第 1 作者 通讯作者 87(310): 941-965, https://www.webofscience.com/wos/woscc/full-record/WOS:000418689600016.
[10] 杨争峰, 冯如勇. 模型平均方法及应用专辑序言. 系统科学与数学[J]. 2018, 第 2 作者38(12): 1363, https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2019&filename=STYS201812001&v=MDc2NjhidVp0RkNqblc3dkpOam5TZmJHNEg5bk5yWTlGWllSOGVYMUx1eFlTN0RoMVQzcVRyV00xRnJDVVI3cWY=.
[11] Feng, Ruyong, Shen, LiYong, 申立勇. Computing the intersections of three conics according to their Jacobian curve. JOURNAL OF SYMBOLIC COMPUTATION[J]. 2016, 第 1 作者73: 175-191, http://dx.doi.org/10.1016/j.jsc.2015.06.004.
[12] Feng, Ruyong. Hrushovski's algorithm for computing the Galois group of a linear differential equation. ADVANCES IN APPLIED MATHEMATICS[J]. 2015, 第 1 作者 通讯作者 65: 1-37, http://dx.doi.org/10.1016/j.aam.2015.01.001.
[13] Chen, Shaoshi, Chyzak, Frederic, Feng, Ruyong, Fu, Guofeng, Li, Ziming. On the existence of telescopers for mixed hypergeometric terms. JOURNAL OF SYMBOLIC COMPUTATION[J]. 2015, 第 3 作者68: 1-26, http://dx.doi.org/10.1016/j.jsc.2014.08.005.
[14] Ziming Li. Parallel telescoping and parameterized Picard-Vessiot theory. Proc. ISSAC2014. 2014,
[15] Zhao Shangwei, Feng Ruyong, Gao Xiaoshan. ON FUNCTIONAL DECOMPOSITION OF MULTIVARIATE POLYNOMIALS WITH DIFFERENTIATION AND HOMOGENIZATION. 系统科学与复杂性:英文版[J]. 2012, 第 2 作者25(2): 329, http://lib.cqvip.com/Qikan/Article/Detail?id=41905931.
[16] Zhao, Shangwei, Feng, Ruyong, Gao, XiaoShan. On functional decomposition of multivariate polynomials with differentiation and homogenization. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY[J]. 2012, 第 2 作者25(2): 329-347, http://lib.cqvip.com/Qikan/Article/Detail?id=41905931.
[17] Shangwei ZHAO, Ruyong FENG, Xiao-Shan GAO. ON FUNCTIONAL DECOMPOSITION OF MULTIVARIATE POLYNOMIALS WITH DIFFERENTIATION AND HOMOGENIZATION. 系统科学与复杂性:英文版[J]. 2012, 第 2 作者25(2): 329, http://lib.cqvip.com/Qikan/Article/Detail?id=41905931.
[18] 陈绍示, 冯如勇, 付国锋, 康劲. 多变元q超几何项的乘法分解. 系统科学与数学[J]. 2012, 第 2 作者32(8): 1019, http://ir.amss.ac.cn/handle/2S8OKBNM/49350, http://www.irgrid.ac.cn/handle/1471x/6870794, http://ir.amss.ac.cn/handle/2S8OKBNM/49351.
[19] 李应弘, 冯如勇. 微分、差分域中的Wronskian行列式. 系统科学与数学[J]. 2011, 第 2 作者31(5): 620, http://lib.cqvip.com/Qikan/Article/Detail?id=38713113.
[20] Feng, Ruyong, Singer, Michael F, Wu, Min. Liouvillian solutions of linear difference-differential equations. JOURNAL OF SYMBOLIC COMPUTATION[J]. 2010, 第 1 作者 通讯作者 45(3): 287-305, http://dx.doi.org/10.1016/j.jsc.2009.09.001.
[21] Feng, Ruyong, Singer, Michael F, Wu, Min. An algorithm to compute Liouvillian solutions of prime order linear difference-differential equations. JOURNAL OF SYMBOLIC COMPUTATION[J]. 2010, 第 1 作者 通讯作者 45(3): 306-323, http://dx.doi.org/10.1016/j.jsc.2009.09.002.
[22] Feng, Ruyong, Gao, XiaoShan, Huang, Zhenyu. Rational solutions of ordinary difference equations. JOURNAL OF SYMBOLIC COMPUTATION[J]. 2008, 第 1 作者 通讯作者 43(10): 746-763, http://dx.doi.org/10.1016/j.jsc.2008.03.001.
[23] 冯如勇, 于建平. 基于特征列方法和Wronskian行列式的曲面定理机器证明. 中国科学(A辑:数学)[J]. 2008, 第 1 作者38(5): 556-566, http://lib.cqvip.com/Qikan/Article/Detail?id=29050430.
[24] Feng RuYong, Yu JianPing. Mechanical theorem proving in the surfaces using the characteristic set method and Wronskian determinant. SCIENCE IN CHINA SERIES A-MATHEMATICS[J]. 2008, 第 1 作者 通讯作者 51(10): 1763-1774, https://www.webofscience.com/wos/woscc/full-record/WOS:000258886300002.
[25] 冯如勇, 于建平. 基于特征列方法和Wronskian行列式的曲面定理机器证明. 中国科学:A辑[J]. 2008, 第 1 作者38(5): 556-566, http://lib.cqvip.com/Qikan/Article/Detail?id=29050430.
[26] Feng RuYong, Yu JianPing. Mechanical theorem proving in the surfaces using the characteristic set method and Wronskian determinant. SCIENCE IN CHINA SERIES A-MATHEMATICS[J]. 2008, 第 1 作者 通讯作者 51(10): 1763-1774, https://www.webofscience.com/wos/woscc/full-record/WOS:000258886300002.
[27] Feng, Ruyong, Gao, XiaoShan. A polynomial time algorithm for finding rational general solutions of first order autonomous ODEs. JOURNAL OF SYMBOLIC COMPUTATION[J]. 2006, 第 1 作者41(7): 739-762, http://dx.doi.org/10.1016/j.jsc.2006.02.002.
[28] 冯如勇. Algebraic general solutions of algebraic ordinary differential equations. Proc.ISSAC2005. 2005, 第 1 作者
[29] 冯如勇. Rational general solutions of algebraic ordinary differential equations. Proc.ISSAC2004. 2004, 第 1 作者
[30] Chen, Shaoshi, Feng, Ruyong, Fu, Guofeng, Li, Ziming. On the Structure of Compatible Rational Functions. 第 2 作者http://arxiv.org/abs/1301.5046.
[31]
[2] Proc.ISSAC2024. 2024, 第 2 作者
[3] 陈绍示, 冯如勇, 郭泽旺, 陆伟. Stability Problems on D-finite Functions. Proc. ISSAC2023. 2023, 第 2 作者 通讯作者
[4] 冯如勇, 陆伟. Galois groups of linear difference-differential equations. JOURNAL OF ALGEBRA[J]. 2023, 第 1 作者622: 742-776, http://dx.doi.org/10.1016/j.jalgebra.2023.02.017.
[5] 冯如勇, Shuang, Feng, Li-Yong Shen. Quasi-equivalence of heights in algebraic function fields of one variable. Advances in Applied Mathematics[J]. 2022, 第 1 作者139: 102373,
[6] Feng, Ruyong. Difference Galois groups under specialization. Transactions of the American Mathematical Society[J]. 2021, 第 1 作者 通讯作者 374(1): 61-96, https://www.webofscience.com/wos/woscc/full-record/WOS:000604947700003.
[7] 陈绍示, 冯如勇, 马平川. Separability problem in creative telescoping. Proc.ISSAC2021[J]. 2021, 第 2 作者
[8] Feng, Shuang, Feng, Ruyong. Descent of Ordinary Differential Equations with Rational General Solutions. 系统科学与复杂性学报英文版[J]. 2020, 第 2 作者33(6): 2114-2123, http://lib.cqvip.com/Qikan/Article/Detail?id=7104362036.
[9] Feng, Ruyong. On the computation of the Galois groups of linear difference equations. Mathematics of computation[J]. 2018, 第 1 作者 通讯作者 87(310): 941-965, https://www.webofscience.com/wos/woscc/full-record/WOS:000418689600016.
[10] 杨争峰, 冯如勇. 模型平均方法及应用专辑序言. 系统科学与数学[J]. 2018, 第 2 作者38(12): 1363, https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2019&filename=STYS201812001&v=MDc2NjhidVp0RkNqblc3dkpOam5TZmJHNEg5bk5yWTlGWllSOGVYMUx1eFlTN0RoMVQzcVRyV00xRnJDVVI3cWY=.
[11] Feng, Ruyong, Shen, LiYong, 申立勇. Computing the intersections of three conics according to their Jacobian curve. JOURNAL OF SYMBOLIC COMPUTATION[J]. 2016, 第 1 作者73: 175-191, http://dx.doi.org/10.1016/j.jsc.2015.06.004.
[12] Feng, Ruyong. Hrushovski's algorithm for computing the Galois group of a linear differential equation. ADVANCES IN APPLIED MATHEMATICS[J]. 2015, 第 1 作者 通讯作者 65: 1-37, http://dx.doi.org/10.1016/j.aam.2015.01.001.
[13] Chen, Shaoshi, Chyzak, Frederic, Feng, Ruyong, Fu, Guofeng, Li, Ziming. On the existence of telescopers for mixed hypergeometric terms. JOURNAL OF SYMBOLIC COMPUTATION[J]. 2015, 第 3 作者68: 1-26, http://dx.doi.org/10.1016/j.jsc.2014.08.005.
[14] Ziming Li. Parallel telescoping and parameterized Picard-Vessiot theory. Proc. ISSAC2014. 2014,
[15] Zhao Shangwei, Feng Ruyong, Gao Xiaoshan. ON FUNCTIONAL DECOMPOSITION OF MULTIVARIATE POLYNOMIALS WITH DIFFERENTIATION AND HOMOGENIZATION. 系统科学与复杂性:英文版[J]. 2012, 第 2 作者25(2): 329, http://lib.cqvip.com/Qikan/Article/Detail?id=41905931.
[16] Zhao, Shangwei, Feng, Ruyong, Gao, XiaoShan. On functional decomposition of multivariate polynomials with differentiation and homogenization. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY[J]. 2012, 第 2 作者25(2): 329-347, http://lib.cqvip.com/Qikan/Article/Detail?id=41905931.
[17] Shangwei ZHAO, Ruyong FENG, Xiao-Shan GAO. ON FUNCTIONAL DECOMPOSITION OF MULTIVARIATE POLYNOMIALS WITH DIFFERENTIATION AND HOMOGENIZATION. 系统科学与复杂性:英文版[J]. 2012, 第 2 作者25(2): 329, http://lib.cqvip.com/Qikan/Article/Detail?id=41905931.
[18] 陈绍示, 冯如勇, 付国锋, 康劲. 多变元q超几何项的乘法分解. 系统科学与数学[J]. 2012, 第 2 作者32(8): 1019, http://ir.amss.ac.cn/handle/2S8OKBNM/49350, http://www.irgrid.ac.cn/handle/1471x/6870794, http://ir.amss.ac.cn/handle/2S8OKBNM/49351.
[19] 李应弘, 冯如勇. 微分、差分域中的Wronskian行列式. 系统科学与数学[J]. 2011, 第 2 作者31(5): 620, http://lib.cqvip.com/Qikan/Article/Detail?id=38713113.
[20] Feng, Ruyong, Singer, Michael F, Wu, Min. Liouvillian solutions of linear difference-differential equations. JOURNAL OF SYMBOLIC COMPUTATION[J]. 2010, 第 1 作者 通讯作者 45(3): 287-305, http://dx.doi.org/10.1016/j.jsc.2009.09.001.
[21] Feng, Ruyong, Singer, Michael F, Wu, Min. An algorithm to compute Liouvillian solutions of prime order linear difference-differential equations. JOURNAL OF SYMBOLIC COMPUTATION[J]. 2010, 第 1 作者 通讯作者 45(3): 306-323, http://dx.doi.org/10.1016/j.jsc.2009.09.002.
[22] Feng, Ruyong, Gao, XiaoShan, Huang, Zhenyu. Rational solutions of ordinary difference equations. JOURNAL OF SYMBOLIC COMPUTATION[J]. 2008, 第 1 作者 通讯作者 43(10): 746-763, http://dx.doi.org/10.1016/j.jsc.2008.03.001.
[23] 冯如勇, 于建平. 基于特征列方法和Wronskian行列式的曲面定理机器证明. 中国科学(A辑:数学)[J]. 2008, 第 1 作者38(5): 556-566, http://lib.cqvip.com/Qikan/Article/Detail?id=29050430.
[24] Feng RuYong, Yu JianPing. Mechanical theorem proving in the surfaces using the characteristic set method and Wronskian determinant. SCIENCE IN CHINA SERIES A-MATHEMATICS[J]. 2008, 第 1 作者 通讯作者 51(10): 1763-1774, https://www.webofscience.com/wos/woscc/full-record/WOS:000258886300002.
[25] 冯如勇, 于建平. 基于特征列方法和Wronskian行列式的曲面定理机器证明. 中国科学:A辑[J]. 2008, 第 1 作者38(5): 556-566, http://lib.cqvip.com/Qikan/Article/Detail?id=29050430.
[26] Feng RuYong, Yu JianPing. Mechanical theorem proving in the surfaces using the characteristic set method and Wronskian determinant. SCIENCE IN CHINA SERIES A-MATHEMATICS[J]. 2008, 第 1 作者 通讯作者 51(10): 1763-1774, https://www.webofscience.com/wos/woscc/full-record/WOS:000258886300002.
[27] Feng, Ruyong, Gao, XiaoShan. A polynomial time algorithm for finding rational general solutions of first order autonomous ODEs. JOURNAL OF SYMBOLIC COMPUTATION[J]. 2006, 第 1 作者41(7): 739-762, http://dx.doi.org/10.1016/j.jsc.2006.02.002.
[28] 冯如勇. Algebraic general solutions of algebraic ordinary differential equations. Proc.ISSAC2005. 2005, 第 1 作者
[29] 冯如勇. Rational general solutions of algebraic ordinary differential equations. Proc.ISSAC2004. 2004, 第 1 作者
[30] Chen, Shaoshi, Feng, Ruyong, Fu, Guofeng, Li, Ziming. On the Structure of Compatible Rational Functions. 第 2 作者http://arxiv.org/abs/1301.5046.
[31]
科研活动
科研项目
( 1 ) 微分、差分方程的 Galois 理论及求liouvillian 解的算法研究, 主持, 研究所(学校), 2010-01--2012-12
( 2 ) 数学机械化方法及其在数字化设计制造中的应用, 参与, 国家级, 2011-01--2015-12
( 3 ) 青年促进会, 参与, 部委级, 2014-01--2017-12
( 4 ) 差分Galois理论中的算法及其应用, 主持, 国家级, 2018-01--2021-12
( 2 ) 数学机械化方法及其在数字化设计制造中的应用, 参与, 国家级, 2011-01--2015-12
( 3 ) 青年促进会, 参与, 部委级, 2014-01--2017-12
( 4 ) 差分Galois理论中的算法及其应用, 主持, 国家级, 2018-01--2021-12
参与会议
(1)Difference Galois groups under specialization 2017-09-11
(2)Computing the Galois groups of linear difference eqautions 2017-07-24
(3)Parallel Differential Telescoping 冯如勇 2016-07-24
(4)On the computation of the Galois groups of linear difference equations 冯如勇 2016-07-03
(5)Computing the Galois groups of linear difference equations 冯如勇 2015-10-20
(6)Hrushovski’s algorithm for computing the Galois group of a linear differential equations 美国数学学会中部分部会议 冯如勇 2014-01-01
(7)Computing the Galois group of linear difference-differential equations 美国数学学会年度会议 冯如勇 2012-02-01
(2)Computing the Galois groups of linear difference eqautions 2017-07-24
(3)Parallel Differential Telescoping 冯如勇 2016-07-24
(4)On the computation of the Galois groups of linear difference equations 冯如勇 2016-07-03
(5)Computing the Galois groups of linear difference equations 冯如勇 2015-10-20
(6)Hrushovski’s algorithm for computing the Galois group of a linear differential equations 美国数学学会中部分部会议 冯如勇 2014-01-01
(7)Computing the Galois group of linear difference-differential equations 美国数学学会年度会议 冯如勇 2012-02-01
指导学生
已指导学生
熊纯文 硕士研究生 070104-应用数学
现指导学生
陆伟 硕士研究生 070104-应用数学