基本信息
MATSUO MAMORU  男  博导  中国科学院大学
电子邮件: mamoru@ucas.ac.cn
通信地址: 北京市海淀区中关村南一条 中科院物理研究所A楼417办公室
邮政编码:

研究领域

1. Spintronics phenomena emerging from non-Riemannian structures

2. Spin transport at the magnetic interface


招生信息

   
招生专业
070205-凝聚态物理
招生方向
凝聚态物理

教育背景

2003-09--2008-06   日本东京大学   博士学位
2001-09--2003-06   日本东京大学   硕士学位
1997-09--2007-06   日本东京大学   学士学位
学历


工作经历

   
工作简历
2017-06~2018-04,日本东北大学, 助理教授
2014-06~2018-04,日本科技局, 研究带头人
2014-06~2017-06,日本原子能机构, 高级科学家
2012-06~2014-06,日本原子能机构, 博士后研究员
2010-06~2012-06,日本京都大学, 博士后研究员
2009-06~2010-06,日本东北大学, 研究员
2008-09~2009-06,日本高能加速研究所, 研究员

教授课程

Advanced Quantum Mechanics

专利与奖励

   
奖励信息
(1) 日本原子能机构总长奖, 特等奖, 研究所(学校), 2016
(2) 日本原子能机构部长奖, 特等奖, 研究所(学校), 2011

出版信息

   
发表论文
[1] Tateno, Shoma, Kurimune, Yuki, Matsuo, Mamoru, Yamanoi, Kazuto, Nozaki, Yukio. Einstein-de Haas phase shifts in surface acoustic waves. PHYSICAL REVIEW B[J]. 2021, 104(2): http://dx.doi.org/10.1103/PhysRevB.104.L020404.
[2] Chudo, H, Matsuo, M, Maekawa, S, Saitoh, E. Barnett field, rotational Doppler effect, and Berry phase studied by nuclear quadrupole resonance with rotation. PHYSICAL REVIEW B[J]. 2021, 103(17): http://dx.doi.org/10.1103/PhysRevB.103.174308.
[3] Chudo, Hiroyuki, Imai, Masaki, Matsuo, Mamoru, Maekawa, Sadamichi, Saitoh, Eiji. Observation of the Angular Momentum Compensation by Barnett Effect and NMR. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN[J]. 2021, 90(8): [4] Fujimoto, Junji, Koshibae, Wataru, Matsuo, Mamoru, Maekawa, Sadamichi. Zeeman coupling and Dzyaloshinskii-Moriya interaction driven by electric current vorticity. PHYSICAL REVIEW B[J]. 2021, 103(22): [5] Kurimune, Yuki, Matsuo, Mamoru, Nozaki, Yukio. Observation of Gyromagnetic Spin Wave Resonance in NiFe Films. PHYSICAL REVIEW LETTERS[J]. 2020, 124(21): https://www.webofscience.com/wos/woscc/full-record/WOS:000535679100025.
[6] Oue, Daigo, Matsuo, Mamoru. Electron spin transport driven by surface plasmon polaritons. PHYSICAL REVIEW B[J]. 2020, 101(16): https://www.webofscience.com/wos/woscc/full-record/WOS:000526523500001.
[7] Oue, Daigo, Matsuo, Mamoru. Optically induced electron spin currents in the Kretschmann configuration. PHYSICAL REVIEW B[J]. 2020, 102(12): https://www.webofscience.com/wos/woscc/full-record/WOS:000572281000007.
[8] Imai, Masaki, Chudo, Hiroyuki, Matsuo, Mamoru, Maekawa, Sadamichi, Saitoh, Eiji. Enhancement of domain-wall mobility detected by NMR at the angular momentum compensation temperature. PHYSICAL REVIEW B[J]. 2020, 102(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000545538100009.
[9] Fujimoto, Junji, Matsuo, Mamoru. Magnon current generation by dynamical distortion. PHYSICAL REVIEW B[J]. 2020, 102(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000549756800002.
[10] Chudo, Hiroyuki, Matsuo, Mamoru, Harii, Kazuya, Maekawa, Sadamichi, Saitoh, Eiji. Reply to "Comment on 'Observation of Barnett fields in solids by nuclear magnetic resonance"' Appl. Phys. Express7, 063004 (2014). APPLIED PHYSICS EXPRESSnull. 2020, 13(10): https://www.webofscience.com/wos/woscc/full-record/WOS:000573548300001.
[11] Fujimoto Junji, Matsuo Mamoru. Magnon Current Generation by Dynamical Distortion. 2020, http://arxiv.org/abs/2004.14707.
[12] Imai Masaki, Chudo Hiroyuki, Matsuo Mamoru, Maekawa Sadamichi, Saitoh Eiji. Enhancement of domain-wall mobility detected by NMR at the angular momentum compensation temperature. 2020, http://arxiv.org/abs/1911.02207.
[13] Oue Daigo, Matsuo Mamoru. Electron spin transport driven by surface plasmon polariton. 2020, http://arxiv.org/abs/2001.09286.
[14] Kurimune, Yuki, Matsuo, Mamoru, Maekawa, Sadamichi, Nozaki, Yukio. Highly nonlinear frequency-dependent spin-wave resonance excited via spin-vorticity coupling. PHYSICAL REVIEW B[J]. 2020, 102(17): https://www.webofscience.com/wos/woscc/full-record/WOS:000587484900005.
[15] Oue, Daigo, Matsuo, Mamoru. Effects of surface plasmons on spin currents in a thin film system. NEWJOURNALOFPHYSICS[J]. 2020, 22(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000522257600001.
[16] MATSUO MAMORU. Observation of gyromagnetic spinwave resonance in NiFe thin films. PRL. 2020, [17] Ominato, Yuya, Fujimoto, Junji, Matsuo, Mamoru. Valley-Dependent Spin Transport in Monolayer Transition-Metal Dichalcogenides. PHYSICAL REVIEW LETTERS[J]. 2020, 124(16): https://www.webofscience.com/wos/woscc/full-record/WOS:000527891000005.
[18] Ominato, Yuya, Matsuo, Mamoru. Quantum Oscillations of Gilbert Damping in Ferromagnetic/Graphene Bilayer Systems. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN[J]. 2020, 89(5): https://www.webofscience.com/wos/woscc/full-record/WOS:000530838900021.
[19] Horaguchi, Taisuke, Matsuo, Mamoru, Nozaki, Yukio. Highly accurate evaluation of spin-torque efficiency by measuring in-plane angular dependence of spin-torque ferromagnetic resonance. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS[J]. 2020, 505: http://dx.doi.org/10.1016/j.jmmm.2020.166727.
[20] R Takahashi, H Chudo, M Matsuo, K Harii, Y Ohnuma, S Maekawa, E Saitoh. Giant spin hydrodynamic generation in laminar flow. NATURE COMMUNICATIONS[J]. 2020, 11(1): https://doaj.org/article/803c30acb48e4cee871145ab317cae51.
[21] Kato, T, Ohnuma, Y, Matsuo, M. Microscopic theory of spin Hall magnetoresistance. PHYSICAL REVIEW B[J]. 2020, 102(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000573182200007.
[22] Tateno, Shoma, Okano, Genki, Matsuo, Mamoru, Nozaki, Yukio. Electrical evaluation of the alternating spin current generated via spin-vorticity coupling. PHYSICAL REVIEW B[J]. 2020, 102(10): https://www.webofscience.com/wos/woscc/full-record/WOS:000565455400004.
[23] Oue, Daigo, Matsuo, Mamoru. Optically induced electron spin currents in the Kretschmann configuration. 2020, http://arxiv.org/abs/2004.14411.
[24] Imai, Masaki, Chudo, Hiroyuki, Ono, Masao, Harii, Kazuya, Matsuo, Mamoru, Ohnuma, Yuichi, Maekawa, Sadamichi, Saitoh, Eiji. Angular momentum compensation manipulation to room temperature of the ferrimagnet Ho3-xDyxFe5O12 detected by the Barnett effect. APPLIED PHYSICS LETTERS[J]. 2019, 114(16): https://www.webofscience.com/wos/woscc/full-record/WOS:000466264600020.
[25] Huang, XuGuang, Matsuo, Mamoru, Taya, Hidetoshi. Spontaneous generation of spin current from the vacuum by strong electric fields. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS[J]. 2019, 2019(11): https://www.webofscience.com/wos/woscc/full-record/WOS:000504330300002.
[26] Okano, Genki, Matsuo, Mamoru, Ohnuma, Yuichi, Maekawa, Sadamichi, Nozaki, Yukio. Nonreciprocal Spin Current Generation in Surface-Oxidized Copper Films. PHYSICAL REVIEW LETTERS[J]. 2019, 122(21): https://www.webofscience.com/wos/woscc/full-record/WOS:000469334800023.
[27] Fujimoto, Junji, Matsuo, Mamoru. Alternating current-induced interfacial spin-transfer torque. PHYSICAL REVIEW B[J]. 2019, 100(22): https://www.webofscience.com/wos/woscc/full-record/WOS:000500717200001.
[28] Hattori, Koichi, Hongo, Masaru, Huang, XuGuang, Matsuo, Mamoru, Taya, Hidetoshi. Fate of spin polarization in a relativistic fluid: An entropy-current analysis. PHYSICS LETTERS B[J]. 2019, 795: 100-106, [29] Nakata, Kouki, Ohnuma, Yuichi, Matsuo, Mamoru. Universal 1/3-suppression of magnonic shot noise in diffusive insulating magnets. PHYSICAL REVIEW B[J]. 2019, 100(1): [30] Kato, T, Ohnuma, Y, Matsuo, M, Rech, J, Jonckheere, T, Martin, T. Microscopic theory of spin transport at the interface between a superconductor and a ferromagnetic insulator. PHYSICAL REVIEW B[J]. 2019, 99(14): [31] Kazuya Harii, YongJun Seo, Yasumasa Tsutsumi, Hiroyuki Chudo, Koichi Oyanagi, Mamoru Matsuo, Yuki Shiomi, Takahito Ono, Sadamichi Maekawa, Eiji Saitoh. Spin Seebeck mechanical force. NATURE COMMUNICATIONS[J]. 2019, 10(1): 1-5, https://doaj.org/article/224355c3d09645558b06c97b97fa6516.
[32] Nakata, Kouki, Ohnuma, Yuichi, Matsuo, Mamoru. Asymmetric quantum shot noise in magnon transport. PHYSICAL REVIEW B[J]. 2019, 99(13): https://www.webofscience.com/wos/woscc/full-record/WOS:000463878400002.
[33] Nakata, Kouki, Ohnuma, Yuichi, Matsuo, Mamoru. Magnonic noise and Wiedemann-Franz law. PHYSICAL REVIEW B[J]. 2018, 98(9): [34] Matsuo, M, Ohnuma, Y, Kato, T, Maekawa, S. Spin Current Noise of the Spin Seebeck Effect and Spin Pumping. PHYSICAL REVIEW LETTERS[J]. 2018, 120(3): http://dx.doi.org/10.1103/PhysRevLett.120.037201.
[35] Imai, Masaki, Ogata, Yudai, Chudo, Hiroyuki, Ono, Masao, Harii, Kazuya, Matsuo, Mamoru, Ohnuma, Yuichi, Maekawa, Sadamichi, Saitoh, Eiji. Observation of gyromagnetic reversal. APPLIED PHYSICS LETTERS[J]. 2018, 113(5): [36] Tang, Chi, Song, Qi, Chang, CuiZu, Xu, Yadong, Ohnuma, Yuichi, Matsuo, Mamoru, Liu, Yawen, Yuan, Wei, Yao, Yunyan, Moodera, Jagadeesh S, Maekawa, Sadamichi, Han, Wei, Shi, Jing. Dirac surface state-modulated spin dynamics in a ferrimagnetic insulator at room temperature. SCIENCE ADVANCES[J]. 2018, 4(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000443175500047.
[37] Ogata, Y, Chudo, H, Ono, M, Harii, K, Matsuo, M, Maekawa, S, Saitoh, E. Gyroscopic g factor of rare earth metals. APPLIED PHYSICS LETTERS[J]. 2017, 110(7): [38] Kobayashi, D, Yoshikawa, T, Matsuo, M, Iguchi, R, Maekawa, S, Saitoh, E, Nozaki, Y. Spin Current Generation Using a Surface Acoustic Wave Generated via Spin-Rotation Coupling. PHYSICAL REVIEW LETTERS[J]. 2017, 119(7): https://www.webofscience.com/wos/woscc/full-record/WOS:000407719400010.
[39] Matsuo, Mamoru, Saitoh, Eiji, Maekawa, Sadamichi. Spin-Mechatronics. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN[J]. 2017, 86(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000391858100011.
[40] Matsuo, M, Ohnuma, Y, Maekawa, S. Theory of spin hydrodynamic generation. PHYSICAL REVIEW B[J]. 2017, 96(2): http://dx.doi.org/10.1103/PhysRevB.96.020401.
[41] Ohnuma, Y, Matsuo, M, Maekawa, S. Theory of the spin Peltier effect. PHYSICAL REVIEW B[J]. 2017, 96(13): 134412-1-134412-4, http://dx.doi.org/10.1103/PhysRevB.96.134412.
[42] Ogata, Y, Chudo, H, Gu, B, Kobayashi, N, Ono, M, Harii, K, Matsuo, M, Saitoh, E, Maekawa, S. Enhanced orbital magnetic moment in FeCo nanogranules observed by Barnett effect. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALSnull. 2017, 442: 329-331, http://dx.doi.org/10.1016/j.jmmm.2017.06.101.
[43] Takahashi, R, Matsuo, M, Ono, M, Harii, K, Chudo, H, Okayasu, S, Ieda, J, Takahashi, S, Maekawa, S, Saitoh, E. Spin hydrodynamic generation. NATURE PHYSICS[J]. 2016, 12(1): 52-56, https://www.webofscience.com/wos/woscc/full-record/WOS:000367835400019.
[44] Ohnuma, Y, Matsuo, M, Maekawa, S. Spin transport in half-metallic ferromagnets. PHYSICAL REVIEW B[J]. 2016, 94(18): https://www.webofscience.com/wos/woscc/full-record/WOS:000386895000007.
[45] Chudo, Hiroyuki, Harii, Kazuya, Matsuo, Mamoru, Ieda, Junichi, Ono, Masao, Maekawa, Sadamichi, Saitoh, Eiji. Rotational Doppler Effect and Barnett Field in Spinning NMR. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN[J]. 2015, 84(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000350743500001.
[46] Mamoru eMatsuo, Junichi eIeda, Sadamichi eMaekawa. Mechanical generation of spin current. FRONTIERS IN PHYSICS[J]. 2015, 3: https://doaj.org/article/11f7c4972cb7435791453fee5103869b.
[47] MATSUO MAMORU. Line splitting of nuclear magnetic resonance induced by mechanical rotation. Japanese Journal of Applied Physics. 2015, [48] Ono, Masao, Chudo, Hiroyuki, Harii, Kazuya, Okayasu, Satoru, Matsuo, Mamoru, Ieda, Junichi, Takahashi, Ryo, Maekawa, Sadamichi, Saitoh, Eiji. Barnett effect in paramagnetic states. PHYSICAL REVIEW B[J]. 2015, 92(17): https://www.webofscience.com/wos/woscc/full-record/WOS:000365772800006.
[49] Chudo, Hiroyuki, Ono, Masao, Harii, Kazuya, Matsuo, Mamoru, Leda, Junichi, Haruki, Rie, Okayasu, Satoru, Maekawa, Sadamichi, Yasuoka, Hiroshi, Saitoh, Eiji. Observation of Barnett fields in solids by nuclear magnetic resonance. APPLIED PHYSICS EXPRESS[J]. 2014, 7(6): 063004-, https://www.webofscience.com/wos/woscc/full-record/WOS:000338692500023.
[50] Ieda, Junichi, Matsuo, Mamoru, Maekawa, Sadamichi. Theory of mechanical spin current generation via spin-rotation coupling. SOLID STATE COMMUNICATIONS[J]. 2014, 198: 52-56, http://dx.doi.org/10.1016/j.ssc.2014.02.003.
[51] Matsuo, Mamoru, Ieda, Junichi, Maekawa, Sadamichi. Theory of mechanical spin current generation via spin-orbit coupling. SOLID STATE COMMUNICATIONS[J]. 2014, 198: 57-60, http://dx.doi.org/10.1016/j.ssc.2013.08.005.
[52] Matsuo, Mamoru, Ieda, Junichi, Maekawa, Sadamichi, Saitoh, Eiji. Effects of mechanical rotation and vibration on spin currents. JOURNAL OF THE KOREAN PHYSICAL SOCIETY[J]. 2013, 62(10): 1404-1409, http://dx.doi.org/10.3938/jkps.62.1404.
[53] Matsuo, Mamoru, Ieda, Junichi, Harii, Kazuya, Saitoh, Eiji, Maekawa, Sadamichi. Mechanical generation of spin current by spin-rotation coupling. PHYSICAL REVIEW B[J]. 2013, 87(18): https://www.webofscience.com/wos/woscc/full-record/WOS:000319056900001.
[54] Matsuo, Mamoru, Ieda, Junichi, Maekawa, Sadamichi. Renormalization of spin-rotation coupling. PHYSICAL REVIEW B[J]. 2013, 87(11): https://www.webofscience.com/wos/woscc/full-record/WOS:000315731100003.
发表著作
(1) Spin-mechatronics — Mechanical generation of spin and spin current, Oxford University Press, 2017-01, 第 1 作者
(2) 相対論とゲージ場の古典論を噛み砕く, Introduction to theory of relativity and classical gauge fields, 現代数学社, 2019-05, 第 1 作者

科研活动

   
参与会议
(1)Spin hydrodynamics in condensed matter systems   2019-04-12
(2)Spin current noise at magnetic interfaces   2018-12-01
(3)Spin mechatronics–spin-current generation by mechanical rotation   2018-11-26
(4)磁気的界面におけるスピン輸送とスピンショット雑音の理論   メゾスコピック系における非平衡スピン輸送の微視的理解とその制御   2018-11-22
(5)Spin transport phenomena in non-inertial frames   2018-08-28
(6)Spin current generation by spin-vorticity coupling   2018-07-06
(7)Spin hydrodynamic generation in graphene   2018-04-06
(8)非慣性系スピントロニクスからのメッセージ   「高エネルギー重イオン衝突実験と諸分野の協奏と発展」日本物理学会年次大会    2018-03-22
(9)Scaling law of spin hydrodynamic generation   2017-12-07
(10)Mechanical generation of spin and spin current   2016-10-10
(11)Spin hydrodynamic generation   2016-01-25
(12)Theory of spin mechatronics   2015-06-10
(13)Spin transport theory in deformed crystals   2014-06-25
(14)Spin-current generation arising from mechanical motions   2013-03-18
(15)Generation of spin current due to rigid and elastic motion   2013-02-25