基本信息
罗德军 男 博导 中国科学院数学与系统科学研究院
电子邮件: luodj@amss.ac.cn
通信地址: 北京市海淀区中关村东路55号思源楼
邮政编码: 100190
电子邮件: luodj@amss.ac.cn
通信地址: 北京市海淀区中关村东路55号思源楼
邮政编码: 100190
研究领域
随机分析
招生信息
招生专业
070103-概率论与数理统计
招生方向
随机分析,随机偏微分方程
教育背景
2005-09--2008-09 University of Bourgogne, France 博士2003-09--2008-06 北京师范大学数学科学学院 博士1999-09--2003-06 北京师范大学数学系 本科
学历
-- 研究生
学位
-- 博士
工作经历
工作简历
2022-04~现在, 中科院数学与系统科学研究院应用数学所, 研究员2018-12~2019-11,意大利比萨高等师范学校, 合作研究2017-05~2018-03,意大利比萨大学数学系, 访问学者2014-09~现在, 中国科学院大学, 岗位教师2014-03~2022-03,中科院数学与系统科学研究院应用数学所, 副研究员2009-03~2011-02,University of Luxembourg, 博士后2008-07~2014-02,中科院数学与系统科学研究院应用数学所, 助理研究员
教授课程
随机偏微分方程随机偏微分方程简介微积分III-A微积分Ⅲ-A03-1微积分Ⅱ-A微积分II习题课-A03-1微积分Ⅲ-C02-1微积分III-C
专利与奖励
奖励信息
(1) 中科院数学与系统科学研究院“2021年度重要科研进展奖”, , 研究所(学校), 2021(2) 中科院青年创新促进会优秀会员, 院级, 2021(3) 中科院青年创新促进会会员, , 院级, 2017(4) 中科院数学与系统科学研究院“陈景润未来之星”, 研究所(学校), 2016
出版信息
发表论文
[1] Flandoli, Franco, Luo, Dejun. ON THE BOUSSINESQ HYPOTHESIS FOR A STOCHASTIC PROUDMAN-TAYLOR MODEL. SIAM JOURNAL ON MATHEMATICAL ANALYSIS[J]. 2024, 第 2 作者56(3): 3886-3923, http://dx.doi.org/10.1137/23M1587944.[2] Galeati, Lucio, Luo, Dejun. LDP and CLT for SPDEs with transport noise. Stochastics and Partial Differential Equations: Analysis and Computations[J]. 2024, 第 2 作者12(1): 736-793, https://doi.org/10.1007/s40072-023-00292-y.[3] Flandoli, Franco, Luo, Dejun, Luongo, Eliseo. 2D Smagorinsky-Type Large Eddy Models as Limits of Stochastic PDEs. Journal of Nonlinear Science[J]. 2024, 第 2 作者34(3): paper no. 54, https://doi.org/10.1007/s00332-024-10028-4.[4] Flandoli, Franco, Galeati, Lucio, Luo, Dejun. Quantitative convergence rates for scaling limit of SPDEs with transport noise. Journal of Differential Equations[J]. 2024, 第 3 作者394: 237-277, https://doi.org/10.1016/j.jde.2024.02.053.[5] Luo, Dejun, Tang, Bin. Stochastic inviscid Leray-α model with transport noise: Convergence rates and CLT. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS[J]. 2023, 第 1 作者234: http://dx.doi.org/10.1016/j.na.2023.113301.[6] Luo, Dejun. Regularization by transport noise for 3D MHD equations. 中国科学: 数学(英文版)[J]. 2023, 第 1 作者66(6): 1375-1394, [7] Luo, Dejun, Tang, Bin. Stochastic inviscid Leray-alpha model with transport noise: convergence rates and CLT. Nonlinear Analysis[J]. 2023, 第 1 作者234(113301): [8] Guo, Shuchen, Luo, Dejun. Scaling Limit of Moderately Interacting Particle Systems with Singular Interaction and Environmental Noise. The Annals of Applied Probability[J]. 2023, 第 2 作者33(3): 2066-2102, [9] Luo, Dejun, Wang, Danli. Well posedness and limit theorems for a class of stochastic dyadic models. SIAM Journal on Mathematical Analysis[J]. 2023, 第 1 作者55(2): 1464-1498, [10] Dong, Zhao, Luo, Dejun, Tang, Bin. Dissipation enhancement by transport noise for stochastic p-Laplace equations. Nonlinear Differential Equations and Applications NoDEA[J]. 2023, 第 2 作者30(1): no. 5, [11] Flandoli, Franco, Luo, Dejun, Ricci, Cristiano. Numerical computation of probabilities for nonlinear SDEs in high dimension using Kolmogorov equation. APPLIED MATHEMATICS AND COMPUTATION[J]. 2023, 第 2 作者436: http://dx.doi.org/10.1016/j.amc.2022.127520.[12] Flandoli, Franco, Galeati, Lucio, Luo, Dejun. Eddy heat exchange at the boundary under white noise turbulence. Philosophical Transactions of the Royal Society A[J]. 2022, 第 3 作者[13] Flandoli, Franco, Luo, Dejun, Ricci, Cristiano. On the Relation Between the Girsanov Transform and the Kolmogorov Equations for SPDEs. POTENTIAL ANALYSIS[J]. 2022, 第 2 作者 通讯作者 57(4): 473-500, [14] Flandoli, Franco, Hofmanova, Martina, Luo, Dejun, Nilssen, Torstein. Global well-posedness of the 3D Navier--Stokes equations perturbed by a deterministic vector field. The Annals of Applied Probability[J]. 2022, 第 3 作者32(4): 2568-2586, [15] Flandoli, Franco, Galeati, Lucio, Luo, Dejun. Scaling limit of stochastic 2D Euler equations with transport noises to the deterministic Navier-Stokes equations. JOURNAL OF EVOLUTION EQUATIONS[J]. 2021, 第 3 作者21(1): 567-600, https://www.webofscience.com/wos/woscc/full-record/WOS:000541309100001.[16] Luo, Dejun. Convergence of stochastic 2D inviscid Boussinesq equations with transport noise to a deterministic viscous system. NONLINEARITY[J]. 2021, 第 1 作者 通讯作者 34(12): 8311-8330, [17] Luo, Dejun, Zhu, Rongchan. Stochastic mSQG equations with multiplicative transport noises: White noise solutions and scaling limit. STOCHASTIC PROCESSES AND THEIR APPLICATIONS[J]. 2021, 第 1 作者140: 236-286, http://dx.doi.org/10.1016/j.spa.2021.06.013.[18] Flandoli, Franco, Luo, Dejun, Ricci, Cristiano. A numerical approach to Kolmogorov equation in high dimension based on Gaussian analysis. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS[J]. 2021, 第 2 作者493(1): http://dx.doi.org/10.1016/j.jmaa.2020.124505.[19] Flandoli, Franco, Luo, Dejun. Point vortex approximation for 2D Navier-Stokes equations driven by space-time white noise. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS[J]. 2021, 第 2 作者 通讯作者 493(2): http://dx.doi.org/10.1016/j.jmaa.2020.124560.[20] Luo, De Jun, Saal, Martin. Regularization by Noise for the Point Vortex Model of mSQG Equations. ACTA MATHEMATICA SINICA-ENGLISH SERIES[J]. 2021, 第 1 作者 通讯作者 37(3): 408-422, http://lib.cqvip.com/Qikan/Article/Detail?id=7104357508.[21] Flandoli, Franco, Luo, Dejun. High mode transport noise improves vorticity blow-up control in 3D Navier-Stokes equations. PROBABILITY THEORY AND RELATED FIELDS[J]. 2021, 第 2 作者 通讯作者 180(1-2): 309-363, http://dx.doi.org/10.1007/s00440-021-01037-5.[22] Flandoli, Franco, Galeati, Lucio, Luo, Dejun. Delayed blow-up by transport noise. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS[J]. 2021, 第 3 作者46(9): 1757-1788, http://dx.doi.org/10.1080/03605302.2021.1893748.[23] Flandoli, Franco, Luo, Dejun. Energy conditional measures and 2D turbulence. JOURNAL OF MATHEMATICAL PHYSICS[J]. 2020, 第 2 作者61(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000518009800001.[24] Luo, Dejun, Saal, Martin. A scaling limit for the stochastic mSQG equations with multiplicative transport noises. STOCHASTICS AND DYNAMICS[J]. 2020, 第 1 作者 通讯作者 20(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000580940600002.[25] Flandoli, Franco, Grotto, Francesco, Luo, Dejun. FOKKER-PLANCK EQUATION FOR DISSIPATIVE 2D EULER EQUATIONS WITH CYLINDRICAL NOISE. THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS[J]. 2020, 第 3 作者102: 117-143, [26] Flandoli, Franco, Luo, Dejun. CONVERGENCE OF TRANSPORT NOISE TO ORNSTEIN-UHLENBECK FOR 2D EULER EQUATIONS UNDER THE ENSTROPHY MEASURE. ANNALS OF PROBABILITY[J]. 2020, 第 2 作者48(1): 264-295, https://www.webofscience.com/wos/woscc/full-record/WOS:000521825900007.[27] Flandoli, Franco, Luo, Dejun. KOLMOGOROV EQUATIONS ASSOCIATED TO THE STOCHASTIC TWO DIMENSIONAL EULER EQUATIONS. SIAM JOURNAL ON MATHEMATICAL ANALYSIS[J]. 2019, 第 2 作者51(3): 1761-1791, https://www.webofscience.com/wos/woscc/full-record/WOS:000473082300007.[28] Flandoli, Franco, Luo, Dejun. EULER-LAGRANGIAN APPROACH TO 3D STOCHASTIC EULER EQUATIONS. JOURNAL OF GEOMETRIC MECHANICS[J]. 2019, 第 2 作者11(2): 153-165, http://ir.amss.ac.cn/handle/2S8OKBNM/34620, http://www.irgrid.ac.cn/handle/1471x/6869275, http://ir.amss.ac.cn/handle/2S8OKBNM/34621, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000467023900004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.[29] Luo, Dejun, Wang, Jian. Refined basic couplings and Wasserstein-type distances for SDEs with Levy noises. STOCHASTIC PROCESSES AND THEIR APPLICATIONS[J]. 2019, 第 1 作者129(9): 3129-3173, http://ir.amss.ac.cn/handle/2S8OKBNM/35469, http://www.irgrid.ac.cn/handle/1471x/6869294, http://ir.amss.ac.cn/handle/2S8OKBNM/35470, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000482251600006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.[30] Luo, Dejun, Wang, Jian. COUPLING BY REFLECTION AND HOLDER REGULARITY FOR NON-LOCAL OPERATORS OF VARIABLE ORDER. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY[J]. 2019, 第 1 作者371(1): 431-459, http://ir.amss.ac.cn/handle/2S8OKBNM/31836.[31] Li, Huaiqian, Luo, Dejun. Quantitative stability estimates for Fokker-Planck equations. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES[J]. 2019, 第 2 作者 通讯作者 122: 125-163, http://ir.amss.ac.cn/handle/2S8OKBNM/32465.[32] Flandoli, Franco, Luo, Dejun. rho-White noise solution to 2D stochastic Euler equations. PROBABILITY THEORY AND RELATED FIELDS[J]. 2019, 第 2 作者175(3-4): 783-832, [33] Luo, Dejun. The Ito SDEs and Fokker-Planck equations with Osgood and Sobolev coefficients. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES[J]. 2018, 第 1 作者 通讯作者 90(3): 379-410, http://dx.doi.org/10.1080/17442508.2017.1357723.[34] Fang, Shizan, Luo, Dejun. Constantin and Iyer's Representation Formula for the Navier-Stokes Equations on Manifolds. POTENTIAL ANALYSIS[J]. 2018, 第 2 作者 通讯作者 48(2): 181-206, https://www.webofscience.com/wos/woscc/full-record/WOS:000422968600003.[35] Luo, Dejun, Wang, Jian. Exponential convergence in L-p-Wasserstein distance for diffusion processes without uniformly dissipative drift. MATHEMATISCHE NACHRICHTEN[J]. 2016, 第 1 作者289(14-15): 1909-1926, https://www.webofscience.com/wos/woscc/full-record/WOS:000386185200011.[36] Luo, Dejun. A characterization of the rate of change of Phi-entropy via an integral form curvature-dimension condition. ADVANCES IN GEOMETRY[J]. 2016, 第 1 作者 通讯作者 16(3): 277-290, https://www.webofscience.com/wos/woscc/full-record/WOS:000381015500002.[37] Gong, Fuzhou, Li, Huaiqian, Luo, Dejun. A Probabilistic Proof of the Fundamental Gap Conjecture Via the Coupling by Reflection (vol 44, pg 423, 2016). POTENTIAL ANALYSIS. 2016, 第 3 作者 通讯作者 44(3): 443-447, https://www.webofscience.com/wos/woscc/full-record/WOS:000374865700002.[38] Luo, Dejun, Wang, Jian. Holder continuity of semigroups for time changed symmetric stable processes. FRONTIERS OF MATHEMATICS IN CHINA[J]. 2016, 第 1 作者11(1): 109-121, https://www.webofscience.com/wos/woscc/full-record/WOS:000365760000008.[39] Gong, Fuzhou, Li, Huaiqian, Luo, Dejun. A Probabilistic Proof of the Fundamental Gap Conjecture Via the Coupling by Reflection. POTENTIAL ANALYSIS[J]. 2016, 第 3 作者 通讯作者 44(3): 423-442, http://dx.doi.org/10.1007/s11118-015-9476-3.[40] Fuzhou Gong, Huaiqian Li, Dejun Luo. Erratum to: A Probabilistic Proof of the Fundamental Gap Conjecture Via the Coupling by Reflection. POTENTIAL ANALYSIS,. 2016, 第 3 作者44(3): [41] Huaiqian Li, Dejun Luo. A unified treatment for ODEs under Osgood and Sobolev type conditions. BULLETIN DES SCIENCES MATHÉMATIQUES. 2015, 第 2 作者139(1): 114-133, http://dx.doi.org/10.1016/j.bulsci.2014.08.005.[42] Li, Huaiqian, Luo, Dejun, Wang, Jian. Harnack inequalities for SDEs with multiplicative noise and non-regular drift. STOCHASTICS AND DYNAMICS[J]. 2015, 第 2 作者15(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000355016700002.[43] Luo, Dejun. Stochastic Lagrangian flows on the group of volume-preserving homeomorphisms of the spheres. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES[J]. 2015, 第 1 作者 通讯作者 87(4): 680-701, https://www.webofscience.com/wos/woscc/full-record/WOS:000360395400007.[44] Li, Huaiqian, Luo, Dejun. A unified treatment for ODEs under Osgood and Sobolev type conditions. BULLETIN DES SCIENCES MATHEMATIQUES[J]. 2015, 第 2 作者 通讯作者 139(1): 114-133, http://dx.doi.org/10.1016/j.bulsci.2014.08.005.[45] Luo, Dejun. Generalized stochastic flow associated to the Ito SDE with partially Sobolev coefficients and its application. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE[J]. 2015, 第 1 作者 通讯作者 14(2): 535-573, https://www.webofscience.com/wos/woscc/full-record/WOS:000360771300008.[46] Luo, Dejun. Quasi-invariance of the Stochastic Flow Associated to It's SDE with Singular Time-Dependent Drift. JOURNAL OF THEORETICAL PROBABILITY[J]. 2015, 第 1 作者 通讯作者 28(4): 1743-1762, https://www.webofscience.com/wos/woscc/full-record/WOS:000364962500019.[47] Luo, Dejun. Dimension-Independent Estimates on the Densities of Wiener Functionals via the Log-Sobolev Inequality. POTENTIAL ANALYSIS[J]. 2014, 第 1 作者 通讯作者 41(3): 903-915, https://www.webofscience.com/wos/woscc/full-record/WOS:000343134200013.[48] Gong, FuZhou, Liu, Yong, Liu, Yuan, Luo, DeJun. Spectral gaps of Schrodinger operators and diffusion operators on abstract Wiener spaces. JOURNAL OF FUNCTIONAL ANALYSIS[J]. 2014, 第 4 作者266(9): 5639-5675, https://www.webofscience.com/wos/woscc/full-record/WOS:000334652000005.[49] Luo, Dejun. Uniqueness of degenerate Fokker-Planck equations with weakly differentiable drift whose gradient is given by a singular integral. ELECTRONIC COMMUNICATIONS IN PROBABILITY[J]. 2014, 第 1 作者 通讯作者 19: 1-14, https://www.webofscience.com/wos/woscc/full-record/WOS:000341867000001.[50] Luo, De Jun. Fokker-Planck type equations with Sobolev diffusion coefficients and BV drift coefficients. ACTA MATHEMATICA SINICA-ENGLISH SERIES[J]. 2013, 第 1 作者 通讯作者 29(2): 303-314, http://ir.amss.ac.cn/handle/2S8OKBNM/49872, http://www.irgrid.ac.cn/handle/1471x/6869702, http://ir.amss.ac.cn/handle/2S8OKBNM/49873.[51] Lim, Adrian P C, Luo, Dejun. Asymptotic estimates on the time derivative of entropy on a Riemannian manifold. ADVANCES IN GEOMETRY[J]. 2013, 第 2 作者13(1): 97-115, https://www.webofscience.com/wos/woscc/full-record/WOS:000316858900006.[52] Lim, Adrian P C, Luo, Dejun. A note on Gaussian correlation inequalities for nonsymmetric sets. STATISTICS & PROBABILITY LETTERS[J]. 2012, 第 2 作者 通讯作者 82(1): 196-202, https://www.webofscience.com/wos/woscc/full-record/WOS:000298204800030.[53] Li, Huaiqian, Luo, Dejun. Quasi-Invariant Flow Generated by Stratonovich SDE with BV Drift Coefficient. STOCHASTIC ANALYSIS AND APPLICATIONS[J]. 2012, 第 2 作者 通讯作者 30(2): 258-284, https://www.webofscience.com/wos/woscc/full-record/WOS:000302370000005.[54] Luo, Dejun. Pathwise uniqueness of multi-dimensional stochastic differential equations with Holder diffusion coefficients. FRONTIERS OF MATHEMATICS IN CHINA[J]. 2011, 第 1 作者 通讯作者 6(1): 129-136, https://www.webofscience.com/wos/woscc/full-record/WOS:000286193500009.[55] Fang, Shizan, Li, Huaiqian, Luo, Dejun. Heat semi-group and generalized flows on complete Riemannian manifolds. BULLETIN DES SCIENCES MATHEMATIQUES[J]. 2011, 第 3 作者135(6-7): 565-600, http://dx.doi.org/10.1016/j.bulsci.2011.05.002.[56] Luo, Dejun. Absolute continuity under flows generated by SDE with measurable drift coefficients. STOCHASTIC PROCESSES AND THEIR APPLICATIONS[J]. 2011, 第 1 作者 通讯作者 121(10): 2393-2415, http://dx.doi.org/10.1016/j.spa.2011.05.012.[57] Luo, Dejun. WELL-POSEDNESS OF FOKKER-PLANCK TYPE EQUATIONS ON THE WIENER SPACE. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS[J]. 2010, 第 1 作者 通讯作者 13(2): 273-304, https://www.webofscience.com/wos/woscc/full-record/WOS:000279726900006.[58] Luo Dejun. stochasticvariationalprincipleforthethreedimensionalnavierstokesequation. 应用数学[J]. 2010, 第 1 作者539, http://ir.amss.ac.cn/handle/2S8OKBNM/43412, http://www.irgrid.ac.cn/handle/1471x/6869526, http://ir.amss.ac.cn/handle/2S8OKBNM/43413.[59] 罗德军. 三维Navier-Stokes方程的随机变分准则. 应用数学[J]. 2010, 第 1 作者539-547, http://lib.cqvip.com/Qikan/Article/Detail?id=34951044.[60] Fang, Shizan, Luo, Dejun, Thalmaier, Anton. Stochastic differential equations with coefficients in Sobolev spaces. JOURNAL OF FUNCTIONAL ANALYSIS[J]. 2010, 第 2 作者259(5): 1129-1168, http://dx.doi.org/10.1016/j.jfa.2010.02.014.[61] Fang, Shizan, Luo, Dejun. Transport equations and quasi-invariant flows on the Wiener space. BULLETIN DES SCIENCES MATHEMATIQUES[J]. 2010, 第 2 作者134(3): 295-328, http://dx.doi.org/10.1016/j.bulsci.2009.01.001.[62] Luo, Dejun. Quasi-invariance of Lebesgue measure under the homeomorphic flow generated by SDE with non-Lipschitz coefficient. BULLETIN DES SCIENCES MATHEMATIQUES[J]. 2009, 第 1 作者 通讯作者 133(3): 205-228, http://dx.doi.org/10.1016/j.bulsci.2009.01.002.
科研活动
科研项目
( 1 ) (带边)黎曼轨道空间与环空间上的随机分析, 参与, 国家任务, 2014-01--2017-12( 2 ) 面向流体力学的随机偏微分方程的分析和渐近性质研究, 参与, 国家任务, 2015-01--2019-12( 3 ) 关于不可压缩的Navier-Stokes方程组的随机刻画的若干问题, 负责人, 国家任务, 2016-01--2019-12( 4 ) 中科院青年创新促进会, 负责人, 中国科学院计划, 2017-01--2020-12( 5 ) 非局部狄氏型和随机偏微分方程若干问题研究, 参与, 国家任务, 2020-01--2024-12( 6 ) 几类有重要物理背景的随机(偏)微分方程的动力学行为, 参与, 国家任务, 2021-01--2025-12( 7 ) 随机分析的基础理论研究, 参与, 国家任务, 2020-12--2024-11( 8 ) 中科院青年创新促进会优秀会员, 负责人, 中国科学院计划, 2022-01--2024-12
参与会议
(1)Limit theorems for stochastic inviscid Leray-α model with transport noise 2023-11-06(2)Weak well-posedness by transport noise for some 2D fluid dynamics equations 2023年中国-俄罗斯概率论研讨会 2023-08-28(3)Uniqueness in law for a class of stochastic 2D fluid dynamics equations with transport noise 第八届全国概率论年会 2023-08-21(4)Convergence of stochastic 2D fluid equations with transport type noise to Smagorinsky model 2023 随机系统的动力学新进展研讨会 2023-07-02(5)Some studies on the Boussinesq hypothesis 重大项目“动力学中的随机方法”研究进展交流会 2023-04-22(6)Eddy viscosity emerges in scaling limit of stochastic fluid equations with transport noise 第十二届全国概率统计会议 2023-04-13(7)Convergence rates and CLT for stochastic inviscid Leray-α model with transport noise 国家天元数学东南中心2022年随机分析及其应用研讨会 2022-11-26(8)Scaling limit and CLT for stochastic 2D Euler equations with transport noise 2022-06-27(9)Dissipation enhancement for stochastic heat equation with transport noise 2021-07-12(10)Some results on particle systems with environmental noise 随机分析及相关领域学术研讨会 2021-06-24(11)传输型噪声对三维Navier-Stokes方程的正则化作用 2020-05-16(12)High mode transport noise improves vorticity blow-up control in 3D Navier-Stokes equations 2019-11-11(13)Some scaling limits of the 2D Euler equation with transport noises 2019-07-18(14)Some recent results on white noise solutions to stochastic 2D Euler equations 2019-05-11(15)Particle system approximation for 2D Navier-Stokes equations driven by space-time white noise 第十一届全国概率统计年会 2018-10-25(16)Convergence of transport noise to Ornstein-Uhlenbeck for 2D Euler equations under the enstrophy measure 2018-09-03(17)随机二维欧拉方程的一个极限定理 2018年随机过程与应用概率论研讨会 2018-07-06(18)Kolmogorov equations associated to 2D stochastic Euler equations 中美数学会联合会议 2018-06-11(19)White noise solution to 2D stochastic Euler equations 狄氏型及随机分析学术研讨会 2018-05-11(20)Kolmogorov equations associated to the stochastic 2D Euler equations 随机分析及其应用研讨会 2018-04-13(21)The Ito SDEs and Fokker–Planck equations with Osgood and Sobolev coefficients 2016-07-13(22)Wasserstein-type distances and ergodicity for SDEs with Levy Noises via the refined basic coupling 2016-04-28(23)A class of stochastic differential equations with Osgood and Sobolev coefficients 2016-04-01(24)Exponential convergence in L^p Wasserstein distance for diffusion process without uniformly dissipative drift Dejun Luo, Jian Wang 2015-12-01(25)A probabilistic proof of the spectral gap comparison theorem 武汉大学青年概率学者研讨会 Fuzhou Gong, Huaiqian Li, Dejun Luo 2015-05-01(26)Quasi-invariance of the Stochastic Flow Associated to Itos SDE with Singular Dejun Luo 2014-08-14(27)A characterization of the rate of change of Phi-entropy via an integral form curvature-dimension condition Dejun Luo 2014-07-04(28)A probabilistic proof of the fundamental gap conjecture via the coupling by reflection Fuzhou Gong, Huaiqian Li, Dejun Luo 2013-10-28(29)The fundamental gap conjecture: a probabilistic approach via the coupling by reflection Fuzhou Gong, Huaiqian Li, Dejun Luo 2013-07-06(30)Logarithmic Sobolev inequality for the ground state of a Schrodinger operator Fuzhou Gong, Huaiqian Li, Dejun Luo 2013-07-01
指导学生
已指导学生
郭书晨 硕士研究生 070103-概率论与数理统计
现指导学生
刘畅 硕士研究生 070103-概率论与数理统计
焦帅杰 硕士研究生 070103-概率论与数理统计
滕非凡 硕士研究生 070103-概率论与数理统计