基本信息

陆丹 男 博导 中国科学院半导体研究所
电子邮件: ludan@semi.ac.cn
通信地址: 北京市海淀区清华东路甲35号1号楼311房间
邮政编码: 100083
电子邮件: ludan@semi.ac.cn
通信地址: 北京市海淀区清华东路甲35号1号楼311房间
邮政编码: 100083
研究领域
半导体激光器;InP基光子集成;微波光子学;
招生信息
半导体激光器以及InP基光子集成已经成为当前以及未来光通信系统、5G网络、数据中心、物联网、自动驾驶、片上光互连等应用的基础器件支撑。系统应用对光子器件的速率、功率、线宽提出越来越高、越来越多样化的要求。
本实验室长期从事通信用半导体激光器以及光子集成芯片研究,高速激光器、高功率激光器、窄线宽激光器以及功能集成器件领域有多年积累,是国内通信用半导体激光器及InP基光子集成的核心研究组。实验室具有从材料生长、器件工艺、测试表征到系统应用的完整工艺和测试线。
加入本组的研究生将接受器件设计、材料生长、工艺制备、测试以及系统应用的全面训练。毕业生受到华为、中兴、海信等国内领先芯片公司以及欧美顶尖学校的欢迎。
欢迎光电子、电子、物理专业以及其它专业有志于从事光子芯片研究工作的同学报考。
招生专业
080901-物理电子学
招生方向
半导体激光器,光子集成,微波光子学
教育背景
2005-09--2009-07 北京邮电大学 博士2001-09--2004-07 四川大学 硕士1996-09--2000-07 北京航空航天大学 学士
工作经历
工作简历
2018-01~现在, 中国科学院半导体研究所, 研究员2011-09~2017-12,中国科学院半导体研究所, 副研究员2009-09~2011-07,清华大学, 博士后
教授课程
光子集成芯片基础光子集成芯片材料与器件进展光子芯片集成材料与器件进展
专利与奖励
奖励信息
(1) 电子学会优秀科技工作者, 其他, 2017
专利成果
[1] 刘宇翔, 周代兵, 陆丹, 梁松, 赵玲娟, 王圩. 一种光发射芯片的制作方法和光发射芯片. CN: CN112821197A, 2021-05-18.[2] 陈光灿, 赵玲娟, 陆丹, 赵武, 王欢, 齐合飞. 基于光子集成芯片的多功能信号源及操作方法. CN: CN109600168A, 2019-04-09.[3] 陈光灿, 赵玲娟, 陆丹, 郭露, 赵武. 基于双波长半导体激光器的多普勒测速雷达. CN: CN109116371A, 2019-01-01.[4] 陈光灿, 赵玲娟, 陆丹, 郭露, 赵武. 基于直调半导体激光器自反馈单周期振荡的光电振荡器. CN: CN108879294A, 2018-11-23.[5] 贺一鸣, 陆丹, 李召松, 赵玲娟. 一种利用反射谱精细度测量光波导损耗的系统. CN: CN107727365A, 2018-02-23.[6] 李召松, 陆丹, 贺一鸣, 王嘉琪, 周旭亮, 潘教青. 基于外腔式自反馈的窄线宽半导体激光器. CN: CN107181166A, 2017-09-19.[7] 张莉萌, 陆丹, 赵玲娟, 王圩. 一种单片集成平衡探测器及其制备方法. CN: CN106684104A, 2017-05-17.[8] 李召松, 陆丹, 周旭亮, 潘教青. 基于外腔式窄线宽分布式布拉格反射半导体激光器. CN: CN106129806A, 2016-11-16.[9] 郭露, 张瑞康, 陆丹, 赵玲娟, 王圩. 基于分布布拉格反射激光器的啁啾微波产生装置. CN: CN106067651A, 2016-11-02.[10] 郭露, 张瑞康, 陆丹, 潘碧玮, 陈光灿, 赵玲娟, 王圩. 基于放大反馈激光器的啁啾微波产生装置. CN: CN106067650A, 2016-11-02.[11] 刘松涛, 张瑞康, 陆丹, 吉晨. 一种用于输出飞秒脉冲的锁模激光器. CN: CN106058638A, 2016-10-26.[12] 潘碧玮, 赵玲娟, 陆丹, 张莉萌. 单纵模且波长可调谐的多段式FP激光器. CN: CN105428997A, 2016-03-23.[13] 李召松, 陆丹, 潘教青, 赵玲娟, 梁松. 基于MMI耦合器的InP基少模光子集成发射芯片. CN: CN105388564A, 2016-03-09.[14] 李召松, 陆丹, 张莉萌, 余力强, 戴兴, 潘教青. InP基波分-模分复用少模光通信光子集成发射芯片. CN: CN105068189A, 2015-11-18.[15] 潘碧玮, 陆丹, 赵玲娟, 余力强, 周代兵, 朱洪亮, 王圩, 张莉萌. 四段式放大反馈混沌光发射激光器结构. CN: CN104953468A, 2015-09-30.[16] 潘碧玮, 陆丹, 赵玲娟, 张莉萌. 一种基于直接调制半导体双模激光器的光电振荡器. CN: CN104934853A, 2015-09-23.[17] 郭菲, 陆丹, 张瑞康, 王会涛, 王圩, 吉晨. 基于多模干涉耦合器的InP基模分复用/解复用器结构. CN: CN104914506A, 2015-09-16.[18] 刘松涛, 韩良顺, 张瑞康, 陆丹, 吉晨. 单片集成式多波长偏振复用/解复用器. CN: CN104918145A, 2015-09-16.[19] 刘松涛, 张希林, 陆丹, 张瑞康, 吉晨, 王圩. 单片集成式多波长半导体锁模激光器. CN: CN104617486A, 2015-05-13.[20] 潘碧玮, 陆丹, 赵玲娟. 基于集成外腔半导体激光器的宽带混沌光发射器. CN: CN104600560A, 2015-05-06.[21] 张莉萌, 陆丹, 赵玲娟, 余力强, 潘碧玮, 王圩. 一种直调式InP基单片集成少模光通信发射器芯片. CN: CN104503039A, 2015-04-08.[22] 张莉萌, 陆丹, 赵玲娟, 余力强, 潘碧玮, 王圩. 基于多模干涉器结构的外调制型少模光通信发射芯片. CN: CN104503023A, 2015-04-08.[23] 余力强, 吉晨, 赵玲娟, 陆丹, 王浩, 郭露. 基于放大反馈实现直调带宽扩展的单片集成激光器芯片. CN: CN104377544A, 2015-02-25.[24] 张莉萌, 陆丹, 赵玲娟, 余力强, 潘碧玮, 王圩. InP基单片集成少模光通信接收器芯片. CN: CN104320199A, 2015-01-28.[25] 余力强, 陆丹, 周代兵, 潘碧玮, 赵玲娟. 基于分布布拉格反射激光器的波长可调谐窄线宽光源. CN: CN104143757A, 2014-11-12.[26] 潘碧玮, 陆丹, 赵玲娟, 余力强. 基于半导体双模激光器的优质可调谐光生微波源. CN: CN104051955A, 2014-09-17.[27] 余力强, 赵玲娟, 朱洪亮, 吉晨, 陆丹, 潘教青, 王圩. 可实现模式间距为100GHz的双模激射半导体激光器. CN: CN102684071A, 2012-09-19.[28] 陆丹, 娄采云, 霍力. 一种基于光子滤波的光电振荡器. CN: CN102148475A, 2011-08-10.[29] 葛廷武, 陆丹, 伍剑, 徐坤, 林金桐. 减小高功率法拉第隔离器热致退偏的设计方法. CN: CN101493585A, 2009-07-29.
出版信息
发表论文
[1] Yang, Qiulu, Lu, Dan, He, Yiming, Zhou, Daibing, Zhao, Lingjuan. High Optical Feedback Tolerance of a Detuned DBR Laser for 10-Gbps Isolator-Free Operation. PHOTONICS[J]. 2023, 10(1): [2] 刘宇翔, 张瑞康, 王欢, 陆丹, 赵玲娟. 1.5-μm波段25-GHz重频亚皮秒脉冲输出半导体锁模激光器(特邀). 光子学报[J]. 2022, 51(2): 110-115, http://lib.cqvip.com/Qikan/Article/Detail?id=7106798236.[3] 刘祎慧, 黄永光, 张瑞康, Lianping Hou, 陆丹, 赵玲娟, 王圩. Optical and RIN Spectrum Improvements in Necked Waveguide High-Power DFB Laser Diode. IEEE Photonics Technology Letters[J]. 2022, 34(5): 275-278, [4] Daibing Zhou, Song Liang, Ruikang Zhang, Qiulu Yang, Xuyuan Zhu, Dan Lu, Lingjuan Zhao, Wei Wang. 50 Gb/s Electro-Absorption Modulator Integrated with a Distributed Feedback Laser for Passive Optical Network Systems. PHOTONICS[J]. 2022, 9(780): https://doaj.org/article/72a5e06b0940498cbda638762829f678.[5] Qi, Hefei, Zhang, Zhihao, Lu, Dan, Zhang, Ruikang, Zhao, Lingjuan. O-Band Frequency-Tunable (10-22 GHz) Ultra-Low Timing-Jitter (< 12-fs) Regenerative Mode-Locked Laser. PHOTONICS[J]. 2022, 9(3): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000774766700001.[6] Li, Yaobin, Zhao, Wu, Wang, Huan, Mao, Yuanfeng, Lu, Dan, Zhao, Lingjuan, Kan, Qiang. Tunable Broadband Optoelectronic Oscillator Based on Integrated Mutually Coupled Distributed Feedback Lasers. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2021, 33(15): 769-772, http://dx.doi.org/10.1109/LPT.2021.3090680.[7] Huan Wang, Dan Lu, Ruikang Zhang, Lingjuan Zhao. Photonic Terahertz Carrier Generation Using an Optical Feedback Mode-Lock Laser Diode. IEEE PHOTONICS JOURNAL[J]. 2021, 13(3): 1-6, https://doaj.org/article/5175c0cbad6641bfb5d48c1b77055dfc.[8] Zhou, Daibing, He, Yiming, Lu, Dan, Liang, Song, Zhao, Lingjuan, Wang, Wei. 25 Gb/s Data Transmission Using a Directly Modulated InGaAlAs DBR Laser over 14 nm Wavelength Tuning Range. PHOTONICS[J]. 2021, 8(3): https://doaj.org/article/048a0ad801624eee9fe61e6a82d987da.[9] Guo, Qianwen, Sun, Mengdie, Yao, Ruoyun, Yang, Qiulu, Lu, Dan, Broeke, Ronald, Ji, Chen, Xiong, Wanshu. Monolithically Integrated Dual-Wavelength Distributed Bragg Reflector Laser Photonic Integrated Circuit Chip for Continuous-Wave Terahertz Generation. IEEE PHOTONICS JOURNAL[J]. 2021, 13(2): http://dx.doi.org/10.1109/JPHOT.2021.3062835.[10] He, Yiming, Zhang, Zhongkai, Lv, Zunren, Yang, Tao, Lu, Dan, Zhao, Lingjuan. 10-Gbps 20-km Feedback-Resistant Transmission Using Directly Modulated Quantum-Dot Lasers. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2020, 32(21): 1353-1356, http://dx.doi.org/10.1109/LPT.2020.3025209.[11] Zhao, Wu, Mao, Yuanfeng, Li, Yaobin, Chen, Guangcan, Lu, Dan, Kan, Qiang, Zhao, Lingjuan. Frequency-Tunable Broadband Microwave Comb Generation Using an Integrated Mutually Coupled DFB Laser. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2020, 32(22): 1407-1410, http://dx.doi.org/10.1109/LPT.2020.3027558.[12] Zhou, DaiBing, Liang, Song, He, YiMing, Liu, YunLong, Zhao, Wu, Lu, Dan, Zhao, LingJuan, Wang, Wei. A10 Gb/s 1.5 mu m Widely Tunable Directly Modulated InGaAsP/InP DBR Laser*. CHINESE PHYSICS LETTERS[J]. 2020, 37(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000544997600001.[13] MaXueer, XiaYida, He, YiMing, Lv, ZunRen, Zhang, ZhongKai, Chai, HongYu, Lu, Dan, Yang, XiaoGuang, Yang, Tao. 1.3 mu m p-Modulation Doped InGaAs/GaAs Quantum Dot Lasers with High Speed Direct Modulation Rate and Strong Optical Feedback Resistance. CRYSTALS[J]. 2020, 10(11): https://www.webofscience.com/wos/woscc/full-record/WOS:000593596500001.[14] 周代兵, 梁松, 贺一鸣, 刘云龙, 赵武, 陆丹, 赵玲娟, 王圩. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser. 中国物理快报:英文版[J]. 2020, 37(6): 22-25, http://lib.cqvip.com/Qikan/Article/Detail?id=7102224613.[15] Zhao, Wu, Mao, Yuanfeng, Lu, Dan, Huang, Yongguang, Zhao, Lingjuan, Kan, Qiang, Wang, Wei. Modulation Bandwidth Enhancement of Monolithically Integrated Mutually Coupled Distributed Feedback Laser. APPLIED SCIENCES-BASEL[J]. 2020, 10(12): https://www.webofscience.com/wos/woscc/full-record/WOS:000554597200001.[16] 陆丹, 杨秋露, 王皓, 贺一鸣, 齐合飞, 王欢, 赵玲娟, 王圩. 通信波段半导体分布反馈激光器. 中国激光[J]. 2020, 47(7): 3-21, http://lib.cqvip.com/Qikan/Article/Detail?id=7102611252.[17] Zhou, Daibing, Liang, Song, He, Yiming, Liu, Yunlong, Lu, Dan, Zhao, Lingjuan, Wang, Wei. Two 10 Gb/s directly modulated DBR lasers covering 20 nm wavelength range. OPTICS COMMUNICATIONS[J]. 2020, 475: http://dx.doi.org/10.1016/j.optcom.2020.126236.[18] Guangcan Chen, Wu Zhao, Dan Lu, Member, IEEE, Lu Guo, Huan Wang, Daibing Zhou, Yongguang Huang, Song Liang, Lingjuan Zhao. Wavelength-Tunable Chaotic Signal Generation With On-Chip O/E Conversion. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2019, 31(14): 1179-1182, https://www.webofscience.com/wos/woscc/full-record/WOS:000474586700006.[19] Li, Yajie, Yu, Hongyan, Yang, Wengyu, Ge, Chaoyang, Wang, Pengfei, Meng, Fangyuan, Luo, Guangzhen, Wang, Mengqi, Zhou, Xuliang, Lu, Dan, Ran, Guangzhao, Pan, Jiaoqing. 4-lambda hybrid nGaAsP-Si evanescent laser array with low power consumption for on-chip optical interconnects. PHOTONICS RESEARCH[J]. 2019, 7(6): 687-692, https://www.webofscience.com/wos/woscc/full-record/WOS:000469968800016.[20] Chen, Guangcan, Lu, Dan, Guo, Lu, Zhao, Wu, Huang, Yongguang, Zhao, Lingjuan. Optoelectronic oscillation of the second harmonic of a period-one oscillating distributed feedback laser. OPTIK[J]. 2019, 180: 313-317, http://dx.doi.org/10.1016/j.ijleo.2018.11.109.[21] 王皓, 张瑞康, 陆丹, 王宝军, 黄永光, 王圩, 赵玲娟. 1.55-μm大功率高速直调半导体激光器阵列. 光学学报[J]. 2019, 224-228, http://lib.cqvip.com/Qikan/Article/Detail?id=71888866504849574857485054.[22] Wang, Huan, Guo, Lu, Zhao, Wu, Chen, Guangcan, Lu, Dan, Zhao, Lingjuan. 4x40 GHz mode-locked laser diode array monolithically integrated with an MMI combiner. CHINESE OPTICS LETTERS[J]. 2019, 17(11): [23] Qi, Hefei, Chen, Guangcan, Lu, Dan, Zhao, Lingjuan. A Monolithically Integrated Laser-Photodetector Chip for On-Chip Photonic and Microwave Signal Generation. PHOTONICS[J]. 2019, 6(4): https://doaj.org/article/4db450a42fb6468e90ac58be13fc6aee.[24] Dan Lu. Reflection Airy distribution of a Fabry-Pérot resonator and its application in waveguide loss measurement. Optics Express. 2019, [25] Chen, Guangcan, Lu, Dan, Guo, Lu, Zhao, Wu, Huang, Yongguang, Zhao, Lingjuan. Optoelectronic oscillation of the second harmonic of a period-one oscillating distributed feedback laser. COMPUTERSELECTRICALENGINEERING[J]. 2019, 74: 313-317, [26] YAJIE LI, HONGYAN YU, WENGYU YANG, CHAOYANG GE, PENGFEI WANG, FANGYUAN MENG, GUANGZHEN LUO, MENGQI WANG, XULIANG ZHOU, DAN LU, GUANGZHAO RAN, JIAOQING PAN. 4-λ hybrid InGaAsP-Si evanescent laser array with low power consumption for on-chip optical interconnects. 光子学研究:英文版[J]. 2019, 7(6): 687-692, http://lib.cqvip.com/Qikan/Article/Detail?id=7002497389.[27] 王欢, 郭露, 赵武, 陈光灿, 陆丹, 赵玲娟. 4×40 GHz mode-locked laser diode array monolithically integrated with an MMI combiner. 中国光学快报:英文版[J]. 2019, 17(11): 46-49, http://lib.cqvip.com/Qikan/Article/Detail?id=7100541117.[28] YAJIE LI, HONGYAN YU, WENGYU YANG, CHAOYANG GE, PENGFEI WANG, FANGYUAN MENG, GUANGZHEN LUO, MENGQI WANG, XULIANG ZHOU, DAN LU, GUANGZHAO RAN, JIAOQING PAN. 4-λ hybrid InGaAsP-Si evanescent laser array with low power consumption for on-chip optical interconnects. 光子学研究:英文版[J]. 2019, 7(6): 687-692, [29] Zhou, Honghang, Li, Yan, Lu, Dan, Yue, Lei, Gao, Chao, Liu, Yuyang, Hao, Ruibin, Zhao, Zhixi, Li, Wei, Qiu, Jifang, Hong, Xiaobin, Guo, Hongxiang, Zuo, Yong, Wu, Jian. Joint clock recovery and feed-forward equalization for PAM4 transmission. OPTICS EXPRESS[J]. 2019, 27(8): 11385-11395, [30] Wang Hao, Zhang Ruikang, Kan Qiang, Lu Dan, Wang Wei, Zhao Lingjuan, IEEE. High-Power Wide-Bandwidth 1.55-mu m Directly Modulated DFB Lasers for Free Space Optical Communications. 2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO)null. 2019, [31] Zhao Wu, Guo Lu, Wang Huan, Chen Guangcan, Lu Dan, Zhao Lingjuan, IEEE. Research on the influence of the saturable absorber on the performance of mode-locked semiconductor lasers. 2018 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP)null. 2018, [32] Chen, Guangcan, Lu, Dan, Liang, Song, Guo, Lu, Zhao, Wu, Huang, Yongguang, Zhao, Lingjuan. Frequency-tunable Optoelectronic Oscillator With Synchronized Dual-Wavelength Narrow-Linewidth Laser Output. IEEE ACCESS[J]. 2018, 6: 69224-69229, https://doaj.org/article/1c84f3a6a11e46a7a7a14d48ce8687c4.[33] Zhou, Daibing, Liang, Song, Chen, Guangcan, Mao, Yuanfeng, Lu, Dan, Zhao, Lingjuan, Zhu, Hongliang, Wang, Wei. 10 Gb/s Data Transmissions Using a Widely Tunable Directly Modulated InGaAlAs/InGaAsP DBR Laser. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2018, 30(22): 1937-1940, https://www.webofscience.com/wos/woscc/full-record/WOS:000450614900009.[34] Zhou, Daibing, Lu, Dan, Liang, Song, Zhao, Lingjuan, Wang, Wei. Transmission of 20 Gb/s PAM-4 signal over 20 km optical fiber using a directly modulated tunable DBR laser. CHINESE OPTICS LETTERS[J]. 2018, 16(9): 51-54, http://lib.cqvip.com/Qikan/Article/Detail?id=676516641.[35] Gui Lin, Zhu Yushuang, Cao Yaoyu, Zuo Jiancun, Lu Dan, Chen Guangcan, Huang Y. Non-reciprocity induced by the nonlinear optical effect in microring structure and its application in optical sensing. TENTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICSnull. 2018, 10964: [36] Song LIANG, Dan LU, Lingjuan ZHAO, Hongliang ZHU, Baojun WANG, Daibing ZHOU, Wei WANG. Fabrication of InP-based monolithically integrated laser transmitters. 中国科学:信息科学(英文版)[J]. 2018, 61(8): 080405-1, http://lib.cqvip.com/Qikan/Article/Detail?id=676033589.[37] Liang, Song, Lu, Dan, Zhao, Lingjuan, Zhu, Hongliang, Wang, Baojun, Zhou, Daibing, Wang, Wei. Fabrication of InP-based monolithically integrated laser transmitters. SCIENCE CHINA-INFORMATION SCIENCES[J]. 2018, 61(8): http://lib.cqvip.com/Qikan/Article/Detail?id=676033589.[38] Liang, Song, Lu, Dan, Zhao, Lingjuan, Zhu, Hongliang, Wang, Baojun, Zhou, Daibing, Wang, Wei. Fabrication of InP-based monolithically integrated laser transmitters. SCIENCE CHINA-INFORMATION SCIENCES[J]. 2018, 61(8): http://lib.cqvip.com/Qikan/Article/Detail?id=676033589.[39] Lu Dan, He Yiming, Li Zhaosong, Zhao Lingjuan, Wang Wei. InP-based monolithically integrated few-mode devices. JOURNAL OF SEMICONDUCTORS[J]. 2018, 39(10): 101001-1, http://lib.cqvip.com/Qikan/Article/Detail?id=676530422.[40] Chen Guangcan, Lu Dan, Guo Lu, Zhao Wu, Wang Huan, Zhao Lingjuan, IEEE. Dual-frequency Laser Doppler Velocimeter based on Integrated Dual-mode Amplified Feedback Laser. 2018 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP)null. 2018, [41] ZHAOSONG LI, DAN Lu, YIMING HE, FANGYUAN MENG, XULIANG ZHOU, JIAOQING PAN. InP-based directly modulated monolithic ntegrated few-mode transmitter. 光子学研究:英文版[J]. 2018, 6(5): 463-467, http://lib.cqvip.com/Qikan/Article/Detail?id=675446305.[42] Li, Zhaosong, Lu, Dan, He, Yiming, Meng, Fangyuan, Zhou, Xuliang, Pan, Jiaoqing. InP-based directly modulated monolithic integrated few-mode transmitter. PHOTONICSRESEARCH[J]. 2018, 6(5): 463-467, http://dx.doi.org/10.1364/PRJ.6.000463.[43] Chen, Guangcan, Lu, Dan, Liang, Song, Guo, Lu, Zhao, Wu, Zhao, Lingjuan, IEEE. Synchronized Narrow Linewidth Laser and High Quality Microwave Signal Generation using Optically Mutual-Injection-Locked DFB Lasers with Optoelectronic Feedback. 2018CONFERENCEONLASERSANDELECTROOPTICSCLEOnull. 2018, [44] 周代兵, 陆丹, 梁松, 赵玲娟, 王圩. Transmission of 20 Gb/s PAM-4 signal over 20 km optical fiber using a directly modulated tunable D BR laser. 中国光学快报:英文版[J]. 2018, 16(9): 51-54, http://lib.cqvip.com/Qikan/Article/Detail?id=676516641.[45] Chen, Guangcan, Lu, Dan, Guo, Lu, Zhao, Wu, Huang, Yongguang, Zhao, Lingjuan. Frequency-Tunable OEO Using a DFB Laser at Period-One Oscillations With Optoelectronic Feedback. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2018, 30(18): 1593-1596, https://www.webofscience.com/wos/woscc/full-record/WOS:000442370400002.[46] Mao, Yuanfeng, Ren, Zhengliang, Guo, Lu, Wang, Hao, Zhang, Ruikang, Huang, Yongguang, Lu, Dan, Kan, Qiang, Ji, Chen, Wang, Wei. Modulation Bandwidth Enhancement in Distributed Reflector Laser Based on Identical Active Layer Approach. IEEE PHOTONICS JOURNAL[J]. 2018, 10(3): https://doaj.org/article/c112f827a48a4c41aee09b67029cd54b.[47] Dan Lu, Yiming He, Zhaosong Li, Lingjuan Zhao, Wei Wang. InP-based monolithically integrated few-mode devices. 半导体学报:英文版[J]. 2018, 39(10): 1-9, http://lib.cqvip.com/Qikan/Article/Detail?id=676530422.[48] Zhu Yushuang, Gui Lin, Cao Yaoyu, Zhang Yang, Lu Dan, Chen Guangcan, Huang Y. Temperature Sensing Based on Phase-to-Intensity Modulation Conversion in Fiber Bragg Grating. TENTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICSnull. 2018, 10964: [49] Zhang, Kuo, He, Hao, Xin, Haiyun, Hu, Weisheng, Liang, Song, Lu, Dan, Zhao, Lingjuan. Chirp-aided power fading mitigation for upstream 100 km full-range long reach PON with DBR DML. OPTICS COMMUNICATIONS[J]. 2018, 407: 63-68, http://dx.doi.org/10.1016/j.optcom.2017.09.011.[50] Zhang, Limeng, Pan, Biwei, Chen, Guangcan, Lu, Dan, Zhao, Lingjuan. Long-range and high-resolution correlation optical time-domain reflectometry using a monolithic integrated broadband chaotic laser. APPLIED OPTICS[J]. 2017, 56(4): 1253-1256, http://ir.semi.ac.cn/handle/172111/28413.[51] Guo, Fei, Lu, Dan, Zhang, Ruikang, Liu, Songtao, Sun, Mengdie, Kan, Qiang, Ji, Chen. A 1.3-mu m four-channel directly modulated laser array fabricated by SAG-Upper-SCH technology. OPTICS COMMUNICATIONS[J]. 2017, 383: 577-580, https://www.webofscience.com/wos/woscc/full-record/WOS:000386870700089.[52] Zhang, Limeng, Pan, Biwei, Chen, Guangcan, Guo, Lu, Lu, Dan, Zhao, Lingjuan, Wang, Wei. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser. SCIENTIFIC REPORTS[J]. 2017, 7: http://ir.semi.ac.cn/handle/172111/28416.[53] FEI GUO, DAN LU, LU GUO, SONGTAO LIU, WU ZHAO, HAO WANG, RUIKANG ZHANG, QIANG KAN, CHEN JI. 1.3-μm dual-wavelength DFB laser chip with modulation bandwidth enhancement by integrated passive optical feedback. OPTICS EXPRESS[J]. 2017, 24(25): 28869-28876, http://ir.semi.ac.cn/handle/172111/28410.[54] Guo, Lu, Lu, Dan, Zhang, Ruikang, Chen, Guangcan, Zhao, Wu, Zhao, Lingjuan, Wang, Wei, IEEE. A Simple Optical Pulse Compression Reflectometry with 7-cm Spatial Resolution based on Linearly Chirped Microwave Pulse Using a Distributed Bragg Reflector Laser. 2017 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP)null. 2017, [55] Chen, Guangcan, Lu, Dan, Guo, Lu, Deng, Qiufang, Zhao, Wu, Zhao, Lingjuan, IEEE. An Optoelectronic Oscillator based on Self-Injection-Locked Monolithic Integrated Dual-mode Amplified Feedback Laser. 2017 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP)null. 2017, [56] Li, Zhaosong, Lu, Dan, He, Yiming, Wang, Jiaqi, Zhou, Xuliang, Pan, Jiaoqing, IEEE Photon Soc. Improving the Performance of Narrow Linewidth Semiconductor Laser through Self-Injection Locking. 30TH ANNUAL CONFERENCE OF THE IEEE PHOTONICS SOCIETY (IPC)null. 2017, 655-656, [57] Liu, Songtao, Lu, Dan, Zhao, Lingjuan, Wang, Wei, Broeke, Ronald, Ji, Chen, IEEE. SHG-FROG characterization of a novel multichannel synchronized AWG-based mode-locked laser. 2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO)null. 2017, [58] Guo, Lu, Zhang, Ruikang, Lu, Dan, Pan, Biwei, Chen, Guangcan, Zhao, Lingjuan, Wang, Wei. Linearly Chirped Microwave Generation Using a Monolithic Integrated Amplified Feedback Laser. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2017, 29(21): 1915-1918, http://ir.semi.ac.cn/handle/172111/28435.[59] Guo Fei, Lu Dan, Zhang Ruikang, Liu Songtao, Sun Mengdie, Kan Qiang, Ji Chen. A 1.3-μm four-channel directly modulated laser array fabricated by SAG-Upper-SCH technology. OPTICS COMMUNICATIONS[J]. 2017, 383: 577-580, http://dx.doi.org/10.1016/j.optcom.2016.09.057.[60] Guo Lu, Zhang Ruikang, Lu Dan, Zhao Lingjuan, Wang Wei, IEEE. Photonic Generation of Linearly Chirped Microwave Waveform Using a Distributed Bragg Reflector Laser. 2016 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP)null. 2016, [61] Songtao Liu, Huitao Wang, Mengdie Sun, Lianxue Zhang, Weixi Chen, Dan Lu, Lingjuan Zhao, Ronald Broeke, Wei Wang, Chen Ji. AWG-based Monolithic 4×12 GHz Multichannel Harmonically Mode-locked Laser. PHOTONICS TECHNOLOGY LETTERS, IEEE[J]. 2016, 28(3): 241-244, http://ir.semi.ac.cn/handle/172111/27737.[62] Fei Guo, 陆丹, Ruikang Zhang, Huitao Wang, Chen Ji. A Two-Mode (De)Multiplexer Based on Multimode Interferometer Coupler and Y-Junction on InP Substrate. PHOTONICS JOURNAL, IEEE[J]. 2016, 8(1): 1-8, http://ir.semi.ac.cn/handle/172111/27730.[63] Guo, Fei, Lu, Dan, Zhang, Ruikang, Wang, Huitao, Ji, Chen. A Two-Mode (De)Multiplexer Based on Multimode Interferometer Coupler and Y-Junction on InP Substrate. IEEEPHOTONICSJOURNAL[J]. 2016, 8(1): https://doaj.org/article/ba10a2f7cb2c4b7b95fb3a2f343f7c9c.[64] Guo Fei, Lu Dan, Zhang Ruikang, Wang Huitao, Wang Wei, Ji Chen. Two-Mode Converters at 1.3 μm Based on Multimode Interference Couplers on InP Substrates. 中国物理快报:英文版[J]. 2016, 024203-1, http://lib.cqvip.com/Qikan/Article/Detail?id=668359041.[65] Gao, Feng, Luo, Shuai, Ji, HaiMing, Liu, SongTao, Xu, Feng, Lv, ZunRen, Lu, Dan, Ji, Chen, Yang, Tao. Ultrashort Pulse and High Power Mode-Locked Laser With Chirped InAs/InP Quantum Dot Active Layers. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2016, 28(13): 1481-1484, http://ir.semi.ac.cn/handle/172111/27680.[66] Liu, SongTao, Zhang, RuiKang, Lu, Dan, Kan, Qiang, Wang, Wei, Ji, Chen. A 40-GHz Colliding Pulse Mode-Locked Semiconductor Laser. CHINESE PHYSICS LETTERS[J]. 2016, 33(6): http://lib.cqvip.com/Qikan/Article/Detail?id=669386564.[67] Guo Fei, Lu Dan, Zhang Ruikang, Wang Huitao, Wang Wei, Ji Chen. Two-Mode Converters at 1.3 μm Based on Multimode Interference Couplers on InP Substrates. 中国物理快报:英文版[J]. 2016, 024203-1, http://lib.cqvip.com/Qikan/Article/Detail?id=668359041.[68] Li, Zhaosong, Lu, Dan, Zuo, Bing, Liang, Song, Zhou, Xuliang, Pan, Jiaoqing. Proposal of an InP-based few-mode transmitter based on multimode interference couplers for wavelength division multiplexing and mode division multiplexing applications. CHINESE OPTICS LETTERS[J]. 2016, 14(8): http://ir.semi.ac.cn/handle/172111/27735.[69] Guo, Fei, Lu, Dan, Guo, Lu, Liu, Songtao, Zhao, Wu, Wang, Hao, Zhang, Ruikang, Kan, Qiang, Ji, Chen. 1.3-mu m dual- wavelength DFB laser chip with modulation bandwidth enhancement by integrated passive optical feedback. OPTICS EXPRESS[J]. 2016, 24(25): 28870-28877, https://www.webofscience.com/wos/woscc/full-record/WOS:000389763000066.[70] Sun, Mengdie, Tan, Shaoyang, Guo, Fei, Liu, Songtao, Kan, Qiang, Lu, Dan, Zhang, Ruikang, Zhao, Wu, Liang, Song, Wang, Wei, Broeke, Ronald, Soares, Francisco M, Ji, Chen. Integrated Four-Wavelength DFB Diode Laser Array for Continuous-Wave THz Generation. IEEE PHOTONICS JOURNAL[J]. 2016, 8(4): http://ir.semi.ac.cn/handle/172111/27742.[71] Li Zhaosong, Lu Dan, Liang Song, Liu Zhen, Pan Jiaoqing, IEEE. A Monolithically Integrated InP-based Few-mode Laser. 2016 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP)null. 2016, [72] Guo, Fei, Lu, Dan, Zhang, Ruikang, Wang, Huitao, Wang, Wei, Ji, Chen, Broquin, JE, Conti, GN. Compact two-mode (de)multiplexer based on MMI couplers with different core thickness on InP. INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXnull. 2016, 9750: [73] Yang, Hua, Yang, Mingqi, Morrissey, Padraic E, Lu, Dan, Pan, Bi Wei, Zhao, Lingjuan, Corbett, Brian, Peters, Frank H. Three-coherent-output narrow-linewidth and tunable single frequency 1x2 multi-mode-interferometer laser diode. OPTICS EXPRESS[J]. 2016, 24(6): 5846-5854, http://ir.semi.ac.cn/handle/172111/27703.[74] Gao, Feng, Luo, Shuai, Ji, HaiMing, Liu, SongTao, Lu, Dan, Ji, Chen, Yang, Tao. Single-section mode-locked 1.55-mu m InAs/InP quantum dot lasers grown by MOVPE. OPTICS COMMUNICATIONS[J]. 2016, 370: 18-21, https://www.webofscience.com/wos/woscc/full-record/WOS:000373214600004.[75] Pan, Biwei, Yu, Liqiang, Guo, Lu, Zhang, Limeng, Lu, Dan, Chen, Xin, Wu, Yue, Lou, Caiyun, Zhao, Lingjuan. 100 Gb/s all-optical clock recovery based on a monolithic dual-mode DBR laser. CHINESE OPTICS LETTERS[J]. 2016, 14(3): http://ir.semi.ac.cn/handle/172111/27704.[76] Guo, Fei, Lu, Dan, Zhang, Ruikang, Wang, Huitao, Liu, Songtao, Sun, Mengdie, Kan, Qiang, Ji, Chen. An MMI-Based Mode (DE)MUX by Varying the Waveguide Thickness of the Phase Shifter. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2016, 28(21): 2443-2446, https://www.webofscience.com/wos/woscc/full-record/WOS:000386254600038.[77] Guo, Fei, Lu, Dan, Zhang, RuiKang, Wang, HuiTao, Wang, Wei, Ji, Chen. Two-Mode Converters at 1.3 mu m Based on Multimode Interference Couplers on InP Substrates. CHINESE PHYSICS LETTERS[J]. 2016, 33(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000369637200010.[78] Liu, Songtao, Zhang, Xilin, Wang, Wei, Zhao, Lingjuan, Kan, Qiang, Lu, Dan, Zhang, Ruikang, Ji, Chen. Low-Cost AWG-Based Fundamental Frequency Mode-Locked Semiconductor Laser for Multichannel Synchronous Ultrashort Pulse Generation. IEEE PHOTONICS JOURNAL[J]. 2016, 8(5): http://ir.semi.ac.cn/handle/172111/27739.[79] Zhang, Limgeng, Yu, Liqiang, Pan, Biwei, Lu, Dan, Pan, Jiaoqing, Zhao, Lingjuan. 1.5 mu m dual-lateral-mode distributed Bragg reflector laser for terahertz excitation. CHINESE OPTICS LETTERS[J]. 2016, 14(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000367933100011.[80] Liu, Songtao, Wang, Huitao, Sun, Mengdie, Zhang, Lianxue, Chen, Weixi, Lu, Dan, Zhao, Lingjuan, Broeke, Ronald, Wang, Wei, Ji, Chen. AWG-Based Monolithic 4 x 12 GHz Multichannel Harmonically Mode-Locked Laser. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2016, 28(3): 241-244, https://www.webofscience.com/wos/woscc/full-record/WOS:000367259500005.[81] Wang Hao, Zhai Teng, Tan Shaoyang, Zhang Ruikang, Zhao Lingjuan, Wang Wei, Lu Dan, Ji Chen, IEEE. Optimization and Fabrication of High Power 1060 nm Single-mode DFB Lasers. 2016 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP)null. 2016, [82] Yu, Liqiang, Lu, Dan, Sun, Yu, Zhao, Lingjuan. Tunable photonic microwave generation by directly modulating a dual-wavelength amplified feedback laser. OPTICS COMMUNICATIONS[J]. 2015, 345: 57-61, http://dx.doi.org/10.1016/j.optcom.2015.01.068.[83] Liqiang Yu, Dan Lu, Yu Sun, Lingjuan Zhao. Tunable photonic microwave generation by directly modulating a dual-wavelength amplified feedback laser. OPTICS. COMMUNICATION[J]. 2015, 345: 57-61, http://ir.semi.ac.cn/handle/172111/26840.[84] 柯青, 谭少阳, 陆丹, 张瑞康, 王圩, 吉晨. Optimization of High Power 1.55-μm Single Lateral Mode Fabry-Perot Ridge Waveguide Lasers. 中国物理快报:英文版[J]. 2015, 66-68, http://lib.cqvip.com/Qikan/Article/Detail?id=665068900.[85] Zhang XiLin, Liu SongTao, Lu Dan, Zhang RuiKang, Ji Chen. Design and Fabrication of a 400 GHz InP-Based Arrayed Waveguide Grating with Flattened Spectral Response. CHINESE PHYSICS LETTERS[J]. 2015, 32(5): http://lib.cqvip.com/Qikan/Article/Detail?id=664786875.[86] Zhou, DaiBing, Wang HuiTao, Zhang RuiKang, Wang BaoJun, Bian Jing, An Xin, Lu Dan, Zhao LingJuan, Zhu HongLiang, Ji Chen, Wang Wei. Fabrication of 32Gb/s Electroabsorption Modulated Distributed Feedback Lasers by Selective Area Growth Technology. CHINESE PHYSICS LETTERS[J]. 2015, 32(5): http://lib.cqvip.com/Qikan/Article/Detail?id=664786878.[87] Yu, Liqiang, Guo, Lu, Lu, Dan, Ji, Chen, Wang, Hao, Zhao, Lingjuan. Modulated bandwidth enhancement in an amplified feedback laser. CHINESE OPTICS LETTERS[J]. 2015, 13(5): http://ir.semi.ac.cn/handle/172111/26797.[88] Ke Qing, Tan ShaoYang, Lu Dan, Zhang RuiKang, Wang Wei, Ji Chen. Optimization of High Power 1.55-mu m Single Lateral Mode Fabry-Perot Ridge Waveguide Lasers. CHINESE PHYSICS LETTERS[J]. 2015, 32(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000358597200016.[89] Dan Lu. Widely-tunable narrow-linewidth lasers using self-injection distributed Bragg reflector lasers. IEEE PHOTONICS TECHNOLOGY LETTERS. 2015, [90] Yuan, Lijun, Tao, Li, Chen, Weixi, Li, Yanping, Lu, Dan, Liang, Song, Yu, Hongyan, Ran, Guangzhao, Pan, Jiaoqing, Wang, Wei. A Buried Ridge Stripe Structure InGaAsP-Si Hybrid Laser. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2015, 27(4): 352-355, https://www.webofscience.com/wos/woscc/full-record/WOS:000353900300006.[91] Ke Qing, Tan Shaoyang, Lu Dan, Zhang Ruikang, Wang Wei, Ji Chen. Optimization of High Power 1.55-μm Single Lateral Mode Fabry-Perot Ridge Waveguide Lasers. 中国物理快报:英文版[J]. 2015, 064203-1, http://lib.cqvip.com/Qikan/Article/Detail?id=665068900.[92] 周代兵, 王会涛, 张瑞康, 王宝军, 边静, 安欣, 陆丹, 赵玲娟, 朱洪亮, 吉晨, 王圩. Fabrication of 32 Gb/s Electroabsorption Modulated Distributed Feedback Lasers by Selective Area Growth Technology. 中国物理快报:英文版[J]. 2015, 66-68, http://lib.cqvip.com/Qikan/Article/Detail?id=664786878.[93] Pan, Biwei, Lu, Dan, Zhao, Lingjuan. Broadband Chaos Generation Using Monolithic Dual-Mode Laser With Optical Feedback. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2015, 27(23): 2516-2519, http://ir.semi.ac.cn/handle/172111/26650.[94] Wang Huitao, Zhou Daibing, Zhang Ruikang, Lu Dan, Zhao Lingjuan, Zhu Hongliang, Wang Wei, Ji Chen. CHIN. PHYS. LETT. Vol. 32, No. 8 (2015) 084203 Optimization of 1.3-μm InGaAsP/InP Electro-Absorption Modulator. CHINESE PHYSICS LETTERS[J]. 2015, 32(8): 084203-1, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=5494181&detailType=1.[95] Tan ShaoYang, Zhai Teng, Zhang RuiKang, Lu Dan, Wang Wei, Ji Chen. Graded doping low internal loss 1060-nm InGaAs/AlGaAs quantum well semiconductor lasers. CHINESE PHYSICS B[J]. 2015, 24(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000358130200040.[96] 张希林, 刘松涛, 陆丹, 张瑞康, 吉晨. Design and Fabrication of a 400GHz InP-Based Arrayed Waveguide Grating with Flattened Spectral Response. 中国物理快报:英文版[J]. 2015, 55-58, http://lib.cqvip.com/Qikan/Article/Detail?id=664786875.[97] Wang, Huitao, Lu, Dan, Wang, Hao, Guo, Fei, Liu, Songtao, Zhou, Daibing, Zhu, Hongliang, Wang, Wei, Huang, Yongguang, Zhang, Ruikang, Ji, Chen. Modeling and Experiment Verification of Lateral Current Spreading Effect in Ridge Waveguide Electroabsorption Modulators. IEEE TRANSACTIONS ON ELECTRON DEVICES[J]. 2015, 62(11): 3756-3759, http://ir.semi.ac.cn/handle/172111/26839.[98] Zhu, WanQing, Wu, ZhengMao, Zhong, ZhuQiang, Yin, XueMei, Song, Jian, Zhao, LingJuan, Lu, Dan, Xia, GuangQiong. Dynamics of a Monolithically Integrated Semiconductor Laser Under Optical Injection. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2015, 27(20): 2119-2122, https://www.webofscience.com/wos/woscc/full-record/WOS:000361685200003.[99] 潘碧玮, 余力强, 陆丹, 李林森, 张莉萌, 李召松, 苏辉, 赵玲娟. 20 kHz窄线宽光纤光栅外腔半导体激光器. 中国激光[J]. 2015, 42(5): 502007-01, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=5438842&detailType=1.[100] Ke Qing, Tan Shaoyang, Liu Songtao, Lu Dan, Zhang Ruikang, Wang Wei, Ji Chen. Fabrication and optimization of 1.55-μm InGaAsP/InP high-power semiconductor diode laser. JOURNAL OF SEMICONDUCTORS[J]. 2015, 36(9): 94010-1, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=5555976&detailType=1.[101] Pan, Biwei, Lu, Dan, Zhang, Limeng, Zhao, Lingjuan. Widely Tunable Amplified Feedback Laser With Beating-Frequency Covering 60-GHz Band. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2015, 27(19): 2103-2106, http://ir.semi.ac.cn/handle/172111/26841.[102] Yu, Liqiang, Lu, Dan, Pan, Biwei, Zhang, Limeng, Guo, Lu, Li, Zhaosong, Zhao, Ling Juan. Widely Tunable Narrow-Linewidth Lasers Using Self-Injection DBR Lasers. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2015, 27(1): 50-53, https://www.webofscience.com/wos/woscc/full-record/WOS:000349185600013.[103] Biwei Pan, Dan Lu, Limeng Zhang, Lingjuan Zhao. A Widely Tunable Optoelectronic Oscillator Based on Direct Modulated Dual-mode Laser. IEEE PHOTONICS JOURNAL[J]. 2015, 7(6): 1-7, http://ir.semi.ac.cn/handle/172111/26697.[104] Wang HuiTao, Zhou DaiBing, Zhang RuiKang, Lu Dan, Zhao LingJuan, Zhu HongLiang, Wang Wei, Ji Chen. Optimization of 1.3-µm InGaAsP/InP Electro-Absorption Modulator. CHINESE PHYSICS LETTERS[J]. 2015, 32(8): 084203-, http://ir.semi.ac.cn/handle/172111/26818.[105] Pan, Biwei, Lu, Dan, Zhang, Limeng, Zhao, Lingjuan. A Widely Tunable Optoelectronic Oscillator Based on Directly Modulated Dual-Mode Laser. IEEE PHOTONICS JOURNAL[J]. 2015, 7(6): https://doaj.org/article/53706edae1474610b7af3db140726239.[106] Wang HuiTao, Zhou DaiBing, Zhang RuiKang, Lu Dan, Zhao LingJuan, Zhu HongLiang, Wang Wei, Ji Chen. Optimization of 1.3-mu m InGaAsP/InP Electro-Absorption Modulator. CHINESE PHYSICS LETTERS[J]. 2015, 32(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000359265600020.[107] Yin, XueMei, Zhong, ZhuQiang, Zhao, LingJuan, Lu, Dan, Qiu, HaiYing, Xia, GuangQiong, Wu, ZhengMao. Wide bandwidth chaotic signal generation in a monolithically integrated semiconductor laser via optical injection. OPTICS COMMUNICATIONS[J]. 2015, 355: 551-557, http://dx.doi.org/10.1016/j.optcom.2015.07.028.[108] 孙梦蝶, 谭少阳, 郭菲, 刘松涛, 陆丹, 吉晨. 差频法产生太赫兹抽运源的光子集成芯片. 激光与光电子学进展[J]. 2015, 52(9): 091302-1, http://lib.cqvip.com/Qikan/Article/Detail?id=665997240.[109] Lu, Dan, Pan, Biwei, Chen, Haibo, Zhao, Lingjuan. Frequency-tunable optoelectronic oscillator using a dual-mode amplified feedback laser as an electrically controlled active microwave photonic filter. OPTICS LETTERS[J]. 2015, 40(18): 4340-4343, http://ir.semi.ac.cn/handle/172111/26721.[110] Zhai Teng, Tan ShaoYang, Lu Dan, Wang Wei, Zhang RuiKang, Ji Chen. High Power 1060 nm Distributed Feedback Semiconductor Laser. CHINESE PHYSICS LETTERS[J]. 2014, 31(2): http://ir.semi.ac.cn/handle/172111/26023.[111] Guo, Fei, Zhang, Ruikang, Lu, Dan, Wang, We, Ji, Chen. 1.3-mu m multi-wavelength DFB laser array fabricated by mocvd selective area growth. OPTICSCOMMUNICATIONS[J]. 2014, 331: 165-168, https://www.webofscience.com/wos/woscc/full-record/WOS:000342522800029.[112] Yu, Liqiang, Li, Yan, Zang, Jizhao, Lu, Dan, Pan, Biwei, Zhao, Lingjuan. All-optical clock recovery for 40 Gbaud NRZ-QPSK signals using amplified feedback DFB laser diode. CHINESE OPTICS LETTERS[J]. 2014, 12(8): http://ir.semi.ac.cn/handle/172111/26240.[113] Zhang XiLin, Lu Dan, Zhang RuiKang, Wang Wei, Ji Chen. A MOCVD-Growth Multi-Wavelength Laser Monolithically Integrated on InP. CHINESE PHYSICS LETTERS[J]. 2014, 31(6): http://ir.semi.ac.cn/handle/172111/26142.[114] Zhang, Can, Liang, Song, Zhu, Hongliang, Han, Liangshun, Lu, Dan, Ji, Chen, Zhao, Lingjuan, Wang, Wei. The fabrication of 10-channel DFB laser array by SAG technology. OPTICS COMMUNICATIONS[J]. 2014, 311: 6-10, https://www.webofscience.com/wos/woscc/full-record/WOS:000330908800002.[115] Dan Lu. 1.3-μm 1×4 MMI Coupler Based on Shallow-etched InP Ridge Waveguides. Journal of Semiconductors. 2014, [116] Pan, Biwei, Lu, Dan, Sun, Yu, Yu, Liqiang, Zhang, Limeng, Zhao, Lingjuan. Tunable optical microwave generation using self-injection locked monolithic dual-wavelength amplified feedback laser. OPTICS LETTERS[J]. 2014, 39(22): 6395-6398, http://ir.semi.ac.cn/handle/172111/26050.[117] Zhao Lingjuan. All-optical decision gate with extinction ratio improved scheme using a SOA-DBR laser. IEEE PHOTONICS TECHNOLOGY LETTERS. 2014, [118] Fei Guo, Ruikang Zhang, Dan Lu, We Wang, Chen Ji. 1.3-μm multi-wavelength DFB laser array fabricated by mocvd selective area growth. OPTICS COMMUNICATIONS[J]. 2014, 331: 165-168, http://dx.doi.org/10.1016/j.optcom.2014.06.014.[119] Yu, LiQiang, Lu, Dan, Zhao, LingJuan. All-Decision Gate With Extinction Ratio Improved Scheme Using an SOA-DBR Laser. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2014, 26(21): 2126-2129, http://ir.semi.ac.cn/handle/172111/26106.[120] Yu, Liqiang, Lu, Dan, Pan, Biwei, Zhao, Lingjuan, Wu, Jiagui, Xia, Guangqiong, Wu, Zhengmao, Wang, Wei. Monolithically Integrated Amplified Feedback Lasers for High-Quality Microwave and Broadband Chaos Generation. JOURNALOFLIGHTWAVETECHNOLOGY[J]. 2014, 32(20): 3595-3601, http://ir.semi.ac.cn/handle/172111/26034.[121] Yu, Liqiang, Lu, Dan, Pan, Biwei, Zhao, Lingjuan. Widely Tunable Optical Decision Circuit Using a Monolithically Integrated SOA-SGDBR Laser. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2014, 26(7): 722-725, http://ir.semi.ac.cn/handle/172111/26367.[122] Yu Liqiang, Pan Biwei, Lu Dan, Zhao Lingjuan, Zhu N, Hofmann WH. All-Optical Clock Recovery for 100 Gb/s RZ-OOK Signal after 25 km Transmission using a Dual-Mode Beating DBR Laser. SEMICONDUCTOR LASERS AND APPLICATIONS VInull. 2014, 9267: [123] Pan, Biwei, Yu, Liqiang, Lu, Dan, Zhang, Limeng, Zhao, Lingjuan. Simulation and experimental characterization of a dual-mode two-section amplified feedback laser with mode separation over 100 GHz. CHINESE OPTICS LETTERS[J]. 2014, 12(11): http://ir.semi.ac.cn/handle/172111/26283.[124] Yu, Liqiang, Wang, Huitao, Lu, Dan, Liang, Song, Zhang, Can, Pan, Biwei, Zhang, Limeng, Zhao, Lingjuan. A Widely Tunable Directly Modulated DBR Laser With High Linearity. IEEE PHOTONICS JOURNAL[J]. 2014, 6(4): http://ir.semi.ac.cn/handle/172111/26250.[125] Wu, JiaGui, Zhao, LingJuan, Wu, ZhengMao, Lu, Dan, Tang, Xi, Zhong, ZhuQiang, Xia, GuangQiong. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip. OPTICS EXPRESS[J]. 2013, 21(20): 23358-23364, http://ir.semi.ac.cn/handle/172111/24825.[126] Yuan, Lijun, Tao, Li, Yu, Hongyan, Chen, Weixi, Lu, Dan, Li, Yanping, Ran, Guangzhao, Pan, Jiaoqing. Hybrid InGaAsP-Si Evanescent Laser by Selective-Area Metal-Bonding Method. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2013, 25(12): 1180-1183, https://www.webofscience.com/wos/woscc/full-record/WOS:000319995900024.[127] Niu Bin, Yu Hongyan, Yu Liqiang, Zhou Daibing, Lu Dan, Zhao Lingjuan, Pan Jiaoqing, Wang Wei. A 1.65 μm three-section distributed Bragg reflector (DBR) laser for CH4 gas sensors. JOURNAL OF SEMICONDUCTORS[J]. 2013, 34(10): 104004-, http://ir.semi.ac.cn/handle/172111/24861.[128] Yu, Liqiang, Lu, Dan, Zhao, Lingjuan, Li, Yan, Ji, Chen, Pan, Jiaoqing, Zhu, Hongliang, Wang, Wei. Wavelength and Mode-Spacing Tunable Dual-Mode Distributed Bragg Reflector Laser. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2013, 25(6): 576-579, http://ir.semi.ac.cn/handle/172111/24323.[129] 谭少阳, 翟腾, 陆丹, 王圩, 张瑞康, 吉晨. Fabrication and Characterization of High Power 1064-nm DFB Lasers. CHINESE PHYSICS LETTERS[J]. 2013, 30(11): 91-93, http://ir.semi.ac.cn/handle/172111/24544.[130] Yu, Wenke, Huo, Li, Lu, Dan, Lou, Caiyun. A novel optical picosecond-duration NRZ-to-RZ format converter with simultaneous wavelength multicasting using a single-stage Mach-Zehnder modulator. OPTICS COMMUNICATIONS[J]. 2012, 285(21-22): 4302-4306, http://dx.doi.org/10.1016/j.optcom.2012.06.082.[131] Lin Jintong, Lu Dan, Dai Yitang. A Review on Fiber Lasers. CHINA COMMUNICATIONS[J]. 2012, 9(8): 1-15, http://lib.cqvip.com/Qikan/Article/Detail?id=43094753.[132] Qiu, Jifang, Chen, Cheng, Zhao, Lingjuan, Sun, Yu, Lu, Dan, Lou, Caiyun, Wang, Wei. Detailed analysis of a 40GHz all-optical synchronization based on an amplified-feedback distributed feedback laser. APPLIED OPTICS[J]. 2012, 51(15): 2894-2901, http://ir.semi.ac.cn/handle/172111/23956.[133] Yu, Wenke, Lu, Dan, Wang, Dong, Lou, Caiyun, Huo, Li, Pan, Shilong. Proposal and simulation investigation of optical format conversion between quaternary amplitude-shift keying signals based on cascaded modulators. OPTICAL FIBER TECHNOLOGY[J]. 2012, 18(2): 117-120, http://dx.doi.org/10.1016/j.yofte.2012.01.007.[134] Yu, Wenke, Lu, Dan, Huo, Li, Lou, Caiyun, Zhao, Xiaofan. INVESTIGATION OF OPTICAL CLOCK DIVISION AND DEMULTIPLEXING BASED ON A COMMERCIAL LITHIUM NIOBATE-INTENSITY MODULATOR. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS[J]. 2012, 54(1): 94-99, https://www.webofscience.com/wos/woscc/full-record/WOS:000297861200025.[135] Yu Liqiang, Zhao Lingjuan, Lu Dan, Li Yan, Pan JiaoQing, Zhu HongLiang, Wang Wei, Zhu NH, Li J, Peters FH, Yu C. A novel four-section DBR tunable laser with dual-wavelength lasing. SEMICONDUCTOR LASERS AND APPLICATIONS Vnull. 2012, 8552: [136] Lu, Dan, Zhao, Xiaofan, Lou, Caiyun, Huo, Li. Synchronized clock multiplication through optical subharmonic injection locking of an optoelectronic oscillator. OPTICS COMMUNICATIONS[J]. 2011, 284(12): 2742-2746, http://dx.doi.org/10.1016/j.optcom.2011.01.081.[137] 余文科, 娄采云, 赵晓凡, 陆丹, 陈健桦. 基于级联调制器的四进制幅移键控非归零码到归零码格式转换器. 光学学报[J]. 2011, 31(2): 38-41, http://lib.cqvip.com/Qikan/Article/Detail?id=36818406.[138] Dan Lu. Fractional Frequency Multiplication by Using Optically Injection Locked Optoelectronics Oscillator. CLEO/QELS 2011. 2011, [139] Chen, Jianhua, Lou, Caiyun, Huo, Li, Lu, Dan. 1.4 ps pedestal-free low timing jitter 10 GHz pulse source using commercial cascaded LiNbO3 modulators and fiber-based compressor. APPLIED OPTICS[J]. 2011, 50(14): 1979-1983, https://www.webofscience.com/wos/woscc/full-record/WOS:000290431000003.[140] 余文科, 娄采云, 邢燕飞, 赵晓凡, 陆丹, 霍力. 差分相移键控的非归零到归零格式转换研究. 中国激光[J]. 2011, 38(2): 0205002-1, http://lib.cqvip.com/Qikan/Article/Detail?id=36819657.[141] 王黎, 孙瑜, 赵晓凡, 娄采云, 陆丹, 赵玲娟, 王圩. 基于放大反馈激光器高速全光时钟提取的研究. 激光技术[J]. 2011, 35(1): 1-3, http://lib.cqvip.com/Qikan/Article/Detail?id=36359893.[142] Yu, Wenke, Lou, Caiyun, Zhao, Xiaofan, Lu, Dan. Simultaneous multichannel NRZ-to-RZ format conversion of 4-ASK signal based on phase-intensity hybrid modulation and dispersion compensation fiber. CHINESE OPTICS LETTERS[J]. 2010, 8(9): 859-862, http://lib.cqvip.com/Qikan/Article/Detail?id=35367671.[143] 葛廷武, 陆丹, 伍剑, 徐坤, 林金桐. 高功率隔离器单模与多模工作退偏特性. 强激光与粒子束[J]. 2010, 22(6): 1229-1233, http://lib.cqvip.com/Qikan/Article/Detail?id=34117951.[144] Wang, Li, Zhao, Xiaofan, Lou, Caiyun, Lu, Dan, Sun, Yu, Zhao, Lingjuan, Wang, Wei. 40 Gbits/s all-optical clock recovery for degraded signals using an amplified feedback laser. APPLIED OPTICS[J]. 2010, 49(34): 6577-6581, http://ir.semi.ac.cn/handle/172111/20676.[145] Zhao, Xiaofan, Lou, Caiyun, Zhou, Hongbo, Lu, Dan, Huo, Li. Optical regenerative NRZ to RZ format conversion based on cascaded lithium niobate modulators. OPTICS EXPRESS[J]. 2010, 18(23): 23657-23663, https://www.webofscience.com/wos/woscc/full-record/WOS:000283940900035.[146] 陆丹, 葛廷武, 伍剑, 徐坤, 林金桐. D形双包层大模场光纤激光偏振特性研究. 激光技术[J]. 2009, 33(5): 509-511, http://lib.cqvip.com/Qikan/Article/Detail?id=31703326.[147] 葛廷武, 陆丹, 伍剑, 徐坤, 林金桐. 高功率法拉第隔离器多模退偏特性. 光子学报[J]. 2009, 38(10): 2512-2515, http://lib.cqvip.com/Qikan/Article/Detail?id=31949376.[148] Lu, Dan, Ge, Tingwu, Wu, Jian, Xu, Kun, Lin, Jintong. Thermal stress induced birefringence in double cladding fiber with non-circular inner cladding. JOURNAL OF MODERN OPTICS[J]. 2009, 56(5): 638-645, [149] 葛廷武, 陆丹, 徐坤, 伍剑, 林金桐. 光栅致双折射引起偏振相关损耗的理论分析. 中国激光[J]. 2008, 35(7): 1024-1028, http://lib.cqvip.com/Qikan/Article/Detail?id=27759314.[150] 陆丹, 葛廷武, 徐坤, 伍剑, 林金桐. 环形腔光纤激光器边带偏振不稳定性. 中国激光[J]. 2008, 35(7): 982-986, http://lib.cqvip.com/Qikan/Article/Detail?id=27759291.[151] 陈海波, 杨华, 陈建国, 严地勇, 陆丹, 高松, 林晓东. 半导体激光器列阵在外腔下的光谱特性. 强激光与粒子束[J]. 2005, 17(B04): 94-96, http://lib.cqvip.com/Qikan/Article/Detail?id=21199798.[152] 陈海波, 杨华, 陈建国, 严地勇, 陆丹, 高松. 外腔锁相改善半导体激光器列阵输出光束特性. 激光杂志[J]. 2005, 26(3): 21-22, http://lib.cqvip.com/Qikan/Article/Detail?id=15976908.[153] 杨华, 陈海波, 陈建国, 严地勇, 陆丹, 高松. 利用外腔改善半导体激光器列阵的远场特性. 强激光与粒子束[J]. 2005, 17(B04): 91-93, http://lib.cqvip.com/Qikan/Article/Detail?id=21199797.[154] 陈海波, 陈建国, 杨华, 严地勇, 陆丹, 高松. 外腔锁相激光二极管阵列的一般分析. 中国激光[J]. 2005, 32(7): 899-902, http://lib.cqvip.com/Qikan/Article/Detail?id=16129418.[155] Chen HaiBo, Chen JianGuo, Yang Hua, Yan DiYong, Lu Dan, Gao Song. General analysis on phase locked external cavity laser diode arrays. ZHONGGUO JIGUANG/CHINESE JOURNAL OF LASERS[J]. 2005, Vol.32 no.7: 899-902, http://www.corc.org.cn/handle/1471x/1999213.[156] 陈海波, 杨华, 严地勇, 陈建国, 林晓东, 陆丹. 解析计算半导体激光器列阵的热沉温升. 强激光与粒子束[J]. 2005, 17(1): 22-24, http://lib.cqvip.com/Qikan/Article/Detail?id=11643382.[157] 杨华, 严地勇, 陈海波, 陈建国, 陆丹. 半导体激光器列阵外腔锁相中准直透镜的位置选择. 激光杂志[J]. 2005, 26(1): 18-20, http://lib.cqvip.com/Qikan/Article/Detail?id=11696555.[158] 林晓东, 高松, 陈建国, 陆丹. 评价研究光纤中调制不稳定性的扰动表达形式. 激光杂志[J]. 2004, 25(6): 37-38, http://lib.cqvip.com/Qikan/Article/Detail?id=11290272.[159] 陆丹, 高松, 陈建国, 林晓东, 严地勇. 外腔锁相二极管激光列阵超模的阈值分析. 激光杂志[J]. 2004, 25(2): 14-16, http://lib.cqvip.com/Qikan/Article/Detail?id=9437037.[160] 高松, 陈建国, 林晓东, 陆丹. 解析求解光纤中非稳定扰动的实部和虚部. 强激光与粒子束[J]. 2004, 16(6): 726-728, http://lib.cqvip.com/Qikan/Article/Detail?id=9992714.[161] 陆丹, 严地勇, 陈建国, 林晓东, 高松. 外腔锁相二极管激光列阵的超模. 强激光与粒子束[J]. 2004, 16(9): 1119-1122, http://lib.cqvip.com/Qikan/Article/Detail?id=10222549.[162] 钟先琼, 陈建国, 李大义, 冯国英, 欧群飞, 陆丹. 光纤中扰动的小信号增益. 光学学报[J]. 2004, 24(11): 1521-1524, http://lib.cqvip.com/Qikan/Article/Detail?id=10878246.[163] 陆丹. 外腔耦合方式下的激光二极管列阵锁相特性研究. 2004, http://www.corc.org.cn/handle/1471x/2360975.[164] 王逍, 林晓东, 陆丹, 张菁, 陈建国, 李大义. 克尔放大介质中功率增益最大的空间频率成份. 激光杂志[J]. 2002, 23(3): 13-14, http://lib.cqvip.com/Qikan/Article/Detail?id=6308483.[165] 邓燕, 兰岚, 陆丹, 陈建国. 光栅调谐外腔半导体激光器腔参量对其双稳动态特性的影响. 激光杂志[J]. 2002, 23(6): 30-31, http://lib.cqvip.com/Qikan/Article/Detail?id=7199284.[166] 王逍, 陆丹, 林晓东, 张菁, 陈建国. 增益克尔介质中扰动功率增益和B积分值的关系. 激光技术[J]. 2002, 26(6): 466-467,470, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=1017118&detailType=1.
科研活动
科研项目
( 1 ) 基于双波长半导体激光器产生高性能宽带可调谐微波的研究, 主持, 国家级, 2013-01--2015-12( 2 ) 集成化100kHz窄线宽激光光源, 主持, 国家级, 2013-01--2015-12( 3 ) 多维复用光纤通信基础研究, 参与, 国家级, 2014-01--2018-12( 4 ) InP基光子集成发射芯片技术的研究, 参与, 国家级, 2014-01--2018-12( 5 ) InP基单片集成少模光发射芯片的研究, 主持, 国家级, 2017-01--2017-12( 6 ) 面向骨干网通信应用的400GE光收发 阵列芯片研究, 参与, 国家级, 2019-09--2022-12( 7 ) 单片集成波长可调谐少模光发射芯片, 主持, 国家级, 2020-01--2023-12( 8 ) 铟磷基太赫兹通信光电器件, 主持, 国家级, 2020-11--2024-10
参与会议
(1)InP 基模分复用集成器件 第四届光网络与光信息大会 2020-11-02(2)Modulation Performance Comparison of Quantum-Dot and Quantum-Well Lasers Under External Feedback 2019-07-06(3)Synchronized Narrow Linewidth Laser and High Quality Microwave Signal Generation using Optically Mutual-Injection-Locked DFB Lasers with Optoelectronic Feedback 2018-05-10(4)A Simple Optical Pulse Compression Reflectometry with 7-cm Spatial Resolution based on Linearly Chirped Microwave Pulse Using a Distributed Bragg Reflector Laser Guo, Lu Lu, Dan Zhang, Ruikang Chen, Guangcan Zhao, Wu Zhao, Lingjuan Wang, Wei 2017-11-07(5)Improving the Performance of Narrow Linewidth Semiconductor Laser through Self-Injection Locking Li, Zhaosong Lu, Dan He, Yiming Wang, Jiaqi Zhou, Xuliang Pan, Jiaoqing 2017-10-01(6)Synchronized Operation of a Monolithically Integrated AWG-based Multichannel Harmonically Mode-locked Laser Songtao Liu, Dan Lu, Lingjuan Zhao, Daibing Zhou, Wei Wang, Ronald Broeke, and Chen Ji 2016-03-23(7)Compact two-mode (de)multiplexer based on MMI couplers with different core thickness on InP Substrate Fei Guo, Dan Lu, Ruikang Zhang, Huitao Wang, Wei Wang, Chen Ji 2016-02-17(8)Dual-Mode Semiconductor Lasers and Their Applications 陆丹,赵玲娟 2015-06-28
指导学生
已指导学生
贺一鸣 硕士研究生 085208-电子与通信工程
现指导学生
张智豪 硕士研究生 085400-电子信息
杨秋露 博士研究生 080901-物理电子学