张军  男  博导  中国科学院化学研究所
电子邮件: jzhang@iccas.ac.cn
通信地址: 北京市海淀区中关村北一街2号
邮政编码: 100190

研究领域

纤维素化学与物理

天然高分子材料的绿色加工与功能化

离子液体在高分子中的应用

功能性高分子材料


招生信息

高分子化学与物理


材料化学


有机化学

招生专业
070305-高分子化学与物理
招生方向

材料化学

有机化学

高分子化学与物理

环境友好高分子材料

教育背景

1996-04--1999-03   大连理工大学   博士学位
1993-10--1996-03   哈尔滨工程大学   硕士学位
1989-09--1993-07   安徽师范大学   本科/学士学位
学历
大连理工大学 -- 研究生
学位
大连理工大学 -- 博士

工作经历

2001-2006 中国科学院化学研究所 副研究员

2006-至今  中国科学院化学研究所 研究员

教授课程

天然高分子和功能高分子
前沿化学实验
功能高分子材料
天然与功能高分子

专利与奖励

   
奖励信息

"基于离子液体溶剂体系的纤维素加工与功能化的新原理和新方法" 项目获得2013年度北京市科学技术奖一等奖。


国家杰出青年基金获得者

出版信息

   
发表论文
1. Cellulose-Based Sensor Containing Phenanthroline for the Highly Selective and Rapid Detection of Fe2+ Ions with Naked Eye and Fluorescent Dual Modes. ACS Appl. Mater. Interfaces 2018, 10, 2114−2121. 2. Multifunctional Cellulose Ester Containing Hindered Phenol Groups with Free-Radical-Scavenging and UV-Resistant Activities. ACS Appl. Mater. Interfaces 2018, DOI: 10.1021/acsami.8b15642. 3. Novel Thermoplastic Cellulose Esters Containing Bulky Moieties and Soft Segments. ACS Sustainable Chem. Eng. 2018, 6, 4931−4939. 4. Phototunable Full-Color Emission of Cellulose-Based Dynamic Fluorescent Materials. Adv. Funct. Mater. 2018, 28, 1703548. 5. Controllable synthesis of cellulose benzoates for understanding of chiral recognition mechanism and fabrication of highly efficient chiral stationary phases. Anal. Methods, 2018, 10, 2844. 6. Re-dispersible 1D and 2D Nanoparticle Solid Powders without any Surfactant. ChemNanoMat, 2018, DOI: 10.1002/cnma.201800399. 7. All-cellulose composites based on the self-reinforced effect. Composites Communications 9 (2018) 42–53. 8. 纤维素基刺激响应高分子材料研究进展, 高分子通报,2018,8,,119-124. 9. A facile and efficient method to fabricate high-resolution immobilized cellulose-based chiral stationary phases via thiol-ene click chemistry. Separation and Purification Technology 210 (2019) 175–181. 10. Cellulose Aerogel Membranes with a Tunable Nanoporous Network as a Matrix of Gel Polymer Electrolytes for Safer Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 24591−24599. 11. Transparent Cellulose−Silica Composite Aerogels with Excellent Flame Retardancy via an in Situ Sol−Gel Process. ACS Sustainable Chem. Eng. 2017, 5, 11117-11123. 12. Directly Converting Agricultural Straw into All-Biomass Nanocomposite Films Reinforced with Additional in Situ-Retained Cellulose Nanocrystals. ACS Sustainable Chem. Eng. 2017, 5, 5127−5133. 13. Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends. Mater. Chem. Front., 2017, 1, 1273-1290. 14. Cellulose-Based Solid Fluorescent Materials. Adv. Optical Mater. 2016, 4, 2044–2050. 15. All-Cellulose Nanocomposites Reinforced with in Situ Retained Cellulose Nanocrystals during Selective Dissolution of Cellulose in an Ionic Liquid. ACS Sustainable Chem. Eng. 2016, 4, 4417−4423. 16. Cellulose/microalgae composite films prepared in ionic liquids. Algal Research 20 (2016) 135–141. 17. Transparent cellulose/polyhedral oligomeric silsesquioxane nanocomposites with enhanced UV-shielding properties. Carbohydrate Polymers 147 (2016) 171–177. 18. Cellulose-based films prepared directly from waste newspapers via an ionic liquid. Carbohydrate Polymers 151 (2016) 223–229. 19. Understanding cellulose dissolution: effect of the cation and anion structure of ionic liquids on the solubility of cellulose. Sci China Chem, doi: 10.1007/s11426-016-0269-5. 20. Determination of intrinsic viscosity-molecular weight relationship for cellulose in BmimAc/DMSO solutions. Cellulose (2016) 23:2341–2348. 21. Transparent and flame retardant cellulose/aluminum hydroxide nanocomposite aerogels. Sci China Chem, 2016, 59: 1335–1341, doi: 10.1007/s11426-016-0188-0. 22. Fabrication, hydrolysis and cell cultivation of microspheres from cellulose-graft-poly(L-lactide) copolymers. RSC Adv., 2016, 6, 17617. 23. Flexible and Transparent Cellulose Aerogels with Uniform Nanoporous Structure by a Controlled Regeneration Process. ACS Sustainable Chem. Eng., 2016, DOI: 10.1021/acssuschemeng.5b01079. 24. Homogeneous esterification of cellulose in room temperature ionic liquids. Polym. Int. 2015; 64: 963–970. 25. Synthesis, characterization, and gas permeabilities of cellulose derivatives containing adamantane groups. Journal of Membrane Science, 469, (2014), 507–514. 26. ‘‘One pot’’ homogeneous synthesis of thermoplastic cellulose acetate-graft-poly(L-lactide) copolymers from unmodified cellulose. Cellulose (2013) 20:327–337. 27. Direct visualization of solution morphology of cellulose in ionic liquids by conventional TEM at room temperature. Chem. Commun., 2012, 48, 6283–6285. 28. NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. Phys. Chem. Chem. Phys., 2010, 12, 1941–1947. 29. Stable dispersions of reduced graphene oxide in ionic liquids. J. Mater. Chem., 2010, 20, 5401–5403. 30. Thermoplastic Cellulose-graft-poly(L-lactide) Copolymers Homogeneously Synthesized in an Ionic Liquid with 4-Dimethylaminopyridine Catalyst. Biomacromolecules, 2009, 10, 2013. 31. Synthesis of cellulose benzoates under homogeneous conditions in an ionic liquid. Cellulose (2009) 16:299–308. 32. Synthesis of Cellulose-graft-Poly(N,N-dimethylamino-2-ethyl methacrylate) Copolymers via Homogeneous ATRP and Their Aggregates in Aqueous Media. Biomacromolecules 2008, 9, 2615–2620. 33. Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose. Polymer 50 (2009) 447–454. 34. Room temperature ionic liquids (RTILs): A new and versatile platform for cellulose processing and derivatization. Chemical Engineering Journal 147 (2009) 13–21. 35. Homogeneous Acetylation of Cellulose in a New Ionic Liquid. Biomacromolecules 2004, 5, 266-268. 36. Regenerated-Cellulose/Multiwalled-Carbon-Nanotube Composite Fibers with Enhanced Mechanical Properties Prepared with the Ionic Liquid 1-Allyl-3-methylimidazolium Chloride. Adv. Mater. 2007, 19, 698–704. 37. 1-Allyl-3-methylimidazolium Chloride Room Temperature Ionic Liquid: A New and Powerful Nonderivatizing Solvent for Cellulose. Macromolecules 2005, 38, 8272-8277. 38. 1-烯丙基-3-甲基咪唑室温离子液体的合成及其对纤维素溶解性能的初步研究, 高分子学报,2003, 3,448.

科研活动

   
科研项目
( 1 ) 纤维素材料的加工与功能化, 主持, 国家级, 2015-01--2019-12
( 2 ) 高性能纤维素膜制备的关键技术研究, 主持, 院级, 2014-01--2019-12
( 3 ) 山东省泰山产业领军人才计划, 主持, 省级, 2016-01--2019-12
( 4 ) 纤维素膜清洁生产新工艺产业化关键技术开发, 主持, 部委级, 2017-07--2018-06
参与会议
(1)基于离子液体溶剂体系的纤维素加工与功能化—从基础研究到应用探索   2017年全国高分子学术论文报告会   2017-10-10

指导学生

已指导学生

张昊  博士研究生  070305-高分子化学与物理  

颜成虎  博士研究生  070305-高分子化学与物理  

张金明  博士研究生  070305-高分子化学与物理  

吕玉霞  博士研究生  070305-高分子化学与物理  

罗楠  博士研究生  070305-高分子化学与物理  

宋洪赞  博士研究生  070305-高分子化学与物理  

王德修  博士研究生  070305-高分子化学与物理  

徐波涛  硕士研究生  430105-材料工程  

马书荣  硕士研究生  085204-材料工程  

肖鹏  博士研究生  070305-高分子化学与物理  

陈婧  博士研究生  070305-高分子化学与物理  

丁美春  博士研究生  070305-高分子化学与物理  

杨丽丽  博士研究生  070305-高分子化学与物理  

丰晔  博士研究生  070305-高分子化学与物理  

陈韦韦  博士研究生  070305-高分子化学与物理  

夏光美  博士研究生  070305-高分子化学与物理  

刘佳健  博士研究生  070305-高分子化学与物理  

田卫国  博士研究生  070305-高分子化学与物理  

万纪强  博士研究生  080502-材料学  

现指导学生

陈张彦  博士研究生  080502-材料学  

杨田田  博士研究生  070305-高分子化学与物理  

靳坤峰  博士研究生  070305-高分子化学与物理  

贾若男  博士研究生  070305-高分子化学与物理  

周彦  硕士研究生  080502-材料学  

张鑫  硕士研究生  070305-高分子化学与物理  

尹春春  博士研究生  070305-高分子化学与物理  

李锦阳  博士研究生  080502-材料学  

季欣  硕士研究生  070305-高分子化学与物理  

温朝俊  硕士研究生  080502-材料学  

夏钲豪  硕士研究生  080502-材料学  

卢洪超  博士研究生  070305-高分子化学与物理  

刘宗喜  博士研究生  070305-高分子化学与物理  

程耀辉  博士研究生  080502-材料学