研究领域
大气臭氧和二次有机气溶胶的生成机制
痕量气体和气溶胶原位电离和测量技术的开发和应用
精细化大气臭氧和气溶胶动力学模式的开发和应用
分子水平研究气溶胶成核、气-粒传质、颗粒相反应、吸湿增长和云雾微物理等微观过程
招生信息
欢迎有志于大气臭氧和二次有机气溶胶生成演化机制研究的青年学子报考硕士、博士研究生
招生专业
招生方向
教育背景
科研论文
Yu, S.S., Jia, L.*, Xu, Y.F., Pan, Y.P., 2024. Oligomer formation from cross-reaction of Criegee intermediates in the styrene-isoprene-O3 mixed system. Chemosphere, 349, 140811, https://doi.org/10.1016/j.chemosphere.2023.140811
Jia L*., Yu S.S., Xu Y.F., 2024, Physicochemical processes of typical ozone pollution in a suburb of Beijing. Chinese Journal of Atmospheric Sciences, 48(1): 391-404. https://doi.org/10.3878/j.issn.1006-9895.2311.23309 (贾龙, 于姗杉, 徐永福, 2024, 解析北京郊区一次典型臭氧污染的物理化学过程. 大气科学,48(1): 391-404. https://doi.org/10.3878/j.issn.1006-9895.2311.23309)
Zhang, H.L., Jia, L.*, Xu, Y.F., 2023. Evaluation of reaction between SO2 and CH2OO in MCM mechanism against smog chamber data from ethylene ozonolysis. Environmental Chemistry, 20(6), 235-248. https://doi.org/10.1071/EN23029
Zhang, H., Xu, Y., Jia, L.*, 2023.Evaluation of Ozone Formation Potential of Formaldehyde Using Smog Chamber Data. Aerosol and Air Quality Research 23:220323. https://doi.org/10.4209/aaqr.220323
Jia, L.*, Xu, Y., Duan, M., 2023. Explosive formation of secondary organic aerosol due to aerosol-fog interactions. Sci. Total Environ. 866, 161338. https://doi.org/10.1016/j.scitotenv.2022.161338
Zhang, H., Xu, Y., Jia, L., 2023. Hydroxymethanesulfonate formation as a significant pathway of transformation of SO2. Atmos. Environ. 294, 119474. https://doi.org/10.1016/j.atmosenv.2022.119474
Yu, S., Jia, L.*, Xu, Y., Pan, Y., 2022. Molecular composition of secondary organic aerosol from styrene under different NO and humidity conditions. Atmos. Res. 266, 105950. https://doi.org/10.1016/j.atmosres.2021.105950
Yu, S., Jia, L.*, Xu, Y., Pan, Y., 2022. Formation of extremely low-volatility organic compounds from styrene ozonolysis: Implication for nucleation. Chemosphere 305, 135459. https://doi.org/10.1016/j.chemosphere.2022.135459
Yu, S., Jia, L.*, Xu, Y., Zhang, H., Zhang, Q., Pan, Y., 2022. Wall losses of oxygenated volatile organic compounds from oxidation of toluene: Effects of chamber volume and relative humidity. J. Environ. Sci. 114, 475–484. https://doi.org/10.1016/j.jes.2021.09.026
Jia, L., Xu, Y., 2021. A core-shell box model for simulating viscosity dependent secondary organic aerosol (CSVA) and its application. Sci. Total Environ. 789, 147954. https://doi.org/10.1016/j.scitotenv.2021.147954
Zhang, H., Xu, Y., Jia, L., 2021. A chamber study of catalytic oxidation of SO2 by Mn2+/Fe3+ in aerosol water. Atmos. Environ. 245, 118019. https://doi.org/10.1016/j.atmosenv.2020.118019
Zhang, H., Xu, Y., Jia, L., Xu, M., 2021. Smog Chamber Study on the Ozone Formation Potential of Acetaldehyde. Adv. Atmos. Sci. 38, 1238–1251. https://doi.org/10.1007/s00376-021-0407-5
Jia, L., Xu, Y., 2020. The role of functional groups in the understanding of secondary organic aerosol formation mechanism from α-pinene. Sci. Total Environ. 738, 139831. https://doi.org/10.1016/j.scitotenv.2020.139831
Qiu, Y., Xu, W., Jia, L., He, Y., Fu, P., Zhang, Q., Xie, Q., Hou, S., Xie, C., Xu, Y., Wang, Z., Worsnop, D.R., Sun, Y., 2020. Molecular composition and sources of water-soluble organic aerosol in summer in Beijing. Chemosphere 255, 126850. https://doi.org/10.1016/j.chemosphere.2020.126850
Jiang, X., Tsona, N.T., Jia, L., Liu, S., Zhang, H., Xu, Y., Du, L., 2019. Secondary organic aerosol formation from photooxidation of furan: Effects of NOx and humidity. Atmos. Chem. Phys. 19, 13591–13609. https://doi.org/10.5194/acp-19-13591-2019
Liu, S., Tsona, N.T., Zhang, Q., Jia, L., Xu, Y., Du, L., 2019. Influence of relative humidity on cyclohexene SOA formation from OH photooxidation. Chemosphere 231, 478–486. https://doi.org/10.1016/j.chemosphere.2019.05.131
Luo, H., Jia, L.*, Wan, Q., An, T., Wang, Y., 2019. Role of liquid water in the formation of O3 and SOA particles from 1,2,3-trimethylbenzene. Atmos. Environ. 217, 116955. https://doi.org/10.1016/j.atmosenv.2019.116955
Zhang, Q., Xu, Y., Jia, L., 2019. Secondary organic aerosol formation from OH-initiated oxidation of m-xylene: Effects of relative humidity on yield and chemical composition. Atmos. Chem. Phys. 19, 15007–15021. https://doi.org/10.5194/acp-19-15007-2019
Jia, L., Xu, Y., 2018. Different roles of water in secondary organic aerosol formation from toluene and isoprene. Atmos. Chem. Phys. 18, 8137–8154. https://doi.org/10.5194/acp-18-8137-2018
Xu, Y., Jia, L., 2018. Laboratory Simulation Studies of the Formation of Secondary Organic Aerosols in the Atmosphere(实验室模拟研究大气二次有机气溶胶的形成). Chinese J. Atmos. Sci. 42, 767–785. https://doi.org/10.3878/j.issn.1006-9895.1805.17251
Ge, S., Xu, Y., Jia, L., 2017. Effects of inorganic seeds on secondary organic aerosol formation from photochemical oxidation of acetone in a chamber. Atmos. Environ. 170, 205–215. https://doi.org/10.1016/j.atmosenv.2017.09.036
Ge, S., Xu, Y., Jia, L., 2017. Secondary organic aerosol formation from propylene irradiations in a chamber study. Atmos. Environ. 157, 146–155. https://doi.org/10.1016/j.atmosenv.2017.03.019
Ge, S., Xu, Y., Jia, L., 2017. Secondary organic aerosol formation from ethylene ozonolysis in the presence of sodium chloride. J. Aerosol Sci. 106, 120–131. https://doi.org/10.1016/j.jaerosci.2017.01.009
Liu, S., Jia, L., Xu, Y., Tsona, N.T., Ge, S., Du, L., 2017. Photooxidation of cyclohexene in the presence of SO2: SOA yield and chemical composition. Atmos. Chem. Phys. 17, 13329–13343. https://doi.org/10.5194/acp-17-13329-2017
Ge, S., Xu, Y., Jia, L., 2016. Secondary organic aerosol formation from ethyne in the presence of NaCl in a smog chamber. Environ. Chem. 13, 699–710. https://doi.org/10.1071/EN15155
Jia, L., Xu, Y., 2016. Ozone and secondary organic aerosol formation from Ethylene-NOx-NaCl irradiations under different relative humidity conditions. J. Atmos. Chem. 73, 81–100. https://doi.org/10.1007/s10874-015-9317-1
Wang, Y., Luo, H., Jia, L.*, Ge, S., 2016. Effect of particle water on ozone and secondary organic aerosol formation from benzene-NO2-NaCl irradiations. Atmos. Environ. 140, 386–394. https://doi.org/10.1016/j.atmosenv.2016.06.022
Wang, W.G., Li, K., Zhou, L., Ge, M.F., Hou, S.Q., Tong, S.R., Mu, Y.J., Jia, L., 2015. Evaluation and application of dual-reactor chamber for studying atmospheric oxidation processes and mechanisms. Wuli Huaxue Xuebao/ Acta Phys. - Chim. Sin. 31, 1251–1259. https://doi.org/10.3866/PKU.WHXB201504161
Han, L., Chen, Y., Jia, L., Cheng, S., Xu, Y., Ning, H., Zhang, P., 2014. Heterogeneous reactions of NO2 on the surface of MgO particles (NO2在MgO颗粒物表面的非均相反应). Sci. Sin. Chim. 44, 2004–2012. https://doi.org/10.1360/N032013-00054
Jia, L., Xu, Y.F., 2014. Studies of ozone formation potentials for benzene and ethylbenzene using a smog chamber and model simulation. Huanjing Kexue/Environmental Sci. 35, 495–503.
Jia, L., Xu, Y., 2014. Effects of relative humidity on ozone and secondary organic aerosol formation from the photooxidation of benzene and ethylbenzene. Aerosol Sci. Technol. 48, 1–12. https://doi.org/10.1080/02786826.2013.847269
Huang, L.H., Mo, C.R., Xu, Y.F., Jia, L., 2012. Smog chamber simulation of ozone formation from atmospheric photooxidation of propane. Huanjing Kexue/Environmental Sci. 33, 2551–2557.
Jia, L., Xu, Y., Shi, Y., 2012. Investigation of the ozone formation potential for ethanol using a smog chamber. Chinese Sci. Bull. 57, 4472–4481. https://doi.org/10.1007/s11434-012-5375-9
Shi, Y., Xu, Y., Jia, L., 2012. Development and Application of Atmospheric Chemical Mechanisms. Clim. Environ. Res. 17, 112–124. https://doi.org/10.3878/j.issn.1006-958
Hu, G., Xu, Y., Jia, L., 2011. Smog chamber simulation of atmospheric photochemical reactions of propene and NOx. Acta Chim. Sin. 69, 1593–1600.
Hu, G., Xu, Y., Jia, L., 2011. Effects of relative humidity on the characterization of a photochemical smog chamber. J. Environ. Sci. 23, 2013–2018. https://doi.org/10.1016/S1001-0742(10)60665-1
Jia, L., Xu, Y.F., Shi, Y.Z., 2011. Characterization of photochemical smog chamber and initial experiments. Huanjing Kexue/Environmental Sci. 32, 351–361.
Jia, L., Xu, Y., 2011. Characterization of condensed phase nitric acid particles formed in the gas phase. J. Environ. Sci. 23, 412–418. https://doi.org/10.1016/S1001-0742(10)60414-7
Shi, Y., Xu, Y., Jia, L., 2011. Arrhenius parameters for the gas-phase reactions of O3 with two butenes and two methyl-substituted butenes over the temperature range of 295-351K. Int. J. Chem. Kinet. 43, 238–246. https://doi.org/10.1002/kin.20553
Jia, L., Xu, Y., 2010. Formation of Secondary Organic Aerosol from the Styrene-NOx Irradiation. Acta Chim. Sin. 68, 2429–2435.
Jia, L., Xu, Y.F., Ge, M.F., Du, L., Zhuang, G.S., 2009. Smog chamber studies of ozone formation potentials for isopentane. Chinese Sci. Bull. 54, 4624–4632. https://doi.org/10.1007/s11434-009-0482-y
Du, L., Xu, Y.F., Ge, M.F., Jia, L., Yao, L., 2007. Experimental investigation of incremental reactivity of di-tert-butyl peroxide. Chinese Sci. Bull. 52, 1629–1634. https://doi.org/10.1007/s11434-007-0243-8
Du, L., Xu, Y., Ge, M., Jia, L., 2007. Rate constant for the reaction of ozone with diethyl sulfide. Atmos. Environ. 41, 7434–7439. https://doi.org/10.1016/j.atmosenv.2007.05.041
Du, L., Xu, Y., Ge, M., Jia, L., Yao, L., Wang, W., 2007. Rate constant of the gas phase reaction of dimethyl sulfide (CH3SCH3) with ozone. Chem. Phys. Lett. 436, 36–40. https://doi.org/10.1016/j.cplett.2007.01.025
Du, L., Xu, Y.F., Ge, M.F., Jia, L., Wang, G.C., Wang, D.X., 2006. Determination of rate constants for ozone reactions with acetylene under atmospheric conditions. Acta Chim. Sin. 64, 2133–2137.
Jia, L., Ge, M.F., Xu, Y.F., Du, L., Zhuang, G.S., Wang, D.X., 2006. Advances in atmospheric ozone chemistry. Prog. Chem. 18, 1565–1574.
JIA, L., XU, Y., GE, M., DU, L., WANG, G., ZHUANG, G., 2006. Kinetic Study of the Gas-phase Ozonolysis of Propylene. Acta Physico-Chimica Sin. 22, 1260–1266. https://doi.org/10.1016/S1872-1508(06)60060-0
Jia, L., Ge, M., Zhuang, G., Yao, L., Wang, D., 2006. Advances in tropospheric night-time chemistry. Prog. Chem. 18, 1034–1040.
Sun, Y.L., Zhuang, G.S., Wang, Z.F., Wang, Y., Zhang, W.J., Tang, a. H., Zhao, X.J., Jia, L., 2006. Regional characteristics of spring Asian dust and its impact on aerosol chemistry over northern China. Atmos. Chem. Phys. Discuss. 6, 12825–12864. https://doi.org/10.5194/acpd-6-12825-2006
Xu, Y., Jia, L., Ge, M., Du, L., Wang, G., Wang, D., 2006. A kinetic study of the reaction of ozone with ethylene in a smog chamber under atmospheric conditions. Chinese Sci. Bull. 51. https://doi.org/10.1007/s11434-006-2180-3
Jia, L., Ge, M., Zhuang, G., Sun, Z., Wang, D., 2005. Advances in the study of tropospheric OH and HO2. Chem. Bull. / Huaxue Tongbao 68, 735–744. https://doi.org/10.3969/j.issn.0441-3776.2005.10.003
科研项目
国家自然科学基金,面上项目,高氧化态有机物的老化机制及其控制因子的实验室研究,2025-2028,负责
中国科学院功能开发项目,一种大气过氧自由基化学电离源系统的开发,2024-2025,负责
北京市自然科学基金,面上项目,环境因子对半挥发性有机物气-粒分配系数的影响规律,2021-2023,负责
国家自然科学基金,面上项目,水溶性有机气溶胶成分解析及关键形成机制的实验室研究,2019-2022,负责
中国科学院功能开发项目,气溶胶原位电离源系统的开发,2020-2022,负责
国家重点研发计划项目,“区域大气氧化能力与空气质量的定量关系及调控原理” 之课题五“大气氧化剂及其前体物演变过程与收支平衡”的子课题“OVOC(醛类等)物质的臭氧生成潜势与机制研究”,2017-2021,负责
国家自然科学基金,青年项目,氯化钠气溶胶对单环芳香烃光氧化的影响,2012-2014,负责
中国科学院战略性先导科技专项,“灰霾 追因 与控制”(B类),“灰霾追因模拟”之子课题:典型植物排放挥发性有机物在近实际大气条件下形成二次细粒子的研究,2012-2017,负责
中国科学院知识创新工程方向性项目,“区域大气氧化剂、霾的形成机制与复合效应”之子课题:不同前体物配比和反应条件下O3的生成和变化规律研究,2009-2011,负责