基本信息
陈德勇  男  博导  中国科学院电子学研究所
电子邮件: dychen@mail.ie.ac.cn
通信地址: 海淀区北四环西路19号科电大厦1101
邮政编码: 100190

研究领域

MEMS微传感器与微系统。近年来主要研究方向包括:基于MEMS技术的谐振式传感器、振动传感器、惯性传感器、无线无源传感器、微流控芯片以及微纳制造技术等。

招生信息

每年招生博、硕士研究生共3名

招生专业

微电子与固体电子学
生物电子学

招生方向

1. 基于微纳米技术的传感器、执行器与系统
2. MEMS加工技术与工艺
3. 微流控芯片系统

招生专业
080903-微电子学与固体电子学
080920-生物电子学

教育背景

1998-09--2002-07   中国科学院电子学研究所   工学博士
1989-09--1992-07   中国科学院半导体研究所   理学硕士学位
1984-09--1989-07   北京清华大学   理学学士

工作经历

2002-05--今 中国科学院电子学研究所 研究员
1998-05--2002-05 中国科学院电子学研究所 副研究员
1994-05--1998-05 中国科学院电子学研究所 助理研究员
1992-08--1994-05 中国科学院电子学研究所 研究实习员 

2003年 英国卢瑟福国家实验室高级访问学者

专利与奖励

   
专利成果
[1] 周天平, 李楠, 王军波, 陈德勇. 分析卡盒、分析设备及分析方法. CN: CN116376671B, 2023-08-22.
[2] 王军波, 钱攀, 余宗泽, 鲁毓岚, 谢波, 陈德勇. 基于梁膜敏感和体压缩敏感的谐振式高压传感器. CN: CN116539211A, 2023-08-04.
[3] 王军波, 程超, 姚佳辉, 陈德勇, 鲁毓岚. 一种集成温度传感器的谐振式差压传感器及其制备方法. CN: CN113686483B, 2023-07-25.
[4] 王军波, 梁天, 陈德勇, 刘博文, 许超, 齐文杰, 佘旭. 一种电化学敏感电极、制作方法及应用其的角加速度传感器. CN: CN113687101B, 2023-07-25.
[5] 谢波, 李星雨, 鲁毓岚, 姚佳辉, 陈德勇, 王军波. 一种静压补偿硅谐振微差压传感器及其制备方法. CN: CN116465541A, 2023-07-21.
[6] 周天平, 李楠, 王军波, 陈德勇. 分析卡盒、分析设备及分析方法. CN: CN116376671A, 2023-07-04.
[7] 王军波, 孙振宇, 齐文杰, 陈德勇. 单硅片上集成制造四种电化学敏感电极的MEMS芯片及制造方法. CN: CN115947297A, 2023-04-11.
[8] 王军波, 钟安祥, 陈健, 陈德勇, 段语默, 陈明惟, 梁天, 刘博文, 许超, 齐文杰, 佘旭. 一种敏感器件、电化学矢量水听器. CN: CN113654644B, 2023-01-24.
[9] 陈德勇, 陈明惟, 王军波, 刘博文, 梁天, 齐文杰, 钟安详, 段语默. 一种基于硅导电的MEMS电化学振动传感器敏感电极及其制造方法. CN: CN113671213B, 2022-12-27.
[10] 王军波, 孟庆港, 陈德勇, 鲁毓岚, 谢波. 基于SOI的电阻中心放置的压阻式压力传感器. CN: CN113758613B, 2022-12-27.
[11] 王军波, 段语默, 陈德勇, 许超, 齐文杰. MEMS电化学振动传感器四电极一体化敏感电极及其制造方法. CN: CN113739901B, 2022-12-23.
[12] 陈健, 梁红雁, 张毅, 谭惠文, 陈德勇, 王军波. 一种细胞及细胞核生物电学特性检测装置及方法. CN: CN113029917B, 2022-11-29.
[13] 谢波, 余宗泽, 鲁毓岚, 薛涵, 陈德勇, 王军波. 敏感芯体和传感器. CN: CN115389059A, 2022-11-25.
[14] 陈德勇, 谢波, 秦佳新, 鲁毓岚, 尉洁, 王军波. 一种差分刚度扰动模态局域化的高灵敏微压传感器. CN: CN115265850A, 2022-11-01.
[15] 王军波, 姚佳辉, 程超, 陈德勇, 谢波, 鲁毓岚, 薛涵, 余宗泽. 一种基于共晶键合工艺的谐振式差压传感器的设计制作方法. CN: CN115215287A, 2022-10-21.
[16] 王军波, 刘博文, 陈德勇, 许超, 梁天, 齐文杰, 郑希宸, 佘旭. MEMS一体化平面电极及含其的电化学角加速度传感器. CN: CN111474575B, 2022-10-18.
[17] 王军波, 梁天, 陈德勇, 刘博文, 许超, 齐文杰, 佘旭. 一种基于磁流体反馈的MEMS电化学角加速度传感器及方法. CN: CN112666367B, 2022-10-11.
[18] 谢波, 余宗泽, 鲁毓岚, 薛涵, 陈德勇, 王军波. 敏感芯体和传感器. 202210974384.1, 2022-08-15.
[19] 王军波, 姚佳辉, 程超, 陈德勇, 谢波, 鲁毓岚, 薛涵, 余宗泽. 一种基于共晶键合工艺的谐振式差压传感器的设计制作方法. 202210814306.5, 2022-07-12.
[20] 陈德勇, 陈明惟, 王军波, 钟安详, 段语默, 刘博文, 梁天, 齐文杰. 一种电化学角加速度传感器的封装方法. CN: CN113687102B, 2022-07-08.
[21] 陈德勇, 谢波, 秦佳新, 鲁毓岚, 尉洁, 王军波. 一种差分刚度扰动模态局域化的高灵敏微压传感器. 20221075922.6, 2022-06-30.
[22] 陈健, 黄旭琨, 刘岩, 梁红雁, 王棵, 陈德勇, 王军波. 基于非压缩通道的单细胞生物物理特性检测装置及方法. CN: CN114659965A, 2022-06-24.
[23] 陈健, 张毅, 谭惠文, 梁红雁, 陈德勇, 王军波. 基于压缩通道的单细胞生物电参量检测装置及检测方法. CN: CN111596134B, 2022-06-14.
[24] 陈德勇, 尉洁, 王军波, 鲁毓岚, 谢波. 一种具有高Q值的硅谐振式高压传感器及其制造方法. CN: CN114593846A, 2022-06-07.
[25] 陈健, 梁红雁, 陈骁, 陈德勇, 王军波. 一种基于阻抗信号及荧光成像的细胞特征检测方法和装置. CN: CN114518316A, 2022-05-20.
[26] 陈健, 黄旭琨, 刘岩, 梁红雁, 王棵, 陈德勇, 王军波. 基于非压缩通道的单细胞生物物理特性检测装置及方法. 202210321553.1, 2022-03-25.
[27] 陈德勇, 尉洁, 王军波, 鲁毓岚, 谢波. 一种具有高Q值的硅谐振式高压传感器及其制备方法. 202210224116.8, 2022-03-09.
[28] 王军波, 程超, 李亚东, 陈德勇, 鲁毓岚. 一种谐振式差压传感器和补偿方法. CN: CN112611501B, 2022-03-04.
[29] 陈健, 梁红雁, 陈骁, 陈德勇, 王军波. 一种基于阻抗信号及荧光成像的细胞特征检测方法和装置. 20211010815.7, 2022-01-28.
[30] 王军波, 孟庆港, 陈德勇, 鲁毓岚, 谢波. 基于SOI的电阻中心放置的压阻式压力传感器. CN: CN113758613A, 2021-12-07.
[31] 王军波, 孟庆港, 陈德勇, 鲁毓岚, 谢波. 基于SOI的电阻中心放置的压阻式压力传感器. CN: CN113758613A, 2021-12-07.
[32] 王军波, 段语默, 陈德勇, 许超, 齐文杰. MEMS电化学振动传感器四电极一体化敏感电极及其制造方法. CN: CN113739901A, 2021-12-03.
[33] 王军波, 段语默, 陈德勇, 许超, 齐文杰. MEMS电化学振动传感器四电极一体化敏感电极及其制造方法. CN: CN113739901A, 2021-12-03.
[34] 陈德勇, 陈明惟, 王军波, 钟安详, 段语默, 刘博文, 梁天, 齐文杰. 一种电化学角加速度传感器的封装方法. CN: CN113687102A, 2021-11-23.
[35] 陈德勇, 陈明惟, 王军波, 钟安详, 段语默, 刘博文, 梁天, 齐文杰. 一种电化学角加速度传感器的封装方法. CN: CN113687102A, 2021-11-23.
[36] 王军波, 程超, 姚佳辉, 陈德勇, 鲁毓岚. 一种集成温度传感器的谐振式差压传感器及其制备方法. CN: CN113686483A, 2021-11-23.
[37] 王军波, 梁天, 陈德勇, 刘博文, 许超, 齐文杰, 佘旭. 一种电化学敏感电极、制作方法及应用其的角加速度传感器. CN: CN113687101A, 2021-11-23.
[38] 王军波, 程超, 姚佳辉, 陈德勇, 鲁毓岚. 一种集成温度传感器的谐振式差压传感器及其制备方法. CN: CN113686483A, 2021-11-23.
[39] 王军波, 梁天, 陈德勇, 刘博文, 许超, 齐文杰, 佘旭. 一种电化学敏感电极、制作方法及应用其的角加速度传感器. CN: CN113687101A, 2021-11-23.
[40] 陈德勇, 陈明惟, 王军波, 刘博文, 梁天, 齐文杰, 钟安详, 段语默. 一种基于硅导电的MEMS电化学振动传感器敏感电极及其制造方法. CN: CN113671213A, 2021-11-19.
[41] 陈德勇, 陈明惟, 王军波, 刘博文, 梁天, 齐文杰, 钟安详, 段语默. 一种基于硅导电的MEMS电化学振动传感器敏感电极及其制造方法. CN: CN113671213A, 2021-11-19.
[42] 陈健, 张婷, 陈德勇, 王军波. 基于光源调制的高分辨率单细胞蛋白定量检测方法. CN: CN113670874A, 2021-11-19.
[43] 陈健, 张婷, 陈德勇, 王军波. 基于光源调制的高分辨率单细胞蛋白定量检测方法. CN: CN113670874A, 2021-11-19.
[44] 王军波, 钟安祥, 陈健, 陈德勇, 段语默, 陈明惟, 梁天, 刘博文, 许超, 齐文杰, 佘旭. 一种敏感器件、电化学矢量水听器. CN: CN113654644A, 2021-11-16.
[45] 王军波, 钟安祥, 陈健, 陈德勇, 段语默, 陈明惟, 梁天, 刘博文, 许超, 齐文杰, 佘旭. 一种敏感器件、电化学矢量水听器. CN: CN113654644A, 2021-11-16.
[46] 陈健, 梁红雁, 张毅, 谭惠文, 陈德勇, 王军波. 基于电学及荧光信号的微流控芯片和血细胞分析装置. CN202010226537.5, 2021-10-26.
[47] 陈健, 梁红雁, 张毅, 谭惠文, 陈德勇, 王军波. 基于电学及荧光信号的微流控芯片和血细胞分析装置. CN: CN111359687B, 2021-10-26.
[48] 陈健, 梁红雁, 张毅, 谭惠文, 陈德勇, 王军波. 细胞核电学性能检测装置及方法. CN202010073004.8, 2021-10-12.
[49] 陈健, 梁红雁, 张毅, 谭惠文, 陈德勇, 王军波. 基于电学信号的微流控芯片和血细胞分析装置及方法. CN: CN111330659B, 2021-10-12.
[50] 陈健, 张婷, 陈德勇, 王军波. 基于光源调制的高分辨率单细胞蛋白定量检测装置及方法. CN202110952702.X, 2021-08-19.
[51] 王军波, 张森, 陈德勇, 鲁毓岚, 谢波, 郑宇. 谐振式微压传感器及其制备方法. CN: CN113091989A, 2021-07-09.
[52] 陈德勇, 尉洁, 王军波, 鲁毓岚, 谢波, 项超. 一种谐振式高压传感器及其制作方法. CN: CN113091984A, 2021-07-09.
[53] 陈健, 梁红雁, 张毅, 谭惠文, 陈德勇, 王军波. 一种细胞及细胞核生物电学特性检测装置及方法. CN202110198721.8, 2021-06-25.
[54] 陈健, 梁红雁, 张毅, 谭惠文, 陈德勇, 王军波. 一种细胞及细胞核生物电学特性检测装置及方法. CN: CN113029917A, 2021-06-25.
[55] 陈德勇, 尉洁, 王军波, 鲁毓岚, 谢波. 基于谐振器的真空度检测方法、系统及装置. CN: CN113008453A, 2021-06-22.
[56] 陈德勇, 尉洁, 王军波, 鲁毓岚, 谢波. 基于谐振器的真空度检测方法、系统及装置. CN: CN113008453A, 2021-06-22.
[57] 王军波, 刘博文, 陈德勇, 许超, 梁天, 齐文杰, 佘旭. 基于小型化平面电极的电化学角加速度传感器. CN: CN112986619A, 2021-06-18.
[58] 王军波, 刘博文, 陈德勇, 许超, 梁天, 齐文杰, 佘旭. 基于小型化平面电极的电化学角加速度传感器. CN: CN112986619A, 2021-06-18.
[59] 陈健, 梁红雁, 张毅, 谭惠文, 陈德勇, 王军波. 基于电学信号的微流控芯片和血细胞分析装置及方法. CN202010226539.4, 2021-05-15.
[60] 陈健, 张毅, 谭惠文, 梁红雁, 陈德勇, 王军波. 检测细胞膜电势的装置及其检测方法. CN: CN112683950A, 2021-04-20.
[61] 王军波, 梁天, 陈德勇, 刘博文, 许超, 齐文杰, 佘旭. 一种基于磁流体反馈的MEMS电化学角加速度传感器及方法. CN: CN112666367A, 2021-04-16.
[62] 王军波, 程超, 李亚东, 陈德勇, 鲁毓岚. 一种谐振式差压传感器和补偿方法. CN: CN112611501A, 2021-04-06.
[63] 陈德勇, 李亚东, 程超, 谢波, 王军波. 高灵敏度谐振式差压传感器及其制备方法. CN: CN112461438A, 2021-03-09.
[64] 陈健, 张毅, 谭惠文, 梁红雁, 陈德勇, 王军波. 基于压缩通道的单细胞生物电参量检测装置及检测方法. CN: CN111596134A, 2020-08-28.
[65] 王军波, 刘博文, 陈德勇, 许超, 梁天, 齐文杰, 郑希宸, 佘旭. MEMS一体化平面电极及含其的电化学角加速度传感器. CN: CN111474575A, 2020-07-31.
[66] 陈健, 刘力行, 张婷, 杨泓雨, 陈德勇, 王军波. 基于立体均匀聚焦激光的单细胞蛋白定量检测系统及方法. CN: CN111323403A, 2020-06-23.
[67] 王军波, 朱林, 陈德勇, 谢波. 一种硅谐振压力传感器的补偿方法. CN: CN106932125B, 2020-03-17.
[68] 王军波, 魏秋旭, 赵明, 陈德勇, 陈健. 一种植入式无线无源颅内压监测系统. CN: CN105832327B, 2019-05-31.
[69] 王军波, 朱林, 陈德勇, 谢波. 一种硅谐振压力传感器的补偿方法. CN: CN106932125A, 2017-07-07.
[70] 王军波, 魏秋旭, 赵明, 陈德勇, 陈健. 一种植入式无线无源颅内压监测系统. CN: CN105832327A, 2016-08-10.

出版信息


发表论文
[1] 梁天, 张明博, 胡林涛, 孙振宇, 朱茂琦, 陈德勇, 王军波, 陈健. HIGH-SENSITIVITY ELECTROCHEMICAL ANGULAR ACCELEROMETER RELYING ON SOI-BASED MICROELECTRODEs. Transducers 2023. 2023, 
[2] Zhang, Ting, Chen, Xiao, Chen, Deyong, Wang, Junbo, Chen, Jian. Development of constrictional microchannels and the recurrent neural network in single-cell protein analysis. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY[J]. 2023, 11: http://dx.doi.org/10.3389/fbioe.2023.1195940.
[3] Tan, Huiwen, Chen, Xiao, Huang, Xukun, Chen, Deyong, Qin, Xuzhen, Wang, Junbo, Chen, Jian. Development of Microfluidic Impedance Flow Cytometry Enabling the Quantification of Intrinsic Single-Cell Bio-Dielectric Parameters Based on Constrictional Microchannel, Numerical Simulation, and Neural Network. IEEE SENSORS JOURNAL[J]. 2023, 23(2): 1024-1032, http://dx.doi.org/10.1109/JSEN.2022.3226781.
[4] 谭惠文, 陈骁, 黄旭琨, 陈德勇, 秦绪珍, 王军波, 陈健. Impedance flow cytometry based on constrictional microchannels and deep learning. MicroTAS. 2023, 
[5] Chen, Xiao, Wang, Minruihong, Liu, Yan, Liu, Mingyue, Chen, Deyong, Chen, Bo, Wang, Junbo, Chen, Jian. Interpretation of preliminary electrical data in impedance flow cytometry: numerical simulation, theoretical analysis, and neural net fitting. MICROFLUIDICS AND NANOFLUIDICS[J]. 2023, 27(2): 
[6] 张婷, 刘力行, 卫元晨, 高驰远, 马良良, 高梦鸽, 赵晓甦, 王衣祥, 陈德勇, 孙力超, 王军波, 陈健. A microfluidic flow cytometry enabling high-throughput characterization of single-cell impedance and imaging based on constrictional microchannels coupled with deep neural networks. Transducers 2023. 2023, 
[7] 梁天, 孙振宇, 胡林涛, 朱茂琦, 张明博, 刘青华, 陈健, 陈德勇, 王军波. Micro-Electrochemical Rotational Vibration Sensor with SOI-Based Microelectrodes Used for Seismic Monitoring. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT[J]. 2023, 
[8] 房庭轩, 黄旭琨, 陈骁, 陈德勇, 王军波, 陈健. Segmentation, feature extraction and classification of leukocytes leveraging deep neural networks. Microtas 2023. 2023, 
[9] 尉洁, 余宗泽, 钱攀, 鲁毓岚, 陈健, 王军波, 陈德勇. A RESONANT HIGH-PRESSURE SENSOR WITH AN H-CAVITY. Transducers 2023. 2023, 
[10] Meng, Qinggang, Wang, Junbo, Chen, Deyong, Chen, Jian, Xie, Bo, Lu, Yulan. A novel evolutionary method for parameter-free MEMS structural design and its application in piezoresistive pressure sensors. MICROSYSTEMS & NANOENGINEERING[J]. 2023, 9(1): http://dx.doi.org/10.1038/s41378-023-00596-y.
[11] 孙振宇, 梁天, 胡林涛, 朱茂琦, 张明博, 王军波, 陈德勇, 陈健. ELECTROCHEMICAL SEISMOMETER BASED ON ONE SINGLE SILICON CHIP WITH FOUR ELECTRODES. Transducers 2023. 2023, 
[12] Chen, Siyuan, Qin, Jiaxin, Lu, Yulan, Xie, Bo, Wang, Junbo, Chen, Deyong, Chen, Jian. An All-Silicon Resonant Pressure Microsensor Based on Eutectic Bonding. MICROMACHINES[J]. 2023, 14(2): http://dx.doi.org/10.3390/mi14020441.
[13] Yu, Jie, Yu, Zongze, Lu, Yulan, Xie, Bo, Chen, Deyong, Wang, Junbo, Chen, Jian. A Resonant High-Pressure Microsensor Based on the Vertical Dual Resonators With Oil-Filled Isolated Structure. IEEE ELECTRON DEVICE LETTERS[J]. 2023, 44(3): 508-511, http://dx.doi.org/10.1109/LED.2023.3237272.
[14] 谭惠文, 陈骁, 黄旭琨, 陈德勇, 秦绪珍, 王军波, 陈健. Electrical micro flow cytometry with LSTM and its application in leukocyte differential. Cytometry Part A[J]. 2023, 
[15] 姚佳辉, 程超, 薛涵, 李星雨, 鲁毓岚, 谢波, 王军波, 陈德勇, 陈健. A High-Sensitivity Resonant Differential Pressure Microsensor Based on Wafer-Level Eutectic Bonding. IEEE Transactions on Electron Devices[J]. 2023, 
[16] 黄旭琨, 陈骁, 谭惠文, 王闵瑞虹, 李益民, 卫元晨, 张捷, 陈德勇, 李玥莹, 王军波, 陈健. Advance of microfluidic flow cytometry enabling high-throughput characterization of single-cell electrical and structural properties. Cytometry Part A[J]. 2023, 
[17] 张婷, 刘力行, 卫元晨, 高驰远, 马良良, 高梦鸽, 赵晓甦, 王衣祥, 陈德勇, 孙力超, 王军波, 陈健. Application of quantitative analysis of single-cell proteins in leukemia gating, tumor classification and hierarchy of cancer stem cells. MicroTAS. 2023, 
[18] 薛涵, 姚佳辉, 程超, 余宗泽, 鲁毓岚, 谢波, 王军波, 陈德勇, 陈健. A MEMS RESONANT PRESSURE SENSOR BASED ON CAVITY-SOI. Transducers 2023. 2023, 
[19] 胡林涛, 梁天, 孙振宇, 朱茂琦, 张明博, 王军波, 陈德勇, 陈健. A THREE-AXIS CO-OSCILLATING VECTOR HYDROPHONE BASED ON MEMS ELECTROCHEMISTRY. Transducers 2023. 2023, 
[20] Chao Cheng, Yao, Jiahui, Han Xue, Yulan Lu, Junbo Wang, Chen, Deyong. A MEMS Resonant Differential Pressure Sensor with High Accuracy by Integrated temperature sensor and static pressure sensor. Ieee Electron Device Letters[J]. 2022, 
[21] Duan, Yumo, Zhong, Anxiang, Lu, Yulan, Chen, Jian, Chen, Deyong, Wang, Junbo. A MEMS Electrochemical Seismometer Based on the Integrated Structure of Centrosymmetric Four Electrodes. MICROMACHINES[J]. 2022, 13(3): http://dx.doi.org/10.3390/mi13030354.
[22] Xiao Chen, Liang, Hongyan, Yimin Li, Chen, Deyong, Junbo Wang, Jian Chen. Development of an Imaging and Impedance Flow Cytometer Based on a Constriction Microchannel and Deep Neural Pattern Recognition. IEEE TRANSACTIONS ON ELECTRON DEVICES[J]. 2022, 
[23] Tian Liang, Bowen Liu, Wenjie Qi, Mingwei Chen, Anxiang Zhong, Yumo Duan, Jian Chen, Chen, Deyong, Junbo Wang. A MEMS BASED ELECTROCHEMICAL ANGULAR ACCELEROMETER WITH A HIGH-INTEGRATED SENSING UNIT. IEEE MEMS 2022. 2022, 
[24] Liang, Hongyan, Xiao Chen, Chen, Deyong, Junbo Wang, Jian Chen. DEVELOPMENT OF A MICROFLUIDIC PLATFORM CAPABLE OF CHARACTERIZING SINGLE-CELL INTRINSIC STRUCTURAL AND ELECTRICAL PROPERTIES IN A HIGH-THROUGHPUT MANNER.  26th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS 2022). 2022, 
[25] Zhang, Ting, Liu, Lixing, Yang, Hongyu, Wang, Yixiang, Chen, Deyong, Wang, Junbo, Chen, Jian. Microfluidic Quantitative Flow Cytometer With Light Modulation. IEEE SENSORS JOURNAL[J]. 2022, 22(4): 3009-3016, http://dx.doi.org/10.1109/JSEN.2021.3140110.
[26] Zhang, Yi, Wang, Minruihong, Zheng, Yu, Chen, Deyong, Wang, Wei, Wang, Junbo, Chen, Jian. A Microfluidic Platform for Characterizing Single-Cell Intrinsic Bioelectrical Properties With Large Sample Size. IEEE TRANSACTIONS ON ELECTRON DEVICES[J]. 2022, 69(9): 5177-5184, http://dx.doi.org/10.1109/TED.2022.3188591.
[27] Minruihong Wang, Tan, Huiwen, Chen, Deyong, Junbo Wang, Jian Chen. Classification of neutrophils, eosinophils and basophils based on 58 single-cell bioelectrical parameters derived from impedance flow microcytometry.  26th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS 2022). 2022, 
[28] Wang, Minruihong, Zhang, Jie, Tan, Huiwen, Chen, Deyong, Lei, Ying, Li, Yueying, Wang, Junbo, Chen, Jian. Inherent single-cell bioelectrical parameters of thousands of neutrophils, eosinophils and basophils derived from impedance flow cytometry. CYTOMETRY PART A[J]. 2022, 101(8): 639-647, http://dx.doi.org/10.1002/cyto.a.24559.
[29] Yu, Jie, Lu, Yulan, Xie, Bo, Meng, Qinggang, Yu, Zongze, Qin, Jiaxin, Chen, Jian, Wang, Junbo, Chen, Deyong. An Electrostatic Comb Excitation Resonant Pressure Sensor for High Pressure Applications. IEEE SENSORS JOURNAL[J]. 2022, 
[30] Ting Zhang, Lixing Liu, Hongyu Yang, Chen, Deyong, Junbo Wang, Jian Chen. Single-cell protein analysis enabled by microfluidic platform leveraging constriction microchannel and light modulation.  26th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS 2022). 2022, 
[31] Wang, Minruihong, Liang, Hongyan, Chen, Xiao, Chen, Deyong, Wang, Junbo, Zhang, Yuan, Chen, Jian. Developments of Conventional and Microfluidic Flow Cytometry Enabling High-Throughput Characterization of Single Cells. BIOSENSORS-BASEL. 2022, 12(7): http://dx.doi.org/10.3390/bios12070443.
[32] 梁红雁, 陈德勇, 王军波, 陈健. 单细胞结构和电学特征检测方法. 电子与信息学报[J]. 2022, 
[33] 张婷, 高梦鸽, 陈骁, 高驰远, 冯世伦, 陈德勇, 王军波, 赵晓甦, 陈健. Demands and technical developments of clinical flow cytometry with emphasis in quantitative, spectral, and imaging capabilities. Nanotechnology and Precision Engineering[J]. 2022, 
[34] Yao, Jiahui, Cheng, Chao, Lu, Yulan, Xie, Bo, Chen, Jian, Chen, Deyong, Wang, Junbo. A Low-Temperature-Sensitivity Resonant Pressure Microsensor Based on Eutectic Bonding. IEEE SENSORS JOURNAL[J]. 2022, 
[35] Yi Zhang, Minruihong Wang, Yu Zheng, Chen, Deyong, Wei Wang, Junbo Wang, Jian Chen. Development of a microfluidic platform capable of measuring intrinsic electrical properties from 1000 single cells. IEEE MEMS 2022. 2022, 
[36] Yang, Hongyu, Yang, Guang, Zhang, Ting, Chen, Deyong, Junbo Wang, Jian Chen. DEVELOPMENT OF DROPLET MICROFLUIDICS ENABLING QUANTITATIVE MEASUREMENTS OF MULTIPLE PROTEIONS AT SINGLE-CELL LEVEL. IEEE MEMS 2022. 2022, 
[37] Liang, Tian, Liu, Bowen, Chen, Mingwei, Lu, Yulan, Chen, Jian, Chen, Deyong, Wang, Junbo. A micromachined electrochemical angular accelerometer with highly integrated sensitive microelectrodes. MICROSYSTEMS & NANOENGINEERING[J]. 2022, 8(1): http://dx.doi.org/10.1038/s41378-022-00418-7.
[38] Cheng, Chao, Yao, Jiahui, Lu, Yulan, Wang, Junbo, Chen, Deyong, Chen, Jian. A Resonant Differential Pressure Microsensor With Stress Isolation and Au-Au Bonding in Packaging. IEEE TRANSACTIONS ON ELECTRON DEVICES[J]. 2022, 69(4): 2023-2029, http://dx.doi.org/10.1109/TED.2022.3152475.
[39] Yu Zheng, Chen, Deyong, Junbo Wang, Jian Chen. A Temperature-Insensitive Resonant Low-Pressure Microsensor Based on Au–Si Eutectic Wafer Bonding. IEEE TRANSACTIONS ON ELECTRON DEVICES[J]. 2022, 
[40] Liang, Hongyan, Zhang, Yi, Chen, Deyong, Li, Yueying, Wang, Yixiang, Wang, Junbo, Chen, Jian. Development of microfluidic flow cytometry capable of characterization of single-cell intrinsic structural and electrical parameters. JOURNAL OF MICROMECHANICS AND MICROENGINEERING[J]. 2022, 32(3): http://dx.doi.org/10.1088/1361-6439/ac5171.
[41] Chen, Mingwei, Zhong, Anxiang, Lu, Yulan, Chen, Jian, Chen, Deyong, Wang, Junbo. A MEMS Electrochemical Angular Accelerometer Leveraging Silicon-Based Three-Electrode Structure. MICROMACHINES[J]. 2022, 13(2): http://dx.doi.org/10.3390/mi13020186.
[42] Guang Yang, Hongyu Yang, Ting Zhang, 高驰远, Chen, Deyong, Junbo Wang, Jian Chen. Quantitative Flow Cytometry Leveraging Droplet-Based Constriction Microchannels with High Reliability and High Sensitivity. CYTOMETRY PART A[J]. 2022, 
[43] Wang, Minruihong, Tan, Huiwen, Yimin Li, Xiao Chen, Chen, Deyong, Junbo Wang, Jian Chen. Toward five-part differential of leukocytes based on electrical impedances of single cells and neural network. Cytometry Part A[J]. 2022, 
[44] Liu, Yan, Wang, Ke, Sun, Xiaohao, Chen, Deyong, Wang, Junbo, Chen, Jian. Advance of microfluidic constriction channel system of measuring single-cell cortical tension/specific capacitance of membrane and conductivity of cytoplasm. CYTOMETRY PART A[J]. 2022, 101(5): 434-447, http://dx.doi.org/10.1002/cyto.a.24517.
[45] Yu, Jie, Lu, Yulan, Chen, Deyong, Wang, Junbo, Chen, Jian, Xie, Bo. A Resonant High-Pressure Sensor Based on Integrated Resonator-Diaphragm Structure. IEEE SENSORS JOURNAL[J]. 2022, 22(5): 3920-3927, http://dx.doi.org/10.1109/JSEN.2021.3115575.
[46] Liu, Bowen, Liang, Tian, Qi, Wenjie, Anxiang Zhong, Chen, Mingwei, Lu, Yulan, Chen, Jian, Chen, Deyong, Junbo Wang. A New Electrochemical Angular Micro-Accelerometer with Integrated Sensitive Electrodes Perpendicular to Flow Channels. Microsystems & Nanoengineering[J]. 2022, 
[47] Guang Yang, Hongyu Yang, Ting Zhang, Chiyuan Gao, Chen, Deyong, Junbo Wang, Jian Chen. DEVELOPMENT OF MICROFLUDIC PLATFORM ENABLING QUANTITATIVE MEASUREMENTS OF SINGLE-CELL PROTEINS LEVERAGING DROPLET BASED CONSTRICTION MICROCHANNELS.  26th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS 2022). 2022, 
[48] Yang, Hongyu, Yang, Guang, Zhang, Ting, Chen, Deyong, Wang, Junbo, Chen, Jian. Development of Droplet Microfluidics Capable of Quantitative Estimation of Single-Cell Multiplex Proteins. JOURNAL OF MICROMECHANICS AND MICROENGINEERING[J]. 2022, 32: 
[49] Zhang, Sen, Zheng, Yu, Lu, Yulan, Xie, Bo, Chen, Deyong, Wang, Junbo, Chen, Jian. A Resonant Low-Pressure Microsensor with Low Temperature Disturbance. IEEE SENSORS JOURNAL[J]. 2022, 
[50] Tan, Huiwen, Wang, Minruihong, Zhang, Yi, Huang, Xukun, Chen, Deyong, Li, Yueying, Wu, MinHsien, Wang, Ke, Wang, Junbo, Chen, Jian. Inherent bioelectrical parameters of hundreds of thousands of single leukocytes based on impedance flow cytometry. CYTOMETRY PART A[J]. 2022, 101(8): 630-638, http://dx.doi.org/10.1002/cyto.a.24544.
[51] Wang, Ke, Liu, Yan, Chen, Deyong, Wang, Junbo, Chen, Jian. Development of Microfluidic System Enabling High-Throughput Characterization of Multiple Biophysical Parameters of Single Cells. IEEE TRANSACTIONS ON ELECTRON DEVICES[J]. 2022, 69(4): 2015-2022, http://dx.doi.org/10.1109/TED.2022.3152474.
[52] Chao Cheng, Jiahui Yao, Yulan Lu, Xiang, Chao, Jian Chen, Chen, Deyong, Junbo Wang. A Bulk-Micromachined Resonant Differential Pressure Microsensor Insensitive to Temperature and Static Pressure. IEEE MEMS 2022. 2022, 
[53] Cheng, Chao, Li, Yadong, Yao, Jiahui, Lu, Yulan, Xiang, Chao, Chen, Jian, Chen, Deyong, Wang, Junbo. A Resonant Differential Pressure Microsensor With Temperature and Static Pressure Compensations. IEEE SENSORS JOURNAL[J]. 2021, 21(18): 19881-19888, http://dx.doi.org/10.1109/JSEN.2021.3099130.
[54] Li, Yadong, Cheng, Chao, Lu, Yulan, Xie, Bo, Chen, Jian, Wang, Junbo, Chen, Deyong. A High-Sensitivity Resonant Differential Pressure Microsensor Based on Bulk Micromachining. IEEE SENSORS JOURNAL[J]. 2021, 21(7): 8927-8934, https://www.webofscience.com/wos/woscc/full-record/WOS:000626579600016.
[55] Liang, Tian, Wang, Junbo, Chen, Deyong, Liu, Bowen, She, Xu, Xu, Chao, Qi, Wenjie, Agafonov, Vadim, Egorov, Egor, Chen, Jian. A MEMS-Based Electrochemical Angular Accelerometer With a Force-Balanced Negative Feedback. IEEE SENSORS JOURNAL[J]. 2021, 21(14): 15972-15978, http://dx.doi.org/10.1109/JSEN.2021.3075748.
[56] Qi, Wenjie, Xu, Chao, Liu, Bowen, She, Xu, Liang, Tian, Chen, Deyong, Wang, Junbo, Chen, Jian. MEMS-Based Electrochemical Seismometer with a Sensing Unit Integrating Four Electrodes. MICROMACHINES[J]. 2021, 12(6): http://dx.doi.org/10.3390/mi12060699.
[57] Wang, Ke, Liu, Yan, Sun, Xiaohao, Chen, Deyong, Cai, Xinxia, Wang, Junbo, Chen, Jian. Quantification of Single-Cell Cortical Tension Using Multiple Constriction Channels. IEEE SENSORS JOURNAL[J]. 2021, 21(6): 7260-7267, https://www.webofscience.com/wos/woscc/full-record/WOS:000636053600013.
[58] Zheng, Yu, Zhang, Sen, Chen, Deyong, Wang, Junbo, Chen, Jian. A Micromachined Resonant Low-Pressure Sensor With High Quality Factor. IEEE SENSORS JOURNAL[J]. 2021, 21(18): 19840-19846, http://dx.doi.org/10.1109/JSEN.2021.3096544.
[59] Meng, Qinggang, Lu, Yulan, Wang, Junbo, Chen, Deyong, Chen, Jian. A Piezoresistive Pressure Sensor with Optimized Positions and Thickness of Piezoresistors. MICROMACHINES[J]. 2021, 12(9): http://dx.doi.org/10.3390/mi12091095.
[60] Liu, Bowen, Wang, Junbo, Chen, Deyong, Liang, Tian, Xu, Chao, Qi, Wenjie, She, Xu, Agafonov, Vadim M, Shabalina, Anna S, Chen, Jian. An Electrochemical Angular Micro-Accelerometer Based on Miniaturized Planar Electrodes Positioned in Parallel. IEEE SENSORS JOURNAL[J]. 2021, 21(19): 21305-21313, http://dx.doi.org/10.1109/JSEN.2021.3102240.
[61] Xiang, Chao, Lu, Yulan, Cheng, Chao, Wang, Junbo, Chen, Deyong, Chen, Jian. A Resonant Pressure Microsensor with a Wide Pressure Measurement Range. MICROMACHINES[J]. 2021, 12(4): https://doaj.org/article/b74c8f7e9f074df48c5328429de78e28.
[62] Xu, Chao, Wang, Junbo, Chen, Deyong, Chen, Jian, Liu, Bowen, Qi, Wenjie, Liang, Tian, She, Xu. The MEMS-Based Electrochemical Seismic Sensor With Integrated Sensitive Electrodes by Adopting Anodic Bonding Technology. IEEE SENSORS JOURNAL[J]. 2021, 21(18): 19833-19839, http://dx.doi.org/10.1109/JSEN.2021.3096496.
[63] She, Xu, Wang, Junbo, Chen, Deyong, Chen, Jian, Xu, Chao, Qi, Wenjie, Liu, Bowen, Liang, Tian. MEMS-Based Electrochemical Seismometer Relying on a CAC Integrated Three-Electrode Structure. SENSORS[J]. 2021, 21(3): https://doaj.org/article/ec1d4359d00e45dba26330454c19bb9a.
[64] 王军波. A Resonant High-pressure Sensor Based on Integrated Resonator-diaphragm Structure. IEEESENSORSJOURNAL. 2021, 
[65] Zhang, Sen, Zheng, Yu, Lu, Yulan, Xie, Bo, Chen, Deyong, Wang, Junbo, Chen, Jian. A Micromachined Resonant Micro-Pressure Sensor. IEEE SENSORS JOURNAL[J]. 2021, 21(18): 19789-19796, http://dx.doi.org/10.1109/JSEN.2021.3091843.
[66] Qi, Wenjie, Liu, Bowen, Liang, Tian, Chen, Jian, Chen, Deyong, Wang, Junbo. MEMS-Based Integrated Triaxial Electrochemical Seismometer. MICROMACHINES[J]. 2021, 12(10): http://dx.doi.org/10.3390/mi12101156.
[67] Yang, Hongyu, Wei, Yuanchen, Fan, Beiyuan, Liu, Lixing, Zhang, Ting, Chen, Deyong, Wang, Junbo, Chen, Jian. A droplet-based microfluidic flow cytometry enabling absolute quantification of single-cell proteins leveraging constriction channel. MICROFLUIDICS AND NANOFLUIDICS[J]. 2021, 25(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000630359000001.
[68] Xiao, Guihua, Song, Yilin, Zhang, Yu, Wang, Yiding, Xing, Yu, Xu, Shengwei, Xie, Jingyu, Dai, Yuchuan, Wang, Mixia, Chen, Jian, Chen, Deyong, Wang, Junbo, Cai, Xinxia. Synchronous beta oscillation of epileptiform activities detected by microelectrode arrays in the awake and anesthetized mice. SENSORS AND ACTUATORS A-PHYSICAL[J]. 2021, 318: http://dx.doi.org/10.1016/j.sna.2020.112529.
[69] Xu, Chao, Wang, Junbo, Chen, Deyong, Chen, Jian, Qi, Wenjie, Liu, Bowen, Liang, Tian, She, Xu. Temperature Compensation of the MEMS-Based Electrochemical Seismic Sensors. MICROMACHINES[J]. 2021, 12(4): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066024/.
[70] Yu, Jie, Lu, Yulan, Chen, Deyong, Wang, Junbo, Chen, Jian, Xie, Bo. A resonant high-pressure sensor based on dual cavities. JOURNAL OF MICROMECHANICS AND MICROENGINEERING[J]. 2021, 31(12): http://dx.doi.org/10.1088/1361-6439/ac333d.
[71] Xiang, Chao, Lu, Yulan, Yan, Pengcheng, Chen, Jian, Wang, Junbo, Chen, Deyong. A Resonant Pressure Microsensor with Temperature Compensation Method Based on Differential Outputs and a Temperature Sensor. MICROMACHINES[J]. 2020, 11(11): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700299/.
[72] Wang, Ke, Sun, Xiaohao, Zhang, Yi, Wei, Yuanchen, Chen, Deyong, Wu, Hengan, Song, Zijian, Long, Rong, Wang, Junbo, Chen, Jian. Microfluidic Cytometry for High-Throughput Characterization of Single Cell Cytoplasmic Viscosity Using Crossing Constriction Channels. CYTOMETRY PART A[J]. 2020, 97(6): 630-637, https://www.webofscience.com/wos/woscc/full-record/WOS:000491914400001.
[73] Zhang, Yi, Liang, Hongyan, Tan, Huiwen, Chen, Deyong, Wang, Yixiang, Xu, Ying, Wang, Junbo, Chen, Jian. Development of microfluidic platform to high-throughput quantify single-cell intrinsic bioelectrical markers of tumor cell lines, subtypes and patient tumor cells. SENSORS AND ACTUATORS B-CHEMICAL[J]. 2020, 317: http://dx.doi.org/10.1016/j.snb.2020.128231.
[74] Liu, Lixing, Yang, Hongyu, Men, Dong, Wang, Meng, Gao, Xiaolei, Zhang, Ting, Chen, Deyong, Xue, Chunlai, Wang, Yixiang, Wang, Junbo, Chen, Jian. Development of microfluidic platform capable of high-throughput absolute quantification of single-cell multiple intracellular proteins from tumor cell lines and patient tumor samples. BIOSENSORS & BIOELECTRONICS[J]. 2020, 155: http://dx.doi.org/10.1016/j.bios.2020.112097.
[75] Lixing Liu, Beiyuan Fan, Hongyu Yang, Deyong Chen, Shuang Zhang, Junbo Wang, Jian Chen. A novel microfluidic flow-cytometry for counting numbers of single-cell β-actins. 纳米技术与精密工程(英文)[J]. 2020, 3(3): 156-161, http://lib.cqvip.com/Qikan/Article/Detail?id=7103083847.
[76] Li, Yadong, Zhao, Ming, Wei, Qiuxu, Yu, Jie, Chen, Jian, Chen, Deyong, Wang, Junbo. Wireless Passive Intracranial Pressure Sensor Based on Vacuum Packaging. IEEE SENSORS JOURNAL[J]. 2020, 20(19): 11247-11255, https://www.webofscience.com/wos/woscc/full-record/WOS:000582804900023.
[77] Liu, Bowen, Wang, Junbo, Chen, Deyong, Chen, Jian, Xu, Chao, Liang, Tian, Qi, Wenjie, Zheng, Xichen, She, Xu. A MEMS-Based Electrochemical Angular Accelerometer With Integrated Plane Electrodes for Seismic Motion Monitoring. IEEE SENSORS JOURNAL[J]. 2020, 20(18): 10469-10475, https://www.webofscience.com/wos/woscc/full-record/WOS:000575389000015.
[78] Liu, Yan, Wang, Ke, Sun, Xiaohao, Chen, Deyong, Wang, Junbo, Chen, Jian. Development of microfluidic platform capable of characterizing cytoplasmic viscosity, cytoplasmic conductivity and specific membrane capacitance of single cells. MICROFLUIDICS AND NANOFLUIDICS[J]. 2020, 24(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000535134700001.
[79] 范蓓媛, 刘力行, 李秀锋, 陈德勇, 王文会, 王军波, 陈健. 一种可以实现稳定单细胞包裹的无进样器的微流控平台(英文). 中国科学院大学学报. 2020, 336-344, https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2020&filename=ZKYB202003006&v=MTYxMzBSdkZpcmdXcjNCUHliU2JMRzRITkhNckk5RllvUjhlWDFMdXhZUzdEaDFUM3FUcldNMUZyQ1VSN3FlWis=.
[80] Li, Yadong, Lu, Yulan, Xie, Bo, Chen, Jian, Wang, Junbo, Chen, Deyong. A Micromachined Resonant Differential Pressure Sensor. IEEETRANSACTIONSONELECTRONDEVICES[J]. 2020, 67(2): 640-645, https://www.webofscience.com/wos/woscc/full-record/WOS:000510723400037.
[81] Lixing Liu, Beiyuan Fan, Hongyu Yang, Deyong Chen, Shuang Zhang, Junbo Wang, Jian Chen. A novel microfluidic flow-cytometry for counting numbers of single-cell β-actins. NANOTECHNOLOGY AND PRECISION ENGINEERING[J]. 2020, 3(3): 156-161, http://dx.doi.org/10.1016/j.npe.2020.06.001.
[82] Xiao, Guihua, Song, Yilin, Zhang, Yu, Xing, Yu, Xu, Shengwei, Wang, Mixia, Wang, Junbo, Chen, Deyong, Chen, Jian, Cai, Xinxia. Dopamine and Striatal Neuron Firing Respond to Frequency-Dependent DBS Detected by Microelectrode Arrays in the Rat Model of Parkinson's Disease. BIOSENSORS-BASEL[J]. 2020, 10(10): https://www.webofscience.com/wos/woscc/full-record/WOS:000584243600001.
[83] Xu, Chao, Wang, Junbo, Chen, Deyong, Chen, Jian, Liu, Bowen, Qi, Wenjie, Zheng, Xichen. The Electrochemical Seismometer Based on Fine-Tune Sensing Electrodes for Undersea Exploration. IEEE SENSORS JOURNAL[J]. 2020, 20(15): 8194-8202, https://www.webofscience.com/wos/woscc/full-record/WOS:000545717900001.
[84] 范蓓媛, 刘力行, 李秀锋, 陈德勇, 王文会, 王军波, 陈健. 一种可以实现稳定单细胞包裹的无进样器的微流控平台. 中国科学院大学学报[J]. 2020, 37(3): 336-344, http://lib.cqvip.com/Qikan/Article/Detail?id=7102144151.
[85] Liu, Lixing, Fan, Beiyuan, Yang, Hongyu, Chen, Deyong, Wei, Hua, Zhang, Guoqing, Wang, Junbo, Chen, Jian, IEEE. A CONSTRICTION CHANNEL BASED MICROFLUIDIC FLOW CYTOMETRY ENABLING HIGH-THROUGHPUT QUANTIFICATION OF MULTIPLE TYPES OF INTRACELLULAR PROTEINS IN SINGLE CELLS. 2019 20TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS & EUROSENSORS XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). 2019, 13-16, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000539487000004.
[86] Lu, Yulan, Zhang, Sen, Yan, Pengcheng, Li, Yadong, Yu, Jie, Chen, Deyong, Wang, Junbo, Xie, Bo, Chen, Jian. Resonant Pressure Micro Sensors Based on Dual Double Ended Tuning Fork Resonators. MICROMACHINES[J]. 2019, 10(9): https://doaj.org/article/61f79710d258402985308ab0015767ed.
[87] 赵明, 魏秋旭, 陈健, 陈德勇, 王军波. 颅脑外伤早期可植入式无线颅内压监测仪的研制. 医疗卫生装备[J]. 2019, 40(5): 21-23, http://lib.cqvip.com/Qikan/Article/Detail?id=7001903731.
[88] Lu, Yulan, Xie, Bo, Li, Yadong, Chen, Deyong, Wang, Junbo, Chen, Jian, Wei, Hua, Zhang, Guoqing, IEEE. A RESONANT PRESSURE MICRO SENSOR BASED ON SUSPENDED ASSEMBLY. 2019 20TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS & EUROSENSORS XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). 2019, 1736-1739, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000539487000439.
[89] Zheng, Xichen, Chen, Deyong, Wang, Junbo, Chen, Jian, Xu, Chao, Qi, Wenjie, Liu, Bowen. Microelectromechanical System-Based Electrochemical Seismometers with Two Pairs of Electrodes Integrated on One Chip. SENSORS[J]. 2019, 19(18): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000489187800138.
[90] Shi, Xiaoqing, Zhang, Sen, Chen, Deyong, Wang, Junbo, Chen, Jian, Xie, Bo, Lu, Yulan, Li, Yadong. A Resonant Pressure Sensor Based upon Electrostatically Comb Driven and Piezoresistively Sensed Lateral Resonators. MICROMACHINES[J]. 2019, 10(7): https://doaj.org/article/506c822f314a44d69b4fe34ac32a53dd.
[91] Zhang, Yi, Zhao, Yang, Chen, Deyong, Wang, Ke, Wei, Yuanchen, Xu, Ying, Wei, Hua, Zhang, Guoqing, Huang, Chengjun, Wang, Junbo, Chen, Jian, IEEE. DEVELOPMENT OF A CROSSING CONSTRICTION CHANNEL BASED MICROFLUIDIC CYTOMETRY ENABLING THE HIGH-THROUGHPUT QUANTIFICATION OF SINGLE-CELL ELECTRICAL PHENOTYPES. 2019 20TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS & EUROSENSORS XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). 2019, 1009-1012, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000539487000255.
[92] Qiuxu Wei, Yadong Li, Jie Yu, Jian Chen, Deyong Chen, Junbo Wang. Optimization of LC sensor enabling wireless passive intracranial pressure monitoring. MICROSYSTEM TECHNOLOGIES,. 2019, 25(9): 
[93] Liang, Hongyan, Zhang, Yi, Chen, Deyong, Tan, Huiwen, Zheng, Yu, Wang, Junbo, Chen, Jian. Characterization of Single-Nucleus Electrical Properties by Microfluidic Constriction Channel. MICROMACHINES[J]. 2019, 10(11): https://doaj.org/article/3fa074c4c8fc43ac98423b84088487c7.
[94] Wei, Qiuxu, Li, Yadong, Yu, Jie, Chen, Jian, Chen, Deyong, Wang, Junbo. Optimization of LC sensor enabling wireless passive intracranial pressure monitoring. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS[J]. 2019, 25(9): 3437-3446, https://www.webofscience.com/wos/woscc/full-record/WOS:000478778400018.
[95] Zhang, Yi, Zhao, Yang, Chen, Deyong, Wang, Ke, Wei, Yuanchen, Xu, Ying, Huang, Chengjun, Wang, Junbo, Chen, Jian. Crossing constriction channel-based microfluidic cytometry capable of electrically phenotyping large populations of single cells. ANALYST[J]. 2019, 144(3): 1008-1015, 
[96] Xu, Chao, Wang, Junbo, Chen, Deyong, Chen, Jian, Liu, Bowen, Qi, Wenjie, Zheng, Xichen, Wei, Hua, Zhang, Guoqing, IEEE. THE ELECTROCHEMICAL SEISMOMETER BASED ON A NOVEL DESIGNED SENSING ELECTRODE FOR UNDERSEA EXPLORATION. 2019 20TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS & EUROSENSORS XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). 2019, 2053-2056, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000539487000519.
[97] Liu, Bowen, Wang, Junbo, Chen, Deyong, Chen, Jian, Xu, Chao, Qi, Wenjie, Zheng, Xichen, Wei, Hua, Zhang, Guoqing, IEEE. AN ELECTROCHEMICAL MICROSEISMOMETER BASED ON A NEW ELECTROLYTE SYSTEM TO IMPROVE THE LOW-FREQUENCY PERFORMANCES. 2019 20TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS & EUROSENSORS XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). 2019, 519-522, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000539487000131.
[98] Yan, Pengcheng, Lu, Yulan, Xiang, Chao, Wang, Junbo, Chen, Deyong, Chen, Jian. A Temperature-Insensitive Resonant Pressure Micro Sensor Based on Silicon-on-Glass Vacuum Packaging. SENSORS[J]. 2019, 19(18): https://doaj.org/article/9060749507644530b4b71e949a360caa.
[99] Lu, Yulan, Xie, Bo, Wei, Qiuxu, Li, Yadong, Shi, Xiaoqing, Xiang, Chao, Chen, Deyong, Wang, Junbo, Chen, Jian. A Resonant Pressure Microsensor With a Stress Isolation Layer. IEEE SENSORS JOURNAL[J]. 2019, 19(18): 7875-7883, https://www.webofscience.com/wos/woscc/full-record/WOS:000481964500012.
[100] Wang, K, Sun, X H, Zhang, Y, Zhan, T, Zheng, Y, Wei, Y C, Zhao, P, Chen, D Y, Wu, H A, Wang, W H, Long, R, Wang, J B, Chen, J. Characterization of cytoplasmic viscosity of hundreds of single tumour cells based on micropipette aspiration. ROYAL SOCIETY OPEN SCIENCE[J]. 2019, 6(3): https://doaj.org/article/4ebf8e43684b4884a3b0feccf8079410.
[101] Lu, Yulan, Yan, Pengcheng, Xiang, Chao, Chen, Deyong, Wang, Junbo, Xie, Bo, Chen, Jian. A Resonant Pressure Microsensor with the Measurement Range of 1 MPa Based on Sensitivities Balanced Dual Resonators. SENSORS[J]. 2019, 19(10): https://doaj.org/article/2031f223f59346ef9683d6773702dc39.
[102] Liu, Lixing, Fan, Beiyuan, Wang, Diancan, Li, Xiufeng, Song, Yeqing, Zhang, Ting, Chen, Deyong, Wang, Yixiang, Wang, Junbo, Chen, Jian. Microfluidic Analyzer Enabling Quantitative Measurements of Specific Intracellular Proteins at the Single-Cell Level. MICROMACHINES[J]. 2018, 9(11): https://doaj.org/article/a203c7c3425f41b4aaf43675c04a46a9.
[103] Chang, ChunChieh, Wang, Ke, Zhang, Yi, Chen, Deyong, Fan, Beiyuan, Hsieh, ChiaHsun, Wang, Junbo, Wu, MinHsien, Chen, Jian. Mechanical property characterization of hundreds of single nuclei based on microfluidic constriction channel. CYTOMETRY PART A[J]. 2018, 93A(8): 822-828, 
[104] Chen, Lianhong, Sun, Zhenyuan, Li, Guanglei, Chen, Deyong, Wang, Junbo, Chen, Jian. A Monolithic Electrochemical Micro Seismic Sensor Capable of Monitoring Three-Dimensional Vibrations. SENSORS[J]. 2018, 18(4): https://doaj.org/article/4ef8ae586512457e9b25c352542cae02.
[105] Li, Xiufeng, Fan, Beiyuan, Liu, Lixing, Chen, Deyong, Cao, Shanshan, Men, Dong, Wang, Junbo, Chen, Jian. A Microfluidic Fluorescent Flow Cytometry Capable of Quantifying Cell Sizes and Numbers of Specific Cytosolic Proteins. SCIENTIFIC REPORTS[J]. 2018, 8(1): http://202.127.146.157/handle/2RYDP1HH/5715.
[106] Fan, Beiyuan, Li, Xiufeng, Liu, Lixing, Chen, Deyong, Cao, Shanshan, Men, Dong, Wang, Junbo, Chen, Jian. Absolute Copy Numbers of -Actin Proteins Collected from 10,000 Single Cells. MICROMACHINES[J]. 2018, 9(5): http://www.corc.org.cn/handle/1471x/2373259.
[107] Shi, Xiaoqing, Lu, Yulan, Xie, Bo, Li, Yadong, Wang, Junbo, Chen, Deyong, Chen, Jian. A Resonant Pressure Microsensor Based on Double-Ended Tuning Fork and Electrostatic Excitation/Piezoresistive Detection. SENSORS[J]. 2018, 18(8): https://doaj.org/article/1b0cd921f838424f9c797c25030e9ca6.
[108] Li, Guanglei, Sun, Zhenyuan, Wang, Junbo, Chen, Deyong, Chen, Jian, Chen, Lianhong, Xu, Chao, Qi, Wenjie, Zheng, Yu. A Flexible Sensing Unit Manufacturing Method of Electrochemical Seismic Sensor. SENSORS[J]. 2018, 18(4): https://doaj.org/article/500b5db136b64fca99e4dd021b4eb8f1.
[109] Yang Zhao, Ke Wang, Deyong Chen, Beiyuan Fan, Ying Xu, Yifei Ye, Junbo Wang, Jian Chen, Chengjun Huang. Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells. BIOSENSORS AND BIOELECTRONICS[J]. 2018, 111: 138-143, http://dx.doi.org/10.1016/j.bios.2018.04.015.
[110] Wei, Qiuxu, He, Chaochao, Chen, Jian, Chen, Deyong, Wang, Junbo. Wireless Passive Intracranial Pressure Sensor Based on a Microfabricated Flexible Capacitor. IEEE TRANSACTIONS ON ELECTRON DEVICES[J]. 2018, 65(6): 2592-2600, 
[111] Zhao, Yang, Wang, Ke, Chen, Deyong, Fan, Beiyuan, Xu, Ying, Ye, Yifei, Wang, Junbo, Chen, Jian, Huang, Chengjun. Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells. BIOSENSORS & BIOELECTRONICS[J]. 2018, 111: 138-143, http://dx.doi.org/10.1016/j.bios.2018.04.015.
[112] Li, Guanglei, Wang, Junbo, Chen, Deyong, Chen, Jian, Chen, Lianhong, Xu, Chao. An Electrochemical, Low-Frequency Seismic Micro-Sensor Based on MEMS with a Force-Balanced Feedback System. SENSORS[J]. 2017, 17(9): https://doaj.org/article/7a197bac8210471a8197da45cefc0c96.
[113] Li, Xiufeng, Fan, Beiyuan, Cao, Shanshan, Chen, Deyong, Zhao, Xiaoting, Men, Dong, Yue, Wentao, Wang, Junbo, Chen, Jian. A microfluidic flow cytometer enabling absolute quantification of single-cell intracellular proteins. LAB ON A CHIP[J]. 2017, 17(18): 3129-3137, http://www.corc.org.cn/handle/1471x/2373380.
[114] Wang, Ke, Zhao, Yang, Chen, Deyong, Huang, Chengjun, Fan, Beiyuan, Long, Rong, Hsieh, ChiaHsun, Wang, Junbo, Wu, MinHsien, Chen, Jian. The Instrumentation of a Microfluidic Analyzer Enabling the Characterization of the Specific Membrane Capacitance, Cytoplasm Conductivity, and Instantaneous Young's Modulus of Single Cells. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES[J]. 2017, 18(6): https://doaj.org/article/a7def5296ed8426695b6c2abc6c584a3.
[115] 王军波. Microelectromechanical systems based electrochemical seismic sensors with ananode and a cathode integrated on one chip. Journal of Micromechanics and Microengineering. 2017, 
[116] Luan, Shaoliang, Hao, Rui, Wei, Yuanchen, Chen, Deyong, Fan, Beiyuan, Dong, Fengliang, Guo, Wei, Wang, Junbo, Chen, Jian. A microfabricated 96-well wound-healing assay. CYTOMETRY PART A[J]. 2017, 91A(12): 1192-1199, https://www.webofscience.com/wos/woscc/full-record/WOS:000418422200008.
[117] Sun, Zhenyuan, Li, Guanglei, Chen, Lianhong, Chen, Deyong, Wang, Junbo, Chen, Jian. A High-Consistency Broadband MEMS-Based Electrochemical Seismometer With Integrated Planar Microelectrodes. IEEE TRANSACTIONS ON ELECTRON DEVICES[J]. 2017, 64(9): 3829-3835, 
[118] 王艳双, 鲍凯凯, 陈建, 贾鑫, 陈德勇, 王军波. 基于LC压力传感器的无线血压测量系统. 传感器与微系统[J]. 2017, 36(2): 117-120, http://lib.cqvip.com/Qikan/Article/Detail?id=67718174504849554850485153.
[119] 王军波. The Instrumentation of a Microfluidic Analyzer Enabling the Characterization of the Specific Membrane Capacitance, Cytoplasm Conductivity, and Instantaneous Young’s Modulus of Single Cells. International Journal of Molecular Sciences. 2017, 
[120] Wang, Ke, Chang, ChunChieh, Chiu, TzuKeng, Zhao, Xiaoting, Chen, Deyong, Chou, WenPin, Zhao, Yang, Wang, HungMing, Wang, Junbo, Wu, MinHsien, Chen, Jian. Membrane capacitance of thousands of single white blood cells. JOURNAL OF THE ROYAL SOCIETY INTERFACE[J]. 2017, 14(137): https://www.webofscience.com/wos/woscc/full-record/WOS:000418696300012.
[121] Hao, Rui, Wei, Yuanchen, Li, Chaobo, Chen, Feng, Chen, Deyong, Zhao, Xiaoting, Luan, Shaoliang, Fan, Beiyuan, Guo, Wei, Wang, Junbo, Chen, Jian. A Microfabricated 96-Well 3D Assay Enabling High-Throughput Quantification of Cellular Invasion Capabilities. SCIENTIFIC REPORTS[J]. 2017, 7: https://www.webofscience.com/wos/woscc/full-record/WOS:000394771200001.
[122] Wang, Ke, Zhao, Yang, Chen, Deyong, Fan, Beiyuan, Lu, Yulan, Chen, Lianhong, Long, Rong, Wang, Junbo, Chen, Jian. Specific membrane capacitance, cytoplasm conductivity and instantaneous Young's modulus of single tumour cells. SCIENTIFIC DATA[J]. 2017, 4: https://www.webofscience.com/wos/woscc/full-record/WOS:000393856100001.
[123] Jian Chen, Chao Xu, Zhenyuan Sun, Junbo Wang, Guanglei Li, Tao Deng, Deyong Chen. A mems based electrochemical seismometer with low cost and wide working bandwidth. PROCEDIA ENGINEERING[J]. 2016, Vol.168: 806-809, http://www.corc.org.cn/handle/1471x/2158248.
[124] Zhao, Yang, Liu, Qingxi, Sun, He, Chen, Deyong, Li, Zhaohui, Fan, Beiyuan, George, Julian, Xue, Chengcheng, Cui, Zhanfeng, Wang, Junbo, Chen, Jian. Electrical Property Characterization of Neural Stem Cells in Differentiation. PLOS ONE[J]. 2016, 11(6): https://doaj.org/article/ed6a349d232d4ddea0a54cad98207ec0.
[125] Fan, Beiyuan, Li, Xiufeng, Chen, Deyong, Peng, Hongshang, Wang, Junbo, Chen, Jian. Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization. SENSORS[J]. 2016, 16(2): https://doaj.org/article/36ce5e424a30437ab349ed4ec91934a0.
[126] Wen, Na, Zhao, Zhan, Fan, Beiyuan, Chen, Deyong, Men, Dong, Wang, Junbo, Chen, Jian. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis. MOLECULES[J]. 2016, 21(7): https://doaj.org/article/e37289f823b74ad787156e20b9c1102d.
[127] Zhao, Yang, Jiang, Mei, Chen, Deyong, Zhao, Xiaoting, Xue, Chengcheng, Hao, Rui, Yue, Wentao, Wang, Junbo, Chen, Jian. Single-Cell Electrical Phenotyping Enabling the Classification of Mouse Tumor Samples. SCIENTIFIC REPORTS[J]. 2016, 6: https://www.webofscience.com/wos/woscc/full-record/WOS:000368165300001.
[128] 陈德勇. Microelectromechanical systems based electrochemical seismic sensors with an anode and a cathode integrated on one chip. Journal of Micromechanics and Microengineering. 2016, 
[129] Zhu Lin, Xie Bo, Xing Yonghao, Chen Deyong, Wang Junbo, Wang Yanshuang, Wei Qiuxu, Chen Jian. A Resonant Pressure Sensor Capable of Temperature Compensation with Least Squares Support Vector Machine. PROCEDIA ENGINEERING[J]. 2016, 
[130] Deng, Tao, Chen, Deyong, Chen, Jian, Sun, Zhenyuan, Li, Guanglei, Wang, Junbo. Microelectromechanical Systems-Based Electrochemical Seismic Sensors With Insulating Spacers Integrated Electrodes for Planetary Exploration. IEEE SENSORS JOURNAL[J]. 2016, 16(3): 650-653, 
[131] 王军波. Non-invasive wireless and passive MEMS intraocular pressure sensor based on flexible substrate,. Applied Mechanics & Materials. 2015, 
[132] Wei, Chao, Fan, Beiyuan, Chen, Deyong, Liu, Chao, Wei, Yuanchen, Huo, Bo, You, Lidan, Wang, Junbo, Chen, Jian. Osteocyte culture in microfluidic devices. BIOMICROFLUIDICS[J]. 2015, 9(1): 
[133] Chen, Jian, Xue, Chengcheng, Zhao, Yang, Chen, Deyong, Wu, MinHsien, Wang, Junbo. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES[J]. 2015, 16(5): 9804-9830, https://doaj.org/article/6da380f1ade54206b018c23680a02dae.
[134] 陈德勇. 平面电极型MEMS电化学地震传感器. 光学精密工程. 2015, 
[135] Wei, Yuanchen, Chen, Feng, Zhang, Tao, Chen, Deyong, Jia, Xin, Wang, Junbo, Guo, Wei, Chen, Jian. A Tubing-Free Microfluidic Wound Healing Assay Enabling the Quantification of Vascular Smooth Muscle Cell Migration. SCIENTIFIC REPORTS[J]. 2015, 5: https://www.webofscience.com/wos/woscc/full-record/WOS:000361149300001.
[136] 陈德勇. MEMS宽带电化学地震检波器. 光学精密工程. 2015, 
[137] Zhao, Yang, Chen, Deyong, Luo, Yana, Chen, Feng, Zhao, Xiaoting, Jiang, Mei, Yue, Wentao, Long, Rong, Wang, Junbo, Chen, Jian. Simultaneous Characterization of Instantaneous Young's Modulus and Specific Membrane Capacitance of Single Cells Using a Microfluidic System. SENSORS[J]. 2015, 15(2): 2763-2773, https://doaj.org/article/0daae0c880c94f5daf1669e7d2033da6.
[138] Xie, Bo, Xing, Yonghao, Wang, Yanshuang, Chen, Jian, Chen, Deyong, Wang, Junbo. A Lateral Differential Resonant Pressure Microsensor Based on SOI-Glass Wafer-Level Vacuum Packaging. SENSORS[J]. 2015, 15(9): 24257-24268, https://doaj.org/article/9e90c8568c6e4cd2a89bd2d3f996d966.
[139] Li, Yinan, Wang, Junbo, Luo, Zhenyu, Chen, Deyong, Chen, Jian. A Resonant Pressure Microsensor Capable of Self-Temperature Compensation. SENSORS[J]. 2015, 15(5): 10048-10058, https://doaj.org/article/867887b7b024416284658cde8417c1f2.
[140] Xie Bo, Xing Yonghao, Wang Yanshuang, Chen Deyong, Wang Junbo, Urban G, Wollenstein J, Kieninger J. Vacuum-packaged Resonant Pressure Sensor with Dual Resonators for High Sensitivity and Linearity. EUROSENSORS 2015. 2015, 120: 194-199, 
[141] Deng, Tao, Chen, Deyong, Wang, Junbo, Chen, Jian, He, Wentao. A MEMS Based Electrochemical Vibration Sensor for Seismic Motion Monitoring. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS[J]. 2014, 23(1): 92-99, 
[142] Qiang Shi, Junbo Wang, Deyong Chen, Yanlong Shang. A Flush-mounted Resonant Ice detection sensor with High Sensitivity. Micro-nano technology XIII :. 2014, 81-86, http://dx.doi.org/10.4028/www.scientific.net/KEM.503.81.
[143] Deyong Chen, Wentao He, Junbo Wang, Guangbei Li. Micro-machined Electrochemical Seismic Sensors with Interdigital Electrodes. Micro-nano technology XIII :. 2014, 61-66, http://dx.doi.org/10.4028/www.scientific.net/KEM.503.61.
[144] 陈德勇, 曹明威, 王军波, 焦海龙, 张健. 谐振式MEMS压力传感器的制作及圆片级真空封装. 光学精密工程[J]. 2014, 22(5): 1235-1242, http://lib.cqvip.com/Qikan/Article/Detail?id=49718395.
[145] Bao Kaikai, Chen Deyong, Shi Qiang, Liu Lijuan, Chen Jian, Li Jing, Wang Junbo. A readout circuit for wireless passive LC sensors and its application for gastrointestinal monitoring. MEASUREMENT SCIENCE & TECHNOLOGY[J]. 2014, 25(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000339273800023.
[146] Luo, Zhenyu, Chen, Deyong, Wang, Junbo, Li, Yinan, Chen, Jian. A High-Q Resonant Pressure Microsensor with Through-Glass Electrical Interconnections Based on Wafer-Level MEMS Vacuum Packaging. SENSORS[J]. 2014, 14(12): 24244-24257, https://doaj.org/article/f92fa88f71d149929034d22256b3b043.
[147] Zhao, Yang, Chen, Deyong, Luo, Yana, Li, Hao, Deng, Bin, Huang, SongBin, Chiu, TzuKeng, Wu, MinHsien, Long, Rong, Hu, Hao, Zhao, Xiaoting, Yue, Wentao, Wang, Junbo, Chen, Jian. A microfluidic system for cell type classification based on cellular size-independent electrical properties. LAB ON A CHIP[J]. 2013, 13(12): 2272-2277, https://www.webofscience.com/wos/woscc/full-record/WOS:000319285500007.
[148] 张健, 王军波, 曹明威, 陈德勇. 一种谐振式MEMS压力传感器单芯片级真空封装和低应力组装方法. 纳米技术与精密工程[J]. 2013, 11(6): 492, http://159.226.65.12/handle/80137/10061.
[149] Jiao, Hailong, Xie, Bo, Wang, Junbo, Chen, Deyong, Chen, Jian. Electrostatically driven and capacitively detected differential lateral resonant pressure microsensor. MICRO & NANO LETTERS[J]. 2013, 8(10): 650-653, http://159.226.65.12/handle/80137/10078.
[150] 陈德勇. 基于SOI-MEMS技术的静电驱动-电容检测硅谐振器(英文). 纳米技术与精密工程. 2013, 
[151] Li, Yuxin, Chen, Deyong, Wang, Junbo, Chen, Jian. A New Stress Isolation Method in the Packaging of Resonant Pressure Micro Sensors. SENSOR LETTERS[J]. 2013, 11(2): 264-269, http://159.226.65.12/handle/80137/10076.
[152] Deyong Chen, Guangbei Li, Junbo Wang, Jian Chen, Wentao He, Yunjie Fan, Tao Deng, Peng Wang. A micro electrochemical seismic sensor based on MEMS technologies. SENSORS & ACTUATORS: A. PHYSICAL. 2013, 85-89, http://dx.doi.org/10.1016/j.sna.2012.12.041.
[153] Zhao, Yang, Chen, Deyong, Li, Hao, Luo, Yana, Deng, Bin, Huang, SongBin, Chiu, TzuKeng, Wu, MinHsien, Long, Rong, Hu, Hao, Wang, Junbo, Chen, Jian. A microfluidic system enabling continuous characterization of specific membrane capacitance and cytoplasm conductivity of single cells in suspension. BIOSENSORS & BIOELECTRONICS[J]. 2013, 43: 304-307, http://dx.doi.org/10.1016/j.bios.2012.12.035.
[154] Yan Long Shang, Jun Bo Wang, De Yong Chen, Qiang Shi, Guang Bei Li. Closed-Loop Control of a SOI-MEMS Resonant Accelerometer with Electromagnetic Excitation. KEY ENGINEERING MATERIALS. 2012, 1663: 
[155] Wen Tao He, De Yong Chen, Guang Bei Li, Jun Bo Wang. Low Frequency Electrochemical Accelerometer with Low Noise Based on MEMS. KEY ENGINEERING MATERIALS. 2012, 1663: 
[156] Yu Xin Li, De Yong Chen, Jun Bo Wang. Low Temperature Wafer Level Adhesive Bonding Using BCB for Resonant Pressure Sensor. KEY ENGINEERING MATERIALS. 2012, 1663: 
[157] Shang, Yanlong, Wang, Junbo, Tu, Sheng, Liu, Lei, Chen, Deyong. Z-axis differential silicon-on-insulator resonant accelerometer with high sensitivity. MICRO & NANO LETTERS[J]. 2011, 6(7): 519-522, http://ir.sim.ac.cn/handle/331004/109051.
[158] 陈德勇. Vacuum Adhesive Bonding and Stress Isolation for MEMS Resonant Pressure Sensor Package. Materials Science Forum. 2011, 
[159] Li, H, Wang, J, Li, X, Chen, D. Viscosity-density sensor with resonant torsional paddle for direct detection in liquid. IET NANOBIOTECHNOLOGY[J]. 2011, 5(4): 121-125, https://www.webofscience.com/wos/woscc/full-record/WOS:000298136700004.
[160] Yuxin Li, Deyong Chen, Junbo Wang. Stress Isolation Used In MEMS Resonant Pressure Sensor Package. PROCEDIA ENGINEERING. 2011, http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=1&recid=&FileName=SJES6F7022B29C150F39E4AABFBC79E3E97E&DbName=SJES_02&DbCode=SJES&yx=&pr=&URLID=&bsm=.
[161] 李翔, 陈德勇, 王军波. 用于液相检测的谐振式电磁扭摆. 仪表技术与传感器[J]. 2011, 1-3, http://lib.cqvip.com/Qikan/Article/Detail?id=37104610.
[162] 陈德勇. 基于自停止腐蚀技术的斎型谐振式微机械压力传感器. 光学精密工程. 2011, 
[163] 张明, 陈德勇, 王军波. 单晶硅振动环陀螺仪的制作. 光学精密工程[J]. 2010, 18(11): 2454-2460, http://lib.cqvip.com/Qikan/Article/Detail?id=36003607.
[164] 陈李, 陈德勇, 王军波. 高性能电磁式微机械振动环陀螺. 光学精密工程[J]. 2009, 17(8): 1915-1921, http://lib.cqvip.com/Qikan/Article/Detail?id=31383663.
[165] Chen, Deyong, Wu, Zhengwei, Liu, Lei, Shi, Xiaojing, Wang, Junbo. An Electromagnetically Excited Silicon Nitride Beam Resonant Accelerometer. SENSORS[J]. 2009, 9(3): 1330-1338, http://ir.sim.ac.cn/handle/331004/108766.
[166] 陈李, 陈德勇, 王军波. 一种电磁式微机械振动环陀螺的建模与优化. 纳米技术与精密工程[J]. 2009, 7(3): 233-238, http://lib.cqvip.com/Qikan/Article/Detail?id=30820693.
[167] 陈李, 陈德勇, 王军波. 微机械振动环陀螺. 光学精密工程[J]. 2009, 17(6): 1344-1349, http://lib.cqvip.com/Qikan/Article/Detail?id=30852650.

研究生培养

已指导三十多名研究生毕业,目前指导在读研究生10名,其中博士研究生7名。指导的博士生赵阳获得2017年度中科院优秀博士学位论文奖,此外还有多名研究生获得院长奖学金、国家奖学金以及顶秀奖学金等奖励。