基本信息

时东霞 女 汉族 博导 物理研究所
电子邮件:dxshi@aphy.iphy.ac.cn
联系电话:010-82649421
通信地址:北京市海淀区中关村南三街8号
邮政编码:100190
电子邮件:dxshi@aphy.iphy.ac.cn
联系电话:010-82649421
通信地址:北京市海淀区中关村南三街8号
邮政编码:100190
研究领域
主要从事纳米体系的可控生长、结构特性及其在纳米器件应用中的研究。在合成的一系列有机功能薄膜上得到了稳定、重复的纳米信息存储,入选“2001年中国基础科学研究十大新闻”。对有机功能纳米体系的组装、相互作用机制和生长特性进行了系统研究,在纳米结构的可控生长方面取得了突破性进展,入选“中国科学院2006年十大重大创新成果”。和合作者在钌单晶基底上得到了厘米级、连续和高度有序的单层石墨烯,为石墨烯的深入研究及在器件方面的应用提供了基础。采用光吸收谱和STM结合,研究了单壁碳纳米管的单分子激光吸收,加强了对分子的光电特性及表面能量传输特性的认识。
究方向包括:
1、低维纳米体系的可控制备与表征;
2、纳米器件的构造及相关物理问题。
究方向包括:
1、低维纳米体系的可控制备与表征;
2、纳米器件的构造及相关物理问题。
招生信息
招生专业
070205-凝聚态物理
招生方向
低维纳米体系、纳米器件与物理。
教育背景
学位
1991年,武汉工业大学,学士;
1994年,武汉工业大学,硕士;
2002年,东北大学,博士。
1994年,武汉工业大学,硕士;
2002年,东北大学,博士。
出国学习工作
2002年,德国明斯特大学物理所,访问学者;
2003-2004年,美国伊利诺依大学(UIUC) Beckman 研究所,博士后。
2003-2004年,美国伊利诺依大学(UIUC) Beckman 研究所,博士后。
工作经历
工作简历
1995.7-2001.7 中科院物理研究所纳米物理与器件实验室(中科院北京真空物理实验室),助理研究员;
2001.8-2008.6 中科院物理研究所纳米物理与器件实验室,副研究员;
2008.7- 中科院物理研究所纳米物理与器件实验室,研究员。
专利与奖励
奖励信息
2008年度国家自然科学二等奖“原子分子操纵、组装及其特性的STM研究”
出版信息
发表论文
[1] Liao, Mengzhou, Nicolini, Paolo, Du, Luojun, Yuan, Jiahao, Wang, Shuopei, Yu, Hua, Tang, Jian, Cheng, Peng, Watanabe, Kenji, Taniguchi, Takashi, Gu, Lin, Claerbout, Victor E P, Silva, Andrea, Kramer, Denis, Polcar, Tomas, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures. NATURE MATERIALS[J]. 2022, 21(1): 47-+, http://dx.doi.org/10.1038/s41563-021-01058-4.[2] 赵岩翀, 薄涛, 杜罗军, 田金朋, 李晓梅, Kenji, Watanabe, Takashi, Taniguchi, 杨蓉, 时东霞, 孟胜, 杨威, 张广宇. Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure*. CHINESE PHYSICS B[J]. 2021, 30(5): 170-175, https://www.webofscience.com/wos/woscc/full-record/WOS:000647653900001.[3] Shen, Cheng, Ying, Jianghua, Liu, Le, Liu, Jianpeng, Li, Na, Wang, Shuopei, Tang, Jian, Zhao, Yanchong, Chu, Yanbang, Watanabe, Kenji, Taniguchi, Takashi, Yang, Rong, Shi, Dongxia, Qu, Fanming, Lu, Li, Yang, Wei, Zhang, Guangyu. Emergence of Chern insulating states in non-Magic angle twisted bilayer graphene. 2021, http://arxiv.org/abs/2010.03999.[4] Wei, Zheng, Tang, Jian, Li, Xuanyi, Chi, Zhen, Wang, Yu, Wang, Qinqin, Han, Bo, Li, Na, Huang, Biying, Li, Jiawei, Yu, Hua, Yuan, Jiahao, Chen, Hailong, Sun, Jiatao, Chen, Lan, Wu, Kehui, Gao, Peng, He, Congli, Yang, Wei, Shi, Dongxia, Yang, Rong, Zhang, Guangyu. Wafer-Scale Oxygen-Doped MoS2 Monolayer. SMALL METHODS[J]. 2021, 5(6): http://dx.doi.org/10.1002/smtd.202100091.[5] Li, Na, Wang, Qinqin, Shen, Cheng, Wei, Zheng, Yu, Hua, Zhao, Jing, Lu, Xiaobo, Wang, Guole, He, Congli, Xie, Li, Zhu, Jianqi, Du, Luojun, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. NATURE ELECTRONICS[J]. 2020, 3(11): 711-717, [6] Shen, Cheng, Chu, Yanbang, Wu, QuanSheng, Li, Na, Wang, Shuopei, Zhao, Yanchong, Tang, Jian, Liu, Jieying, Tian, Jinpeng, Watanabe, Kenji, Taniguchi, Takashi, Yang, Rong, Meng, Zi Yang, Shi, Dongxia, Yazyev, Oleg, V, Zhang, Guangyu. Correlated states in twisted double bilayer graphene. NATURE PHYSICS[J]. 2020, 16(5): 520-+, [7] Wang, Qinqin, Li, Na, Tang, Jian, Zhu, Jianqi, Zhang, Qinghua, Jia, Qi, Lu, Ying, Wei, Zheng, Yu, Hua, Zhao, Yanchong, Guo, Yutuo, Gu, Lin, Sun, Gang, Yang, Wei, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Wafer-Scale Highly Oriented Monolayer MoS2 with Large Domain Sizes. NANO LETTERS[J]. 2020, 20(10): 7193-7199, https://www.webofscience.com/wos/woscc/full-record/WOS:000598727300034.[8] Meng, JianLing, Wei, Zheng, Tang, Jian, Zhao, Yanchong, Wang, Qinqin, Tian, Jinpeng, Yang, Rong, Zhang, Guangyu, Shi, Dongxia. Employing defected monolayer MoS2 as charge storage materials. NANOTECHNOLOGY[J]. 2020, 31(23): https://www.webofscience.com/wos/woscc/full-record/WOS:000521955900001.[9] Li, Na, Wei, Zheng, Zhao, Jing, Wang, Qinqin, Shen, Cheng, Wang, Shuopei, Tang, Jian, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Atomic Layer Deposition of Al2O3 Directly on 2D Materials for High-Performance Electronics. ADVANCED MATERIALS INTERFACES[J]. 2019, 6(10): http://dx.doi.org/10.1002/admi.201802055.[10] Du, Luojun, Zhao, Yanchong, Jia, Zhiyan, Liao, Mengzhou, Wang, Qinqin, Guo, Xiangdong, Shi, Zhiwen, Yang, Rong, Watanabe, Kenji, Taniguchi, Takashi, Xiang, Jianyong, Shi, Dongxia, Dai, Qing, Sun, Zhipei, Zhang, Guangyu. Strong and tunable interlayer coupling of infrared-active phonons to excitons in van der Waals heterostructures. PHYSICAL REVIEW B[J]. 2019, 99(20): https://www.webofscience.com/wos/woscc/full-record/WOS:000467726400007.[11] Du, Luojun, Tang, Jian, Liang, Jing, Liao, Mengzhou, Jia, Zhiyan, Zhang, Qinghua, Zhao, Yanchong, Yang, Rong, Shi, Dongxia, Gu, Lin, Xiang, Jianyong, Liu, Kaihui, Sun, Zhipei, Zhang, Guangyu. Giant Valley Coherence at Room Temperature in 3R WS2 with Broken Inversion Symmetry. RESEARCH[J]. 2019, 2019: http://dx.doi.org/10.34133/2019/6494565.[12] Wang, Shuopei, He, Congli, Tang, Jian, Lu, Xiaobo, Shen, Cheng, Yu, Hua, Du, Luojun, Li, Jiafang, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. New Floating Gate Memory with Excellent Retention Characteristics. ADVANCED ELECTRONIC MATERIALS[J]. 2019, 5(4): [13] Du, Luojun, Zhang, Qian, Zhang, Tingting, Jia, Zhiyan, Liang, Jing, Liu, GuiBin, Yang, Rong, Shi, Dongxia, Xiang, Jianyong, Liu, Kaihui, Sun, Zhipei, Yao, Yugui, Zhang, Qingming, Zhang, Guangyu. Robust circular polarization of indirect Q-K transitions in bilayer 3R-WS2. PHYSICAL REVIEW B[J]. 2019, 100(16): http://dx.doi.org/10.1103/PhysRevB.100.161404.[14] Du Luojun, Tang Jian, Zhao Yanchong, Li Xiaomei, Yang Rong, Hu Xuerong, Bai Xueyin, Wang Xiao, Watanabe Kenji, Taniguchi Takashi, Shi Dongxia, Yu Guoqiang, Bai Xuedong, Hasan Tawfique, Zhang Guangyu, Sun Zhipei. Lattice dynamics, phonon chirality and spin-phonon coupling in 2D itinerant ferromagnet Fe3GeTe2. 2019, http://arxiv.org/abs/1909.01598.[15] Du, Luojun, Liao, Mengzhou, Liu, GuiBin, Wang, Qinqin, Yang, Rong, Shi, Dongxia, Yao, Yugui, Zhang, Guangyu. Strongly distinct electrical response between circular and valley polarization in bilayer transition metal dichalcogenides. PHYSICAL REVIEW B[J]. 2019, 99(19): https://www.webofscience.com/wos/woscc/full-record/WOS:000467725700005.[16] Jianqi Zhu, ZhiChang Wang, Huijia Dai, Qinqin Wang, Rong Yang, Hua Yu, Mengzhou Liao, Jing Zhang, Wei Chen, Zheng Wei, Na Li, Luojun Du, Dongxia Shi, Wenlong Wang, Lixin Zhang, Ying Jiang, Guangyu Zhang. Boundary activated hydrogen evolution reaction on monolayer MoS2. NATURE COMMUNICATIONS[J]. 2019, 10(1): https://doaj.org/article/5d5ef3f662014c9492ad24ca8bcb8d9f.[17] Wang, Shuopei, He, Congli, Tang, Jian, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor. CHINESE PHYSICS B[J]. 2019, 28(1): http://lib.cqvip.com/Qikan/Article/Detail?id=90718776504849574849484952.[18] Liao, Mengzhou, Du, Luojun, Zhang, Tingting, Gu, Lin, Yao, Yugui, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Pressure-mediated contact quality improvement between monolayer MoS2 and graphite. CHINESE PHYSICS B[J]. 2019, 28(1): http://lib.cqvip.com/Qikan/Article/Detail?id=90718776504849574849484951.[19] Chen, Peng, Cheng, Cai, Shen, Cheng, Zhang, Jing, Wu, Shuang, Lu, Xiaobo, Wang, Shuopei, Du, Luojun, Watanabe, Kenji, Taniguchi, Takashi, Sun, Jiatao, Yang, Rong, Shi, Dongxia, Liu, Kaihui, Meng, Sheng, Zhang, Guangyu. Band evolution of two-dimensional transition metal dichalcogenides under electric fields. APPLIED PHYSICS LETTERS[J]. 2019, 115(8): [20] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报[J]. 2018, 67(22): 226501-1, http://lib.cqvip.com/Qikan/Article/Detail?id=676852772.[21] Mengzhou Liao, ZeWen Wu, Luojun Du, Tingting Zhang, Zheng Wei, Jianqi Zhu, Hua Yu, Jian Tang, Lin Gu, Yanxia Xing, Rong Yang, Dongxia Shi, Yugui Yao, Guangyu Zhang. Twist angle-dependent conductivities across MoS2/graphene heterojunctions. NATURE COMMUNICATIONS[J]. 2018, 9(1): http://dx.doi.org/10.1038/s41467-018-06555-w.[22] Du, Luojun, Jia, Zhiyan, Zhang, Qian, Zhang, Anmin, Zhang, Tingting, He, Rui, Yang, Rong, Shi, Dongxia, Yao, Yugui, Xiang, Jianyong, Zhang, Guangyu, Zhang, Qingming. Electronic structure-dependent magneto-optical Raman effect in atomically thin WS2. 2D MATERIALS[J]. 2018, 5(3): http://dx.doi.org/10.1088/2053-1583/aac593.[23] 时东霞. 2D proximate quantum spin liquid state in atomic-thin α-RuCl3. 2D Materials 6,015014 (2019). 2018, [24] Du, Luojun, Zhang, Tingting, Liao, Mengzhou, Liu, Guibin, Wang, Shuopei, He, Rui, Ye, Zhipeng, Yu, Hua, Yang, Rong, Shi, Dongxia, Yao, Yugui, Zhang, Guangyu. Temperature-driven evolution of critical points, interlayer coupling, and layer polarization in bilayer MoS2. PHYSICAL REVIEW B[J]. 2018, 97(16): https://www.webofscience.com/wos/woscc/full-record/WOS:000429455900009.[25] 时东霞. 高质量单层二硫化钼薄膜的研究进展. 物理学报. 2018, [26] Du, Luojun, Liao, Mengzhou, Tang, Jian, Zhang, Qian, Yu, Hua, Yang, Rong, Watanabe, Kenji, Taniguchi, Takashi, Shi, Dongxia, Zhang, Qingming, Zhang, Guangyu. Strongly enhanced exciton-phonon coupling in two-dimensional WSe2. PHYSICAL REVIEW B[J]. 2018, 97(23): https://www.webofscience.com/wos/woscc/full-record/WOS:000436192300004.[27] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报[J]. 2018, 67(22): 226501-1, http://lib.cqvip.com/Qikan/Article/Detail?id=676852772.[28] Mengzhou Liao, ZeWen Wu, Luojun Du, Tingting Zhang, Zheng Wei, Jianqi Zhu, Hua Yu, Jian Tang, Lin Gu, Yanxia Xing, Rong Yang, Dongxia Shi, Yugui Yao, Guangyu Zhang. Twist angle-dependent conductivities across MoS2/graphene heterojunctions. NATURE COMMUNICATIONS[J]. 2018, 9(1): http://dx.doi.org/10.1038/s41467-018-06555-w.[29] Du, Luojun, Jia, Zhiyan, Zhang, Qian, Zhang, Anmin, Zhang, Tingting, He, Rui, Yang, Rong, Shi, Dongxia, Yao, Yugui, Xiang, Jianyong, Zhang, Guangyu, Zhang, Qingming. Electronic structure-dependent magneto-optical Raman effect in atomically thin WS2. 2D MATERIALS[J]. 2018, 5(3): http://dx.doi.org/10.1088/2053-1583/aac593.[30] 时东霞. 2D proximate quantum spin liquid state in atomic-thin α-RuCl3. 2D Materials 6,015014 (2019). 2018, [31] Du, Luojun, Zhang, Tingting, Liao, Mengzhou, Liu, Guibin, Wang, Shuopei, He, Rui, Ye, Zhipeng, Yu, Hua, Yang, Rong, Shi, Dongxia, Yao, Yugui, Zhang, Guangyu. Temperature-driven evolution of critical points, interlayer coupling, and layer polarization in bilayer MoS2. PHYSICAL REVIEW B[J]. 2018, 97(16): https://www.webofscience.com/wos/woscc/full-record/WOS:000429455900009.[32] 时东霞. 高质量单层二硫化钼薄膜的研究进展. 物理学报. 2018, [33] Zhu, Jianqi, Wang, Zhichang, Yu, Hua, Li, Na, Zhang, Jing, Meng, JianLing, Liao, Mengzhou, Zhao, Jing, Lu, Xiaobo, Du, Luojun, Yang, Rong, Shi, Dong, Jiang, Ying, Zhang, Guanyu. Argon Plasma Induced Phase Transition in Monolayer MoS2. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2017, 139(30): 10216-10219, https://www.webofscience.com/wos/woscc/full-record/WOS:000407089500013.[34] Xie, Li, Liao, Mengzhou, Wang, Shuopei, Yu, Hua, Du, Luojun, Tang, Jian, Zhao, Jing, Zhang, Jing, Chen, Peng, Lu, Xiaobo, Wang, Guole, Xie, Guibai, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Graphene-Contacted Ultrashort Channel Monolayer MoS2 Transistors. ADVANCED MATERIALS[J]. 2017, 29(37): https://www.webofscience.com/wos/woscc/full-record/WOS:000412184100020.[35] Zhang, TingTing, Yu, ZhiMing, Guo, Wei, Shi, Dongxia, Zhang, Guangyu, Yao, Yugui. From Type-II Triply Degenerate Nodal Points and Three-Band Nodal Rings to Type-II Dirac Points in Centrosymmetric Zirconium Oxide. JOURNAL OF PHYSICAL CHEMISTRY LETTERS[J]. 2017, 8(23): 5792-5797, http://dx.doi.org/10.1021/acs.jpclett.7b02642.[36] Xie, Li, Du, Luojun, Lu, Xiaobo, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. A facile and efficient dry transfer technique for two-dimensional Van der Waals heterostructure. CHINESE PHYSICS B[J]. 2017, 26(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000407023200001.[37] Yu, Hua, Liao, Mengzhou, Zhao, Wenjuan, Liu, Guodong, Zhou, X J, Wei, Zheng, Xu, Xiaozhi, Liu, Kaihui, Hu, Zonghai, Deng, Ke, Zhou, Shuyun, Shi, JinAn, Gu, Lin, Shen, Cheng, Zhang, Tingting, Du, Luojun, Xie, Li, Zhu, Jianqi, Chen, Wei, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer MoS2 Continuous Films. ACS NANO[J]. 2017, 11(12): 12001-12007, https://www.webofscience.com/wos/woscc/full-record/WOS:000418990200025.[38] Du, Luojun, Yu, Hua, Liao, Mengzhou, Wang, Shuopei, Xie, Li, Lu, Xiaobo, Zhu, Jianqi, Li, Na, Shen, Cheng, Chen, Peng, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Modulating PL and electronic structures of MoS2/graphene heterostructures via interlayer twisting angle. APPLIED PHYSICS LETTERS[J]. 2017, 111(26): https://www.webofscience.com/wos/woscc/full-record/WOS:000418947200031.[39] Zhao, Jing, Li, Na, Yu, Hua, Wei, Zheng, Liao, Mengzhou, Chen, Peng, Wang, Shuopei, Shi, Dongxia, Sun, Qijun, Zhang, Guangyu. Highly Sensitive MoS2 Humidity Sensors Array for Noncontact Sensation. ADVANCED MATERIALS[J]. 2017, 29(34): https://www.webofscience.com/wos/woscc/full-record/WOS:000409448300017.[40] Zhu, Jianqi, Wang, Zhichang, Yu, Hua, Li, Na, Zhang, Jing, Meng, JianLing, Liao, Mengzhou, Zhao, Jing, Lu, Xiaobo, Du, Luojun, Yang, Rong, Shi, Dong, Jiang, Ying, Zhang, Guanyu. Argon Plasma Induced Phase Transition in Monolayer MoS2. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2017, 139(30): 10216-10219, https://www.webofscience.com/wos/woscc/full-record/WOS:000407089500013.[41] Xie, Li, Liao, Mengzhou, Wang, Shuopei, Yu, Hua, Du, Luojun, Tang, Jian, Zhao, Jing, Zhang, Jing, Chen, Peng, Lu, Xiaobo, Wang, Guole, Xie, Guibai, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Graphene-Contacted Ultrashort Channel Monolayer MoS2 Transistors. ADVANCED MATERIALS[J]. 2017, 29(37): https://www.webofscience.com/wos/woscc/full-record/WOS:000412184100020.[42] Zhang, TingTing, Yu, ZhiMing, Guo, Wei, Shi, Dongxia, Zhang, Guangyu, Yao, Yugui. From Type-II Triply Degenerate Nodal Points and Three-Band Nodal Rings to Type-II Dirac Points in Centrosymmetric Zirconium Oxide. JOURNAL OF PHYSICAL CHEMISTRY LETTERS[J]. 2017, 8(23): 5792-5797, http://dx.doi.org/10.1021/acs.jpclett.7b02642.[43] Xie, Li, Du, Luojun, Lu, Xiaobo, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. A facile and efficient dry transfer technique for two-dimensional Van der Waals heterostructure. CHINESE PHYSICS B[J]. 2017, 26(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000407023200001.[44] Yu, Hua, Liao, Mengzhou, Zhao, Wenjuan, Liu, Guodong, Zhou, X J, Wei, Zheng, Xu, Xiaozhi, Liu, Kaihui, Hu, Zonghai, Deng, Ke, Zhou, Shuyun, Shi, JinAn, Gu, Lin, Shen, Cheng, Zhang, Tingting, Du, Luojun, Xie, Li, Zhu, Jianqi, Chen, Wei, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer MoS2 Continuous Films. ACS NANO[J]. 2017, 11(12): 12001-12007, https://www.webofscience.com/wos/woscc/full-record/WOS:000418990200025.[45] Du, Luojun, Yu, Hua, Liao, Mengzhou, Wang, Shuopei, Xie, Li, Lu, Xiaobo, Zhu, Jianqi, Li, Na, Shen, Cheng, Chen, Peng, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Modulating PL and electronic structures of MoS2/graphene heterostructures via interlayer twisting angle. APPLIED PHYSICS LETTERS[J]. 2017, 111(26): https://www.webofscience.com/wos/woscc/full-record/WOS:000418947200031.[46] Zhao, Jing, Li, Na, Yu, Hua, Wei, Zheng, Liao, Mengzhou, Chen, Peng, Wang, Shuopei, Shi, Dongxia, Sun, Qijun, Zhang, Guangyu. Highly Sensitive MoS2 Humidity Sensors Array for Noncontact Sensation. ADVANCED MATERIALS[J]. 2017, 29(34): https://www.webofscience.com/wos/woscc/full-record/WOS:000409448300017.[47] Meng, Jianling, Wang, Guole, Li, Xiaomin, Lu, Xiaobo, Zhang, Jing, Yu, Hua, Chen, Wei, Du, Luojun, Liao, Mengzhou, Zhao, Jing, Chen, Peng, Zhu, Jianqi, Bai, Xuedong, Shi, Dongxia, Zhang, Guangyu. Rolling Up a Monolayer MoS2 Sheet. SMALL[J]. 2016, 12(28): 3770-3774, https://www.webofscience.com/wos/woscc/full-record/WOS:000383375100004.[48] Meng, Jianling, Wang, Guole, Li, Xiaomin, Lu, Xiaobo, Zhang, Jing, Yu, Hua, Chen, Wei, Du, Luojun, Liao, Mengzhou, Zhao, Jing, Chen, Peng, Zhu, Jianqi, Bai, Xuedong, Shi, Dongxia, Zhang, Guangyu. Rolling Up a Monolayer MoS2 Sheet. SMALL[J]. 2016, 12(28): 3770-3774, https://www.webofscience.com/wos/woscc/full-record/WOS:000383375100004.[49] Shi, D X, Ji, W, Lin, X, He, X B, Lian, J C, Gao, L, Cai, J M, Lin, H, Du, S X, Lin, F, Seidel, C, Chi, L F, Hofer, W A, Fuchs, H, Gao, H J. Role of lateral alkyl chains in modulation of molecular structures on metal surfaces. PHYSICAL REVIEW LETTERS[J]. 2006, 96(22): http://ir.iphy.ac.cn/handle/311004/52227.[50] Shi, D X, Ji, W, Lin, X, He, X B, Lian, J C, Gao, L, Cai, J M, Lin, H, Du, S X, Lin, F, Seidel, C, Chi, L F, Hofer, W A, Fuchs, H, Gao, H J. Role of lateral alkyl chains in modulation of molecular structures on metal surfaces. PHYSICAL REVIEW LETTERS[J]. 2006, 96(22): http://ir.iphy.ac.cn/handle/311004/52227.
科研活动
科研项目
1. 国家科技部重大研究计划子课题“CTM存储材料的表征方法和性能研究”430万,2010- 2014,负责人;
2. 国家科技部863项目“用于介观体系电学、电光和力学特性研究的探针测试系统的研制”95万 ,2008- 2010, 负责人;
3. 国家自然科学基金中德重大国际合作项目子课题“多层次的分子组装体-结构、动态与功能”50万,2008- 2011,负责人;
4. 中科院创新工程重要方向性项目子课题“石墨烯的原型器件与应用探索”75万,2009- 2012,负责人;
5. 国家自然科学基金面上项目“基于新型rotaxane 分子薄膜的超高密度信息存储”35万,2008- 2010, 负责人;
6. 国家自然科学基金面上项目“功能分子-纳米金属粒子的制备及在单电子器件中的应用”28万,2003- 2005, 负责人;
7. 国家自然科学基金重点项目“四探针STM构建纳电子器件结构单元及其电子学特性研究”100万,2005- 2008,副组长。
2. 国家科技部863项目“用于介观体系电学、电光和力学特性研究的探针测试系统的研制”95万 ,2008- 2010, 负责人;
3. 国家自然科学基金中德重大国际合作项目子课题“多层次的分子组装体-结构、动态与功能”50万,2008- 2011,负责人;
4. 中科院创新工程重要方向性项目子课题“石墨烯的原型器件与应用探索”75万,2009- 2012,负责人;
5. 国家自然科学基金面上项目“基于新型rotaxane 分子薄膜的超高密度信息存储”35万,2008- 2010, 负责人;
6. 国家自然科学基金面上项目“功能分子-纳米金属粒子的制备及在单电子器件中的应用”28万,2003- 2005, 负责人;
7. 国家自然科学基金重点项目“四探针STM构建纳电子器件结构单元及其电子学特性研究”100万,2005- 2008,副组长。
指导学生
协助培养研究生数名。计划每年招收硕博联读生、博士生1-2名。