基本信息
毕效军  男  博导  中国科学院高能物理研究所
电子邮件: bixj@mail.ihep.ac.cn
通信地址: 北京市玉泉路19乙高能物理所
邮政编码: 100049

研究领域

暗物质,超出粒子物理标准模型新物理

宇宙线传播,宇宙线物理

招生信息

   
招生专业
070202-粒子物理与原子核物理
070201-理论物理
070401-天体物理
招生方向
粒子天体物理,暗物质探测
新物理,对撞机,暗物质理论
宇宙线,伽马射线

教育背景

1997-09--2000-09 中科院理论物理研究所 理学博士
1994-09--1997-07 中国科学技术大学 理学硕士
学历
博士

学位
博士

工作经历

   
工作简历
2011-01--今 中科院高能物理研究所 研究员
2004-10--2010-12 中科院高能物理研究所 副研究员
2002-10--2004-10 中科院高能物理研究所 博士后
2000-10--2002-09 清华大学 博士后

出版信息

   
发表论文
[1] Zhao, MengJie, Bi, XiaoJun, Fang, Kun. Can the Production Cross-Section Uncertainties Explain the Cosmic Fluorine Anomaly?. PHYSICAL REVIEW D[J]. 2023, 107(63020): http://arxiv.org/abs/2209.03799.
[2] Xiao-jun Bi, Yu Gao, Mingjie Jin, Yugen Lin, Qian-Fei Xiang. Soft scattering evaporation of dark matter subhalos by inner galactic gases. THE EUROPEAN PHYSICAL JOURNAL C[J]. 2023, 83(9): 1-10, http://dx.doi.org/10.1140/epjc/s10052-023-11987-w.
[3] Yao, RunMin, Bi, XiaoJun, Wang, JinWei, Yin, PengFei. Optical circular polarization induced by axionlike particles in blazars. PHYSICAL REVIEW D[J]. 2023, 107(4): http://dx.doi.org/10.1103/PhysRevD.107.043031.
[4] Wang, JinWei, Bi, XiaoJun, Yin, PengFei, Yu, ZhaoHuan. Electroweak dark matter model accounting for the CDF $W$-mass anomaly. PHYS.REV.D[J]. 2022, 106(55001): http://arxiv.org/abs/2205.00783.
[5] Wang, BingBing, Bi, XiaoJun, Fang, Kun, Lin, Sujie, Yin, PengFei. Solar modulation of cosmic proton and helium with AMS-02. PHYSICAL REVIEW D[J]. 2022, 106: 063006-, http://arxiv.org/abs/2011.12531.
[6] 包力卓, 方堃, 毕效军. Slow Diffusion is Necessary to Explain the γ-Ray Pulsar Halos. Astrophys.J.[J]. 2022, 936(2): 183-, [7] Fang, Kun, Bi, XiaoJun. Interpretation of the puzzling gamma-ray spectrum of the Geminga halo. PHYSICAL REVIEW D[J]. 2022, 105(10): http://dx.doi.org/10.1103/PhysRevD.105.103007.
[8] Fang, Kun, Bi, XiaoJun, Lin, SuJie, Yuan, Qiang. Klein-Nishina effect and the cosmic ray electron spectrum. 2021, http://arxiv.org/abs/2007.15601.
[9] Li, HaiJun, Guo, JunGuang, Bi, XiaoJun, Lin, SuJie, Yin, PengFei. Limits on axionlike particles from Mrk 421 with 4.5-year period observations by ARGO-YBJ and Fermi-LAT. PHYSICAL REVIEW D[J]. 2021, 103(8): http://dx.doi.org/10.1103/PhysRevD.103.083003.
[10] Wang, ShengHao, Fang, Kun, Bi, XiaoJun, Yin, PengFei. Test of the superdiffusion model in the interstellar medium around the Geminga pulsar. PHYSICAL REVIEW D[J]. 2021, 103(6): http://dx.doi.org/10.1103/PhysRevD.103.063035.
[11] Yuan, Qiang, Qiao, BingQiang, Guo, YiQing, Fan, YiZhong, Bi, XiaoJun. Nearby source interpretation of differences among light and medium composition spectra in cosmic rays. FRONTIERS OF PHYSICS[J]. 2021, 16(2): 195-200, http://dx.doi.org/10.1007/s11467-020-0990-4.
[12] Bi, XiaoJun, Gao, Yu, Guo, Junguang, Houston, Nick, Li, Tianjun, Xu, Fangzhou, Zhang, Xin. Axion and dark photon limits from Crab Nebula high energy gamma-rays. 2021, http://arxiv.org/abs/2002.01796.
[13] Wang, JinWei, Bi, XiaoJun, Yao, RunMin, Yin, PengFei. Exploring axion dark matter through radio signals from magnetic white dwarf stars. PHYSICAL REVIEW D[J]. 2021, 103(11): http://dx.doi.org/10.1103/PhysRevD.103.115021.
[14] Wang, JinWei, Bi, XiaoJun, Yao, RunMin, Yin, PengFei. Explore the Axion Dark Matter through the Radio Signals from Magnetic White Dwarf Stars. 2021, http://arxiv.org/abs/2101.02585.
[15] Fang, Kun, Bi, XiaoJun, Yin, PengFei. DAMPE proton spectrum indicates a slow-diffusion zone in the nearby ISM. 2020, http://arxiv.org/abs/2003.13635.
[16] Guo, Junguang, Li, HaiJun, Bi, XiaoJun, Lin, SuJie, Yin, PengFei. The implications of the axion like particle from the Fermi-LAT and H.E.S.S. observations of PG 1553+113 and PKS 2155-304. 2020, http://arxiv.org/abs/2002.07571.
[17] He DongZe, Bi XiaoJun, Lin SuJie, Yin PengFei, Zhang Xin. Expected LHAASO sensitivity to decaying dark matter signatures from dwarf galaxies gamma-ray emission. 2020, http://arxiv.org/abs/1910.05017.
[18] Chen, Yidian, Bi, XiaoJun, Huang, Mei. Holographic technicolor model and dark matter. CHINESE PHYSICS C[J]. 2020, 44(9): 16-24, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=6803026&detailType=1.
[19] An Q, Asfandiyarov R, Azzarello P, Bernardini P, Bi X J, Cai M S, Chang J, Chen D Y, Chen H F, Chen J L, Chen W, Cui M Y, Cui T S, Dai H T, DAmone A, De Benedittis A, De Mitri I, Di Santo M, Ding M, Dong T K, Dong Y F, Dong Z X, Donvito G, Droz D, Duan J L, Duan K K, DUrso D, Fan R R, Fan Y Z, Fang F, Feng C Q, Feng L, Fusco P, Gallo V, Gan F J, Gao M, Gargano F, Gong K, Gong Y Z, Guo D Y, Guo J H, Guo X L, Han S X, Hu Y M, Huang G S, Huang X Y, Huang Y Y, Ionica M, Jiang W, Jin X, Kong J, Lei S J, Li S, Li W L, Li X, Li X Q, Li Y, Liang Y F, Liang Y M, Liao N H, Liu C M, Liu H, Liu J, Liu S B, Liu W Q, Liu Y, Loparco F, Luo C N, Ma M, Ma P X, Ma S Y, Ma T, Ma X Y, Marsella G, Mazziotta M N, Mo D, Niu X Y, Pan X, Peng W X, Peng X Y, Qiao R, Rao J N, Salinas M M, Shang G Z, Shen W H, Shen Z Q, Shen Z T, Song J X, Su H, Su M, Sun Z Y, Surdo A, Teng X J, Tykhonov A, Vitillo S, Wang C, Wang H, Wang H Y, Wang J Z, Wang L G, Wang Q, Wang S, Wang X H, Wang X L, Wang Y F, Wang Y P, Wang Y Z, Wang Z M, Wei D M, Wei J J, Wei Y F, Wen S C, Wu D, Wu J, Wu L B, Wu S S, Wu X, Xi K, Xia Z Q, Xu H T, Xu Z H, Xu Z L, Xu Z Z, Xue G F, Yang H B, Yang P, Yang Y Q, Yang Z L, Yao H J, Yu Y H, Yuan Q, Yue C, Zang J J, Zhang F, Zhang J Y, Zhang J Z, Zhang P F, Zhang S X, Zhang W Z, Zhang Y, Zhang Y J, Zhang Y L, Zhang Y P, Zhang Y Q, Zhang Z, Zhang Z Y, Zhao H, Zhao H Y, Zhao X F, Zhou C Y, Zhou Y, Zhu X, Zhu Y, Zimmer S. Measurement of the cosmic-ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite. 2019, http://arxiv.org/abs/1909.12860.
[20] Fang, Kun, Bi, XiaoJun, Yin, PengFei. Reanalysis of the Pulsar Scenario to Explain the Cosmic Positron Excess Considering the Recent Developments. ASTROPHYSICALJOURNAL[J]. 2019, 884(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000501779300004.
[21] Zhao, Yi, Bi, XiaoJun, Lin, SuJie, Yin, PengFei. Nearby dark matter subhalo that accounts for the DAMPE excess. CHINESE PHYSICS C[J]. 2019, 43(8): [22] Wang JinWei, 毕效军, Yin PengFei, Yu ZhaoHuan. Impact of Fermionic Electroweak Multiplet Dark Matter on Vacuum Stability with One-loop Matching. 2019, http://arxiv.org/abs/1811.08743.
[23] Wang, BingBing, Bi, XiaoJun, Fang, Kun, Lin, SuJie, Yin, PengFei. Time-dependent solar modulation of cosmic rays from solar minimum to solar maximum. PHYSICAL REVIEW D[J]. 2019, 100(6): http://dx.doi.org/10.1103/PhysRevD.100.063006.
[24] Fang Kun, Bi XiaoJun, Yin PengFei. Possible origin of the slow-diffusion region around Geminga. 2019, http://arxiv.org/abs/1903.06421.
[25] He, DongZe, Bi, XiaoJun, Lin, SuJie, Yin, PengFei, Zhang, Xin. Prospect for dark matter annihilation signatures from gamma-ray observation of dwarf galaxies by LHAASO. PHYSICAL REVIEW D[J]. 2019, 100(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000489039100001.
[26] Yi Zhao, XiaoJun Bi, PengFei Yin, Xinmin Zhang. Constraint on the velocity dependent dark matter annihilation cross section from gamma-ray and kinematic observations of ultrafaint dwarf galaxies. PHYSICAL REVIEW D: COVERING PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY. 2018, 97(6): http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=1&recid=&FileName=SBQKF823B21561A5EC997D40321AA5DEB008&DbName=SBQKLAST&DbCode=SBQK&yx=&pr=&URLID=&bsm=.
[27] Fang, Kun, Bi, XiaoJun, Yin, PengFei, Yuan, Qiang. Two-zone Diffusion of Electrons and Positrons from Geminga Explains the Positron Anomaly. ASTROPHYSICALJOURNAL[J]. 2018, 863(1): http://libir.pmo.ac.cn/handle/332002/21605.
[28] JinWei Wang, XiaoJun Bi, QianFei Xiang, PengFei Yin, ZhaoHuan Yu. Exploring triplet-quadruplet fermionic dark matter at the LHC and future colliders. PHYSICAL REVIEW D: COVERING PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY. 2018, 97(3): http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=1&CurRec=1&recid=&FileName=SBQK93DAD05811F918FDBE39CAB1CF3EF1AB&DbName=SBQKLAST&DbCode=SBQK&yx=&pr=&URLID=&bsm=.
[29] Zhao Yi, Bi Xiaojun, Yin Pengfei, Zhang Xinmin. Searching for γ-ray emission from Reticulum II by Fermi-LAT. CHINESE PHYSICS. C[J]. 2018, 42(2): 025102-1, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=6159789&detailType=1.
[30] BingBing Wang, XiaoJun Bi, SuJie Lin, PengFei Yin. Explanations of the DAMPE high energy electron/positron spectrum in the dark matter annihilation and pulsar scenarios. 中国科学:物理学 力学 天文学(英文版)[J]. 2018, 61(10): 19-29, http://lib.cqvip.com/Qikan/Article/Detail?id=676286259.
[31] Fang, Kun, Bi, XiaoJun, Yin, PengFei. Explanation of the Knee-like Feature in the DAMPE Cosmic e(-) + e(+) Energy Spectrum. ASTROPHYSICAL JOURNAL[J]. 2018, 854(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000424897400007.
[32] QianFei Xiang, XiaoJun Bi, PengFei Yin, ZhaoHuan Yu. Exploring fermionic dark matter via Higgs boson precision measurements at the Circular Electron Positron Collider. PHYSICAL REVIEW D: COVERING PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY. 2018, 97(5): http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=1&recid=&FileName=SBQKEB912DCF8D34629A5C59776D90497D0D&DbName=SBQKLAST&DbCode=SBQK&yx=&pr=&URLID=&bsm=.
[33] Xiang, QianFei, Bi, XiaoJun, Lin, SuJie, Yin, PengFei. A dark matter model that reconciles tensions between the cosmic-ray e(+/-) excess and the gamma-ray and CMB constraints. PHYSICS LETTERS B[J]. 2017, 773: 448-454, https://doaj.org/article/6b7f4dd4198b46a1a23719c6b6ea1bc9.
[34] Waqas Ahmed, XiaoJun Bi, Tianjun Li, Jia Shu Niu, Shabbar Raza, QianFei Xiang, PengFei Yin. Status of Natural Supersymmetry from the GmSUGRA in Light of the current LHC Run-2 and LUX data. 2017, http://www.chinaxiv.org/abs/201711.02262.
[35] Fang, Kun, Wang, BingBing, Bi, XiaoJun, Lin, SuJie, Yin, PengFei. Perspective on the Cosmic-ray Electron Spectrum above TeV. ASTROPHYSICAL JOURNAL[J]. 2017, 836(2): http://www.corc.org.cn/handle/1471x/2175675.
[36] Yuan, Qiang, Lin, SuJie, Fang, Kun, Bi, XiaoJun. Propagation of cosmic rays in the AMS-02 era. PHYSICAL REVIEW D[J]. 2017, 95(8): 083007-1-083007-16, http://libir.pmo.ac.cn/handle/332002/22859.
[37] Wei Liu, XiaoJun Bi, SuJie Lin, BingBing Wang, PengFei Yin. Excesses of Cosmic Ray Spectra from A Single Nearby Source. PHYSICAL REVIEW D: COVERING PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY. 2017, 96(2): http://www.chinaxiv.org/abs/201711.02308.
[38] Wei Liu, XiaoJun Bi, SuJie Lin, PengFei Yin, Key Laboratory of Particle AstrophysicsInstitute of High Energy PhysicsChinese Academy of Sciences. Constraints on dark matter annihilation and decay from the isotropic gamma-ray background. CHINESEPHYSICSC. 2017, 41(4): http://www.corc.org.cn/handle/1471x/2177212.
[39] QianFei Xiang, XiaoJun Bi, QiShu Yan, PengFei Yin, ZhaoHuan Yu. Measuring masses in semi-invisible final states at electron-positron colliders. PHYSICAL REVIEW D: COVERING PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY. 2017, 95(7): http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=1&recid=&FileName=SBQK36AD1B03DA941E3B87D4703DFE96754A&DbName=SBQKLAST&DbCode=SBQK&yx=&pr=&URLID=&bsm=.
[40] 毕效军. LHC上750GeV的双光子超出和暗物质限制. Nucl.Phys.B. 2016, [41] XiaoJun Bi, Zhaofeng Kang, P Ko, Jinmian Li, Tianjun L. ADMonium: Asymmetric Dark Matter Bound State. 2016, http://www.chinaxiv.org/abs/201608.00213.
[42] 毕效军. 在NMSSM模型解释银心的GeV伽马超出和电弱相变. Phys.Rev.D. 2015, [43] Yu, ZhaoHuan, Bi, XiaoJun, Yan, QiShu, Yin, PengFei. Detecting light stop pairs in coannihilation scenarios at the LHC. PHYSICAL REVIEW D[J]. 2013, 87(5): http://dx.doi.org/10.1103/PhysRevD.87.055007.
[44] Bi, XiaoJun, Yan, QiShu, Yin, PengFei. Light stop/sbottom pair production searches in the NMSSM. PHYSICAL REVIEW D[J]. 2013, 87(3): http://dx.doi.org/10.1103/PhysRevD.87.035007.
[45] Zheng, JiaMing, Yu, ZhaoHuan, Shao, JunWen, Bi, XiaoJun, Li, Zhibing, Zhang, HongHao. Constraining the interaction strength between dark matter and visible matter: I. Fermionic dark matter. NUCLEAR PHYSICS B[J]. 2012, 854(2): 350-374, http://dx.doi.org/10.1016/j.nuclphysb.2011.09.009.
[46] XiaoJun Bi, PengFei Yin, Qiang Yuan. Breit-Wigner enhancement considering the dark matter kinetic decoupling. PHYSICAL REVIEW D: COVERING PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY. 2012, 85(4): http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=1&recid=&FileName=SBQKFF422E981FCD3B0865507F43871D0505&DbName=SBQKLAST&DbCode=SBQK&yx=&pr=&URLID=&bsm=.
[47] Liu, Jie, Yuan, Qiang, Bi, Xiaojun, Li, Hong, Zhang, Xinmin. NEUTRINO EMISSION FROM DARK MATTER ANNIHILATION/DECAY IN LIGHT OF COSMIC e(+/-) AND (p)over-bar DATA. INTERNATIONAL JOURNAL OF MODERN PHYSICS A[J]. 2012, 27(6): http://ir.iphy.ac.cn/handle/311004/49809.
[48] ZhaoHuan Yu, JiaMing Zheng, XiaoJun Bi, Zhibing Li, DaoXin Yao, HongHao Zhang. Constraining the interaction strength between dark matter and visible matter: II. Scalar, vector and spin-3/2 dark matter. NUCLEAR PHYSICS, SECTION B. 2012, 115-151, http://dx.doi.org/10.1016/j.nuclphysb.2012.02.016.
[49] XiaoJun Bi, QiShu Yan, PengFei Yin. Probing light stop pairs at the LHC. PHYSICAL REVIEW D: COVERING PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY. 2012, 85(3): http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=2&recid=&FileName=SBQKC707736384D3F7136D507ED0023DB562&DbName=SBQKLAST&DbCode=SBQK&yx=&pr=&URLID=&bsm=.
[50] Feng, Lei, Yuan, Qiang, Yin, PengFei, Bi, XiaoJun, Li, Mingzhe. Search for dark matter signals with Fermi-LAT observation of globular clusters NGC 6388 and M15. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2012, 2012(4): http://dx.doi.org/10.1088/1475-7516/2012/04/030.
[51] Huang, Xiaoyuan, Yuan, Qiang, Yin, PengFei, Bi, XiaoJun, Chen, Xuelei. Constraints on the dark matter annihilation scenario of Fermi 130 GeV gamma-ray line emission by continuous gamma-rays, Milky Way halo, galaxy clusters and dwarf galaxies observations. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2012, http://dx.doi.org/10.1088/1475-7516/2012/11/048.
[52] Yuan, Qiang, Liu, Siming, Bi, Xiaojun. AN ATTEMPT AT A UNIFIED MODEL FOR THE GAMMA-RAY EMISSION OF SUPERNOVA REMNANTS. ASTROPHYSICAL JOURNAL[J]. 2012, 761(2): http://www.irgrid.ac.cn/handle/1471x/558324.
[53] Yuan, Qiang, Yin, PengFei, Bi, XiaoJun. Neutrino emission of Fermi supernova remnants. ASTROPARTICLE PHYSICS[J]. 2011, 35(1): 33-38, http://dx.doi.org/10.1016/j.astropartphys.2011.03.004.
[54] Qiang Yuan, PengFei Yin, XiaoJun Bi, XinMin Zhang, ShouHua Zhu. Gamma rays and neutrinos from dark matter annihilation in galaxy clusters. PHYSICAL REVIEW D: COVERING PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY. 2010, 82(2): http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=9&recid=&FileName=SBQKE479DDFD6D5CACAD0A78E05292A3F2FF&DbName=SBQKLAST&DbCode=SBQK&yx=&pr=&URLID=&bsm=.
[55] Zhang, Juan, Yuan, Qiang, Bi, XiaoJun. GALACTIC DIFFUSE GAMMA RAYS-RECALCULATION BASED ON NEW MEASUREMENTS OF THE COSMIC ELECTRON SPECTRUM. ASTROPHYSICAL JOURNAL[J]. 2010, 720(1): 9-19, http://ir.ihep.ac.cn/handle/311005/225476.
[56] Bi, XiaoJun. CAN DARK MATTER ANNIHILATION ACCOUNT FOR THE COSMIC e(+/-) EXCESSES?. MODERN PHYSICS LETTERS A[J]. 2010, 25(11-12): 962-968, http://ir.ihep.ac.cn/handle/311005/227789.
[57] Yuan, Qiang, Yue, Bin, Bi, XiaoJun, Chen, Xuelei, Zhang, Xinmin. Leptonic dark matter annihilation in the evolving universe: constraints and implications. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2010, 2010(10): http://dx.doi.org/10.1088/1475-7516/2010/10/023.
[58] Bi, XiaoJun, He, XiaoGang, Yuan, Qiang. Parameters in a class of leptophilic dark matter models from PAMELA, ATIC and FERMI. PHYSICS LETTERS B[J]. 2009, 678(2): 168-173, http://dx.doi.org/10.1016/j.physletb.2009.06.009.
[59] Bi, XiaoJun, Gu, PeiHong, Li, Tianjun, Zhang, Xinmin. ATIC and PAMELA results on cosmic e(+/-) excesses and neutrino masses. JOURNAL OF HIGH ENERGY PHYSICS[J]. 2009, 2009(4): http://ir.ihep.ac.cn/handle/311005/240389.
[60] Yuan, Qiang, Bi, XiaoJun, Liu, Jia, Yin, PengFei, Zhang, Juan, Zhu, ShouHua. Clumpiness enhancement of charged cosmic rays from dark matter annihilation with Sommerfeld effect. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2009, 2009(12): http://ir.ihep.ac.cn/handle/311005/240356.
[61] Pengfei Yin, Qiang Yuan, Jia Liu, Juan Zhang, Xiaojun Bi, Shouhua Zhu, Xinmin Zhang. PAMELA data and leptonically decaying dark matter. PHYSICAL REVIEW D: COVERING PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY. 2009, 79(2): http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=3&recid=&FileName=SBQKAE64C09F5DE92E5F8FDA13F009244593&DbName=SBQKLAST&DbCode=SBQK&yx=&pr=&URLID=&bsm=.
[62] 袁强, 毕效军, 张娟. Perspective of Galactic dark matter subhalo detection on Fermi from the EGRET observation. 中国物理C:英文版[J]. 2009, 826-833, http://lib.cqvip.com/Qikan/Article/Detail?id=31674348.
[63] Bi, XiaoJun, Brandenberger, Robert, Gondolo, Paolo, Li, Tianjun, Yuan, Qiang, Zhang, Xinmin. Nonthermal production of WIMPs, cosmic e(+/-) excesses, and gamma rays from the Galactic Center. PHYSICAL REVIEW D[J]. 2009, 80(10): http://ir.ihep.ac.cn/handle/311005/240903.
[64] Zhang, Juan, Bi, XiaoJun, Liu, Jia, Liu, SiMing, Yin, PengFei, Yuan, Qiang, Zhu, ShouHua. Discriminating different scenarios to account for the cosmic e(+/-) excess by synchrotron and inverse Compton radiation. PHYSICAL REVIEW D[J]. 2009, 80(2): http://ir.ihep.ac.cn/handle/311005/240489.
[65] Yuan, Qiang, Cao, Yixian, Liu, Jie, Yin, Peng-Fei, Gao, Liang, Bi, Xiao-Jun, Zhang, Xinmin. Gamma-rays From Warm WIMP Dark Matter Annihilation. http://arxiv.org/abs/1203.5636.
[66] Fang, Kun, Bi, Xiao-Jun, Yin, Peng-fei. Discriminating Local Sources of High-Energy Cosmic-Ray Electrons and Positrons by Energy Spectrum and Anisotropy Measurements. http://arxiv.org/abs/1706.03745.
[67] Liu, Jie, Yuan, Qiang, Bi, Xiao-Jun, Li, Hong, Zhang, Xinmin. CosRayMC: a global fitting method in studying the properties of the new sources of cosmic e$^{\pm}$ excesses. http://arxiv.org/abs/1106.3882.
[68] Lin, Su-Jie, Bi, Xiao-Jun, Feng, Jie, Yin, Peng-Fei, Yu, Zhao-Huan. A systematic study on the cosmic ray antiproton flux. http://arxiv.org/abs/1612.04001.
[69] Bi, Xiao-Jun, He, Xiao-Gang, Ma, Ernest, Zhang, Juan. Cosmic e^\pm, \bar p, \gamma and neutrino rays in leptocentric dark matter models. http://arxiv.org/abs/0910.0771.
[70] Bi, Xiao-Jun, Cao, Zhen, Li, Ye, Yuan, Qiang. Testing Lorentz Invariance with Ultra High Energy Cosmic Ray Spectrum. http://arxiv.org/abs/0812.0121.

科研活动

本人主要的科研活动围绕利用天体物理实验和天文观测寻找新物理信号开展,包括利用AMS-02、Fermi-LAT、DAMPE等空间实验和地面LHAASO、HESS等实验观测的高能伽马射线信号、精确宇宙线测量的数据寻找暗物质信号、寻找洛伦兹对称性破坏、寻找轴子效应等新物理信号。这些新物理问题是当前粒子物理和宇宙学研究的前沿课题,而实验室寻找往往受到很强的局限,天体物理过程有其独特的优势因而具备更高的灵敏度,比如天体物理具有实验室加速器无法获得的高能量、高能事例可以穿越宇宙学距离从而累积微小的效应等等。我们就是利用丰富天体物理和天文观测数据开展相关新物理信号的搜寻工作。暗物质问题无疑是当前新物理研究的核心问题之一,然而实验室的暗物质搜寻往往是针对某一个暗物质模型而设计,实验目标单一。丰富的天文观测可以给暗物质粒子一种模型无关的限制,我们也开展利用这些天文观测研究暗物质粒子属性的研究工作。比如,模型奇特的天文系统可能无法在标准的冷暗物质模型中实现,需要暗物质具有特殊属性,这无疑为暗物质研究提供了重要的线索。我们围绕这些观测开展研究。

科研项目
( 1 ) 暗物质探测和理论研究, 主持, 国家级, 2011-01--2013-12
( 2 ) 暗物质实验模拟, 主持, 部委级, 2010-01--2012-12
( 3 ) 暗物质暗能量的理论研究和实验预研, 参与, 国家级, 2010-01--2014-12
( 4 ) 卫星高级数据处理及科学研究, 主持, 国家级, 2016-07--2021-06
( 5 ) 暗物质粒子间接探测的本底研究, 主持, 国家级, 2018-01--2021-12

指导学生

已指导学生

余钊焕  博士研究生  070202-粒子物理与原子核物理  

方堃  博士研究生  070202-粒子物理与原子核物理  

王金伟  博士研究生  070202-粒子物理与原子核物理  

谭秀慧  博士研究生  070202-粒子物理与原子核物理  

李海军  博士研究生  070202-粒子物理与原子核物理  

郭俊广  博士研究生  070202-粒子物理与原子核物理  

现指导学生

陈恩生  博士研究生  070202-粒子物理与原子核物理  

包力卓  博士研究生  070202-粒子物理与原子核物理  

王圣豪  博士研究生  070202-粒子物理与原子核物理  

高林青  博士研究生  070202-粒子物理与原子核物理  

赵梦杰  博士研究生  070202-粒子物理与原子核物理  

张兆宸  硕士研究生  070202-粒子物理与原子核物理  

魏永健  博士研究生  070202-粒子物理与原子核物理  

姚润民  博士研究生  070202-粒子物理与原子核物理  

吕行健  硕士研究生  070202-粒子物理与原子核物理