基本信息
孙雅娟 女 博导 数学与系统科学研究院
电子邮件:sunyj@lsec.cc.ac.cn
通信地址:数学与系统科学研究院计算数学所
邮政编码:100190

研究领域

动力系统保结构算法在微分方程中的构造和应用

招生信息

   
招生专业
070102-计算数学
招生方向
动力系统的保结构算法

教育背景

1998-09--2001-06 数学与系统科学研究院计算数学所 理学博士
1995-09--1998-07 内蒙古大学 理学硕士
1991-09--1995-07 内蒙古师范大学 理学学士
学历
-- 研究生
学位
-- 博士

工作经历

保结构算法基础、 几何数值积分

专利与奖励

   

出版信息


发表论文
[1] 孙雅娟, 顾安教. Asymptotically stable Particle-in-Cell methods for the magnetized Vlasov–Poisson equations in orthogonal curvilinear coordinates As paper extends the corresponding theory in Cartesian coordinates to general orthogonal curvilinear coordinates. arXivnull. 2023, https://arxiv.org/abs/2310.07331.
[2] Crouseilles, Nicolas, Hervieux, PaulAntoine, Li, Yingzhe, Manfredi, Giovanni, Sun, Yajuan. Geometric particle-in-cell methods for the Vlasov-Maxwell equations with spin effects. JOURNAL OF PLASMA PHYSICS[J]. 2021, 87(3): http://dx.doi.org/10.1017/S0022377821000532.
[3] Li, Yingzhe, Sun, Yajuan, Crouseilles, Nicolas. Numerical simulations of one laser-plasma model based on Poisson structure. JOURNAL OF COMPUTATIONAL PHYSICS[J]. 2020, 405: http://dx.doi.org/10.1016/j.jcp.2019.109172.
[4] Brugnano, Luigi, Gurioli, Gianmarco, Sun, Yajuan. Energy-conserving Hamiltonian Boundary Value Methods for the numerical solution of the Korteweg-de Vries equation. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS[J]. 2019, 351: 117-135, http://ir.amss.ac.cn/handle/2S8OKBNM/34743, http://www.irgrid.ac.cn/handle/1471x/6870893, http://ir.amss.ac.cn/handle/2S8OKBNM/34744, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000468555100010&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[5] Shi, Yanyan, Sun, Yajuan, He, Yang, Qin, Hong, Liu, Jian. Symplectic integrators with adaptive time step applied to runaway electron dynamics. NUMERICAL ALGORITHMS[J]. 2019, 81(4): 1295-1309, http://ir.amss.ac.cn/handle/2S8OKBNM/35359, http://www.irgrid.ac.cn/handle/1471x/6870923, http://ir.amss.ac.cn/handle/2S8OKBNM/35360, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000478001200008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[6] 孙雅娟. Study of adaptive symplectic methods for simulating charged particles dynamics. J. Comput. Dyn.. 2019, [7] Brugnano, Luigi, Jackiewicz, Zdzislaw, Podhaisky, Helmut, Sun, Yajuan, Tischendorf, Caren. Special Issue: Auckland Numerical Ordinary Differential Equations Conference (ANODE 2018), February 19-23, 2018, Auckland, New Zealand Preface. NUMERICAL ALGORITHMS. 2019, 81(4): 1181-1182, http://ir.amss.ac.cn/handle/2S8OKBNM/35221, http://www.irgrid.ac.cn/handle/1471x/6870917, http://ir.amss.ac.cn/handle/2S8OKBNM/35222, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000478001200001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[8] Li, Yingzhe, He, Yang, Sun, Yajuan, Niesen, Jitse, Qin, Hong, Liu, Jian. Solving the Vlasov-Maxwell equations using Hamiltonian splitting. JOURNAL OF COMPUTATIONAL PHYSICS[J]. 2019, 396: 381-399, http://ir.amss.ac.cn/handle/2S8OKBNM/35418, http://www.irgrid.ac.cn/handle/1471x/6870925, http://ir.amss.ac.cn/handle/2S8OKBNM/35419, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000481732600020&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[9] Tang, Wensheng, Sun, Yajuan, Zhang, Jingjing. High order symplectic integrators based on continuous-stage Runge-Kutta-Nystrom methods. APPLIED MATHEMATICS AND COMPUTATION[J]. 2019, 361: 670-679, http://ir.amss.ac.cn/handle/2S8OKBNM/35170, http://www.irgrid.ac.cn/handle/1471x/6870916, http://ir.amss.ac.cn/handle/2S8OKBNM/35171, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000474545500054&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[10] Cai, Wenjun, Sun, Yajuan, Wang, Yushun, Zhang, Huai. Local discontinuous Galerkin methods based on the multisymplectic formulation for two kinds of Hamiltonian PDEs. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS[J]. 2018, 95(1): 114-143, https://www.webofscience.com/wos/woscc/full-record/WOS:000428749300008.
[11] He, Yang, Zhou, Zhaoqi, Sun, Yajuan, Liu, Jian, Qin, Hong. Explicit K-symplectic algorithms for charged particle dynamics. PHYSICS LETTERS A[J]. 2017, 381(6): 568-573, https://www.webofscience.com/wos/woscc/full-record/WOS:000392777100002.
[12] Li Yingzhe, He Yang, Sun Yajuan, Niesen Jitse, Qin Hong, Liu Jian, Simos T, Tsitouras C. Solving Vlasov-Maxwell Equations by Using Hamiltonian Splitting. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016)null. 2017, 1863: [13] Zhou, Zhaoqi, He, Yang, Sun, Yajuan, Liu, Jian, Qin, Hong. Explicit symplectic methods for solving charged particle trajectories. PHYSICS OF PLASMAS[J]. 2017, 24(5): 052507-1-052507-10, http://dx.doi.org/10.1063/1.4982743.
[14] Tang, Wensheng, Sun, Yajuan, Cai, Wenjun. Discontinuous Galerkin methods for Hamiltonian ODEs and PDEs. JOURNAL OF COMPUTATIONAL PHYSICS[J]. 2017, 330: 340-364, http://dx.doi.org/10.1016/j.jcp.2016.11.023.
[15] He, Yang, Sun, Yajuan, Liu, Jian, Qin, Hong. Higher order volume-preserving schemes for charged particle dynamics. JOURNAL OF COMPUTATIONAL PHYSICS[J]. 2016, 305: 172-184, http://dx.doi.org/10.1016/j.jcp.2015.10.032.
[16] He, Yang, Sun, Yajuan, Zhang, Ruili, Wang, Yulei, Liu, Jian, Qin, Hong. High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields. PHYSICS OF PLASMAS[J]. 2016, 23(9): http://dx.doi.org/10.1063/1.4962677.
[17] Cai, Wenjun, Sun, Yajuan, Wang, Yushun. Geometric Numerical Integration for Peakon b-Family Equations. COMMUNICATIONS IN COMPUTATIONAL PHYSICS[J]. 2016, 19(1): 24-52, http://lib.cqvip.com/Qikan/Article/Detail?id=7107949999.
[18] He, Yang, Sun, Yajuan, Qin, Hong, Liu, Jian. Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations. PHYSICS OF PLASMAS[J]. 2016, 23(9): http://dx.doi.org/10.1063/1.4962573.
[19] Qin, Hong, Liu, Jian, Xiao, Jianyuan, Zhang, Ruili, He, Yang, Wang, Yulei, Sun, Yajuan, Burby, Joshua W, Ellison, Leland, Zhou, Yao. Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov-Maxwell equations. NUCLEAR FUSION[J]. 2016, 56(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000367934400002.
[20] Zhang, Ruili, Liu, Jian, Qin, Hong, Wang, Yulei, He, Yang, Sun, Yajuan. Volume-preserving algorithm for secular relativistic dynamics of charged particles. PHYSICS OF PLASMAS[J]. 2015, 22(4): http://dx.doi.org/10.1063/1.4916570.
[21] Xiao, Jianyuan, Qin, Hong, Liu, Jian, He, Yang, Zhang, Ruili, Sun, Yajuan. Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems. PHYSICS OF PLASMAS[J]. 2015, 22(11): http://dx.doi.org/10.1063/1.4935904.
[22] Cai, Wenjun, Sun, Yajuan, Wang, Yushun. Variational discretizations for the generalized Rosenau-type equations. APPLIED MATHEMATICS AND COMPUTATION[J]. 2015, 271: 860-873, https://www.webofscience.com/wos/woscc/full-record/WOS:000367819300009.
[23] He, Yang, Qin, Hong, Sun, Yajuan, Xiao, Jianyuan, Zhang, Ruili, Liu, Jian. Hamiltonian time integrators for Vlasov-Maxwell equations. PHYSICS OF PLASMAS[J]. 2015, 22(12): http://dx.doi.org/10.1063/1.4938034.
[24] Yang He, Yajuan Sun, Zaijiu Shang. INTEGRABLE DISCRETISATION OF THE LOTKA-VOLTERRA SYSTEM. 计算数学:英文版[J]. 2015, 468-494, http://lib.cqvip.com/Qikan/Article/Detail?id=666299144.
[25] He, Yang, Sun, Yajuan, Liu, Jian, Qin, Hong. Volume-preserving algorithms for charged particle dynamics. JOURNAL OF COMPUTATIONAL PHYSICS[J]. 2015, 281: 135-147, http://dx.doi.org/10.1016/j.jcp.2014.10.032.
[26] He, Yang, Sun, Yajuan, Shang, Zaijiu. INTEGRABLE DISCRETISATION OF THE LOTKA-VOLTERRA SYSTEM. JOURNAL OF COMPUTATIONAL MATHEMATICS[J]. 2015, 33(5): 468-494, http://lib.cqvip.com/Qikan/Article/Detail?id=666299144.
[27] McLachlan, Robert I, Ryland, Brett N, Sun, Yajuan. HIGH ORDER MULTISYMPLECTIC RUNGE-KUTTA METHODS. SIAM JOURNAL ON SCIENTIFIC COMPUTING[J]. 2014, 36(5): A2199-A2226, https://www.webofscience.com/wos/woscc/full-record/WOS:000346123200005.
[28] Brugnano, Luigi, Sun, Yajuan. Multiple invariants conserving Runge-Kutta type methods for Hamiltonian problems. NUMERICAL ALGORITHMS[J]. 2014, 65(3): 611-632, https://www.webofscience.com/wos/woscc/full-record/WOS:000332585200014.
[29] Tang, Wensheng, Sun, Yajuan. Construction of Runge-Kutta type methods for solving ordinary differential equations. APPLIED MATHEMATICS AND COMPUTATION[J]. 2014, 234: 179-191, http://dx.doi.org/10.1016/j.amc.2014.02.042.
[30] Qin, Hong, Zhang, Shuangxi, Xiao, Jianyuan, Liu, Jian, Sun, Yajuan, Tang, William M. Why is Boris algorithm so good?. PHYSICS OF PLASMAS[J]. 2013, 20(8): http://dx.doi.org/10.1063/1.4818428.
[31] Tang, Wensheng, Sun, Yajuan. Time finite element methods: A unified framework for numerical discretizations of ODEs. APPLIED MATHEMATICS AND COMPUTATION[J]. 2012, 219(4): 2158-2179, http://dx.doi.org/10.1016/j.amc.2012.08.062.
[32] 孙雅娟. A new approach to construct Runge-Kutta type methods and geometric numerical integrators. AIP Conf. Proc.. 2012, [33] Chen, Yao, Sun, Yajuan, Tang, Yifa. Energy-preserving numerical methods for Landau-Lifshitz equation. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL[J]. 2011, 44(29): https://www.webofscience.com/wos/woscc/full-record/WOS:000292542100014.
[34] Sun, Y, Tse, P S P. Symplectic and multisymplectic numerical methods for Maxwell's equations. JOURNAL OF COMPUTATIONAL PHYSICS[J]. 2011, 230(5): 2076-2094, http://dx.doi.org/10.1016/j.jcp.2010.12.006.
[35] McLachlan, R I, Sun, Y, Tse, P S P. LINEAR STABILITY OF PARTITIONED RUNGE-KUTTA METHODS. SIAM JOURNAL ON NUMERICAL ANALYSIS[J]. 2011, 49(1): 232-263, https://www.webofscience.com/wos/woscc/full-record/WOS:000287696800011.
[36] Sun, Yajuan. A class of volume-preserving numerical algorithms. APPLIED MATHEMATICS AND COMPUTATION[J]. 2008, 206(2): 841-852, https://www.webofscience.com/wos/woscc/full-record/WOS:000261686800040.
[37] Hong, Jialin, Sun, Yajuan. Generating functions of multi-symplectic RK methods via DW Hamilton-Jacobi equations. NUMERISCHE MATHEMATIK[J]. 2008, 110(4): 491-519, http://dx.doi.org/10.1007/s00211-008-0170-x.
[38] 孙雅娟. Generating functions of multi-symplectic PRK methods via DW Hamilton--Jacobi equations. Numer. Math.. 2008, [39] Yajuan Sun. Quadratic invariants and multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs. 2007, 106(4): http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=4185&recid=&FileName=SSJD00002479605&DbName=SSJD_01&DbCode=SSJD&yx=&pr=&URLID=&bsm=.
[40] Sun, Yajuan. Quadratic invariants and multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs. NUMERISCHE MATHEMATIK[J]. 2007, 106(4): 691-715, http://dx.doi.org/10.1007/s00211-007-0073-2.
[41] 孙雅娟. Structure preserving schemes for Birkhoffian systems. Int. J. Pure Appl. Math.. 2007, [42] Li, Qinghong, Sun, Yajuan, Wang, Yushun. On multisymplectic integrators based on Runge-Kutta-Nystrom methods for Hamiltonian wave equations. APPLIED MATHEMATICS AND COMPUTATION[J]. 2006, 182(2): 1056-1063, https://www.webofscience.com/wos/woscc/full-record/WOS:000243202500010.
[43] 孙雅娟. The generating function method for Birkhoffian systems. Phys. Lett. A. 2005, [44] 孙雅娟. Multi-symplectic schemes for the RLW equations. JCOMPUTMATH. 2004, [45] 孙雅娟. Variational integrator for higher order differential equations. J. Comput. Math.. 2003, [46] 孙雅娟. New multi-symplectic difference schemes for nonlinear wave equations. 2002, [47] Sun, YJ, Qin, MZ. Construction of multisymplectic schemes of any finite order for modified wave equations. JOURNALOFMATHEMATICALPHYSICS[J]. 2000, 41(11): 7854-7868, https://www.webofscience.com/wos/woscc/full-record/WOS:000089990200040.
[48] 孙雅娟, 阿拉坦仓, 王云波. 一类带强耗散项非线性拟抛物型方程的吸引子. 内蒙古大学学报:自然科学版[J]. 1999, 30(4): 422-, http://lib.cqvip.com/Qikan/Article/Detail?id=3540975.
[49] 孙雅娟. 修正的Navier—Stokes方程的一个存在性定理. 内蒙古大学学报:自然科学版[J]. 1997, 28(4): 456-, http://lib.cqvip.com/Qikan/Article/Detail?id=2587023.
[50] 孙雅娟. 一类修正的Navier-Stokes方程的吸引子. 内蒙古大学学报(自然科学版). 1997, [51] Celledoni, Elena, Owren, Brynjulf, Sun, Yajuan. The minimal stage, energy preserving Runge-Kutta method for polynomial Hamiltonian systems is the Averaged Vector Field method. http://arxiv.org/abs/1203.3252.

科研活动

   
科研项目
( 1 ) 计算电磁学高稳定度辛算法研究, 参与, 国家级, 2010-01--2013-12
( 2 ) 复杂装备研发数字化工具中的计算力学和多场耦合若干前沿问题, 参与, 国家级, 2010-01--2014-08
( 3 ) 科学与工程计算的方法和应用, 参与, 国家级, 2011-01--2016-12
( 4 ) 几何数值积分及其在常微分方程和偏微分方程中的应用, 主持, 国家级, 2013-01--2016-12
( 5 ) 磁约束聚变等离子体模拟的几何方法及理论, 主持, 国家级, 2014-01--2018-12
( 6 ) 保结构算法, 主持, 国家级, 2015-04--2017-03
( 7 ) 等离子体物理中的模型方程及其高效算法的理论和数值研究, 主持, 国家级, 2018-01--2021-12

工作经历

   
工作简历
2015-04~现在, 数学与系统科学研究院, 研究员
2010-07~2011-01,新西兰Massey大学, Visiting Research Fellow
2008-03~2015-03,数学与系统科学研究院, 副研究员
2007-03~2008-03,数学与系统科学研究院计算数学所, 副研究员
2004-06~2005-09,澳大利亚LaTrobe大学, Postdoctral Fellow
2003-06~2007-03,数学与系统科学研究院, 助理研究员
2001-06~2003-06,数学与系统科学研究院数学所, 博士后