发表论文
[1] Yang, Lu, Liu, Zepeng, Shen, Xi, Li, Shuwei, Hu, Zhiwei, Kong, Qingyu, Ma, Jun, Li, Jiedong, Lin, HongJi, Chen, ChienTe, Chen, JinMing, Haw, ShuChih, Wang, Xuefeng, Yu, Richeng, Wang, Zhaoxiang, Chen, Liquan. Effect of vacancy-tailored Mn3+ spinning on enhancing structural stability. ENERGY STORAGE MATERIALS[J]. 2022, 44: 231-238, http://dx.doi.org/10.1016/j.ensm.2021.10.024.[2] 翁素婷, 刘泽鹏, 杨高靖, 张思蒙, 张啸, 方遒, 李叶晶, 王兆翔, 王雪锋, 陈立泉. 冷冻电镜表征锂电池中的辐照敏感材料. 储能科学与技术[J]. 2022, 11(3): 760-780, http://lib.cqvip.com/Qikan/Article/Detail?id=7106754917.[3] Yang, Lu, Liu, Zepeng, Shen, Xi, Li, Shuwei, Hu, Zhiwei, Kong, Qingyu, Ma, Jun, Li, Jiedong, Lin, HongJi, Chen, ChienTe, Chen, JinMing, Haw, ShuChih, Wang, Xuefeng, Yu, Richeng, Wang, Zhaoxiang, Chen, Liquan. Effect of vacancy-tailored Mn3+ spinning on enhancing structural stability. ENERGY STORAGE MATERIALS[J]. 2022, 44: 231-238, http://dx.doi.org/10.1016/j.ensm.2021.10.024.[4] 翁素婷, 刘泽鹏, 杨高靖, 张思蒙, 张啸, 方遒, 李叶晶, 王兆翔, 王雪锋, 陈立泉. 冷冻电镜表征锂电池中的辐照敏感材料. 储能科学与技术[J]. 2022, 11(3): 760-780, http://lib.cqvip.com/Qikan/Article/Detail?id=7106754917.[5] Liu, Qiuyan, Yang, Gaojing, Li, Shuwei, Zhang, Simeng, Chen, Renjie, Wang, Zhaoxiang, Chen, Liquan. Synergy Effect of Trimethyl Borate on Protecting High-Voltage Cathode Materials in Dual-Additive Electrolytes. ACS APPLIED MATERIALS & INTERFACES[J]. 2021, 13(18): 21459-21466, http://dx.doi.org/10.1021/acsami.1c04389.[6] Zhaoxiang Wang. Phase Diagram Determined Lithium Plating/Stripping Behaviors on Lithiophilic Substrates. ACS Energy Letters. 2021, [7] Yuan, Shouyi, Weng, Suting, Wang, Fei, Dong, Xiaoli, Wang, Yonggang, Wang, Zhaoxiang, Shen, Cai, Bao, Junwei Lucas, Wang, Xuefeng, Xia, Yongyao. Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition. NANO ENERGY[J]. 2021, 83: http://dx.doi.org/10.1016/j.nanoen.2021.105847.[8] Yang, Gaojing, Zhang, Simeng, Weng, Suting, Li, Xiaoyun, Wang, Xuefeng, Wang, Zhaoxiang, Chen, Liquan. Anionic Effect on Enhancing the Stability of a Solid Electrolyte Interphase Film for Lithium Deposition on Graphite. NANO LETTERS[J]. 2021, 21(12): 5316-5323, http://dx.doi.org/10.1021/acs.nanolett.1c01436.[9] Liu, Qiuyan, Wang, Xuefeng, Wang, Zhaoxiang, Chen, Liquan. Composite Solid Electrolytes with High Contents of Ceramics. PROGRESS IN CHEMISTRY[J]. 2021, 33(1): 124-135, https://www.webofscience.com/wos/woscc/full-record/WOS:000634594700011.[10] Yang, Gaojing, Liu, Zepeng, Weng, Suting, Zhang, Qinghua, Wang, Xuefeng, Wang, Zhaoxiang, Gu, Lin, Chen, Liquan. Iron carbide allured lithium metal storage in carbon nanotube cavities. ENERGY STORAGE MATERIALS[J]. 2021, 36: 459-465, http://dx.doi.org/10.1016/j.ensm.2021.01.022.[11] 刘秋艳, 王雪锋, 王兆翔, 陈立泉. 高陶瓷含量复合固态电解质. 化学进展[J]. 2021, 33(1): 124-135, http://lib.cqvip.com/Qikan/Article/Detail?id=7104099134.[12] Zhang, Simeng, Yang, Gaojing, Liu, Zepeng, Li, Xiaoyun, Wang, Xuefeng, Chen, Renjie, Wu, Feng, Wang, Zhaoxiang, Chen, Liquan. Competitive Solvation Enhanced Stability of Lithium Metal Anode in Dual-Salt Electrolyte. NANO LETTERS[J]. 2021, 21(7): 3310-3317, http://dx.doi.org/10.1021/acs.nanolett.1c00848.[13] Liu, Qiuyan, Yang, Gaojing, Li, Shuwei, Zhang, Simeng, Chen, Renjie, Wang, Zhaoxiang, Chen, Liquan. Synergy Effect of Trimethyl Borate on Protecting High-Voltage Cathode Materials in Dual-Additive Electrolytes. ACS APPLIED MATERIALS & INTERFACES[J]. 2021, 13(18): 21459-21466, http://dx.doi.org/10.1021/acsami.1c04389.[14] Zhaoxiang Wang. Phase Diagram Determined Lithium Plating/Stripping Behaviors on Lithiophilic Substrates. ACS Energy Letters. 2021, [15] Yuan, Shouyi, Weng, Suting, Wang, Fei, Dong, Xiaoli, Wang, Yonggang, Wang, Zhaoxiang, Shen, Cai, Bao, Junwei Lucas, Wang, Xuefeng, Xia, Yongyao. Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition. NANO ENERGY[J]. 2021, 83: http://dx.doi.org/10.1016/j.nanoen.2021.105847.[16] Yang, Gaojing, Zhang, Simeng, Weng, Suting, Li, Xiaoyun, Wang, Xuefeng, Wang, Zhaoxiang, Chen, Liquan. Anionic Effect on Enhancing the Stability of a Solid Electrolyte Interphase Film for Lithium Deposition on Graphite. NANO LETTERS[J]. 2021, 21(12): 5316-5323, http://dx.doi.org/10.1021/acs.nanolett.1c01436.[17] Liu, Qiuyan, Wang, Xuefeng, Wang, Zhaoxiang, Chen, Liquan. Composite Solid Electrolytes with High Contents of Ceramics. PROGRESS IN CHEMISTRY[J]. 2021, 33(1): 124-135, https://www.webofscience.com/wos/woscc/full-record/WOS:000634594700011.[18] Yang, Gaojing, Liu, Zepeng, Weng, Suting, Zhang, Qinghua, Wang, Xuefeng, Wang, Zhaoxiang, Gu, Lin, Chen, Liquan. Iron carbide allured lithium metal storage in carbon nanotube cavities. ENERGY STORAGE MATERIALS[J]. 2021, 36: 459-465, http://dx.doi.org/10.1016/j.ensm.2021.01.022.[19] 刘秋艳, 王雪锋, 王兆翔, 陈立泉. 高陶瓷含量复合固态电解质. 化学进展[J]. 2021, 33(1): 124-135, http://lib.cqvip.com/Qikan/Article/Detail?id=7104099134.[20] Zhang, Simeng, Yang, Gaojing, Liu, Zepeng, Li, Xiaoyun, Wang, Xuefeng, Chen, Renjie, Wu, Feng, Wang, Zhaoxiang, Chen, Liquan. Competitive Solvation Enhanced Stability of Lithium Metal Anode in Dual-Salt Electrolyte. NANO LETTERS[J]. 2021, 21(7): 3310-3317, http://dx.doi.org/10.1021/acs.nanolett.1c00848.[21] Zhaoxiang Wang. Stacking Faults Hindered Lithium Insertion in Li2RuO3. Advanced Energy Materials. 2020, [22] Yang, Gaojing, Li, Xiaoyun, Guan, Zhaoruxin, Tong, Yuxin, Xu, Bin, Wang, Xuefeng, Wang, Zhaoxiang, Chen, Liquan. Insights into Lithium and Sodium Storage in Porous Carbon. NANO LETTERS[J]. 2020, 20(5): 3836-3843, https://www.webofscience.com/wos/woscc/full-record/WOS:000535255300117.[23] Zhang, Simeng, Yang, Gaojing, Liu, Shuai, Li, Xiaoyun, Wang, Xuefeng, Wang, Zhaoxiang, Chen, Liquan. Understanding the dropping of lithium plating potential in carbonate electrolyte. NANO ENERGY[J]. 2020, 70: http://dx.doi.org/10.1016/j.nanoen.2020.104486.[24] Yang, Lu, Liu, Zepeng, Liu, Shuai, Han, Miao, Zhang, Qinghua, Gu, Lin, Li, Qinghao, Hu, Zhiwei, Wang, Xuefeng, Lin, HongJi, Chen, ChienTe, Chen, JinMing, Haw, ShuChih, Wang, Zhaoxiang, Chen, Liquan. Superiority of native vacancies in activating anionic redox in P2-type Na-2/3Mn7/9Mg1/9 square(1/9)O-2. NANO ENERGY[J]. 2020, 78: http://dx.doi.org/10.1016/j.nanoen.2020.105172.[25] Zhang, Qiangqiang, Lu, Yaxiang, Yu, Hao, Yang, Gaojing, Liu, Qiuyan, Wang, Zhaoxiang, Chen, Liquan, Hu, YongSheng. PEO-NaPF6 Blended Polymer Electrolyte for Solid State Sodium Battery. JOURNAL OF THE ELECTROCHEMICAL SOCIETY[J]. 2020, 167(7): https://www.webofscience.com/wos/woscc/full-record/WOS:000524023100001.[26] Jia, Weishang, Liu, Yuchi, Wang, Zihao, Qing, Fangzhu, Li, Jingze, Wang, Yi, Xiao, Ruijuan, Zhou, Aijun, Li, Guobao, Yu, Xiqian, Hu, YongSheng, Li, Hong, Wang, Zhaoxiang, Huang, Xuejie, Chen, Liquan. Low-temperature fusion fabrication of Li-Cu alloy anode with in situ formed 3D framework of inert LiCux nanowires for excellent Li storage performance. SCIENCE BULLETIN[J]. 2020, 65(22): 1907-1915, http://dx.doi.org/10.1016/j.scib.2020.07.012.[27] Han, Miao, Liu, Zepeng, Shen, Xing, Yang, Lu, Shen, Xi, Zhang, Qinghua, Liu, Xiaozhi, Wang, Junyang, Lin, HongJi, Chen, ChienTe, Pao, ChihWen, Chen, JengLung, Kong, Qingyu, Yu, Xiqian, Yu, Richeng, Gu, Lin, Hu, Zhiwei, Wang, Xuefeng, Wang, Zhaoxiang, Chen, Liquan. Stacking Faults Hinder Lithium Insertion in Li2RuO3. ADVANCED ENERGY MATERIALS[J]. 2020, 10(48): https://www.webofscience.com/wos/woscc/full-record/WOS:000589184800001.[28] Jiao, Junyu, Xiao, Ruijuan, Han, Miao, Wang, Zhaoxiang, Chen, Liquan. Impact of hydrogen on lithium storage on graphene edges. APPLIED SURFACE SCIENCE[J]. 2020, 515: http://dx.doi.org/10.1016/j.apsusc.2020.145886.[29] Li, Shuai, Lu, Xia, Shi, Siqi, Chen, Liquan, Wang, Zhaoxiang, Zhao, Yusheng. Europium-Doped Ceria Nanowires as Anode for Solid Oxide Fuel Cells. FRONTIERS IN CHEMISTRY[J]. 2020, 8: https://doaj.org/article/ef9ac915ccf24a7794a6c1e9bf11de70.[30] Lu Yang, Zepeng Liu, Shuai Liu, Miao Han, Qinghua Zhang, Lin Gu, Qinghao Li, Zhiwei Hu, Xuefeng Wang, HongJi Lin, ChienTe Chen, JinMing Chen, ShuChih Haw, Zhaoxiang Wang, Liquan Chen. Superiority of native vacancies in activating anionic redox in P2-type Na2/3Mn7/9Mg1/9□1/9O2. Nano Energy. 2020, 78: http://dx.doi.org/10.1016/j.nanoen.2020.105172.[31] Han, Miao, Jiao, Junyu, Liu, Zepeng, Shen, Xi, Zhang, Qinghua, Lin, HongJi, Chen, ChienTe, Kong, Qingyu, Pang, Wei Kong, Guo, Zaiping, Yu, Richeng, Gu, Lin, Hu, Zhiwei, Wang, Zhaoxiang, Chen, Liquan. Eliminating Transition Metal Migration and Anionic Redox to Understand Voltage Hysteresis of Lithium-Rich Layered Oxides. ADVANCED ENERGY MATERIALS[J]. 2020, 10(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000509824200001.[32] Yang, Yang, Fan, Lijuan, Ngoc Duy Pham, Yao, Disheng, Wang, Teng, Wang, Zhaoxiang, Wang, Hongxia. Self-charging flexible solar capacitors based on integrated perovskite solar cells and quasi-solid-state supercapacitors fabricated at low temperature. JOURNAL OF POWER SOURCES[J]. 2020, 479: http://dx.doi.org/10.1016/j.jpowsour.2020.229046.[33] Zhaoxiang Wang. Stacking Faults Hindered Lithium Insertion in Li2RuO3. Advanced Energy Materials. 2020, [34] Yang, Gaojing, Li, Xiaoyun, Guan, Zhaoruxin, Tong, Yuxin, Xu, Bin, Wang, Xuefeng, Wang, Zhaoxiang, Chen, Liquan. Insights into Lithium and Sodium Storage in Porous Carbon. NANO LETTERS[J]. 2020, 20(5): 3836-3843, https://www.webofscience.com/wos/woscc/full-record/WOS:000535255300117.[35] Zhang, Simeng, Yang, Gaojing, Liu, Shuai, Li, Xiaoyun, Wang, Xuefeng, Wang, Zhaoxiang, Chen, Liquan. Understanding the dropping of lithium plating potential in carbonate electrolyte. NANO ENERGY[J]. 2020, 70: http://dx.doi.org/10.1016/j.nanoen.2020.104486.[36] Yang, Lu, Liu, Zepeng, Liu, Shuai, Han, Miao, Zhang, Qinghua, Gu, Lin, Li, Qinghao, Hu, Zhiwei, Wang, Xuefeng, Lin, HongJi, Chen, ChienTe, Chen, JinMing, Haw, ShuChih, Wang, Zhaoxiang, Chen, Liquan. Superiority of native vacancies in activating anionic redox in P2-type Na-2/3Mn7/9Mg1/9 square(1/9)O-2. NANO ENERGY[J]. 2020, 78: http://dx.doi.org/10.1016/j.nanoen.2020.105172.[37] Zhang, Qiangqiang, Lu, Yaxiang, Yu, Hao, Yang, Gaojing, Liu, Qiuyan, Wang, Zhaoxiang, Chen, Liquan, Hu, YongSheng. PEO-NaPF6 Blended Polymer Electrolyte for Solid State Sodium Battery. JOURNAL OF THE ELECTROCHEMICAL SOCIETY[J]. 2020, 167(7): https://www.webofscience.com/wos/woscc/full-record/WOS:000524023100001.[38] Jia, Weishang, Liu, Yuchi, Wang, Zihao, Qing, Fangzhu, Li, Jingze, Wang, Yi, Xiao, Ruijuan, Zhou, Aijun, Li, Guobao, Yu, Xiqian, Hu, YongSheng, Li, Hong, Wang, Zhaoxiang, Huang, Xuejie, Chen, Liquan. Low-temperature fusion fabrication of Li-Cu alloy anode with in situ formed 3D framework of inert LiCux nanowires for excellent Li storage performance. SCIENCE BULLETIN[J]. 2020, 65(22): 1907-1915, http://dx.doi.org/10.1016/j.scib.2020.07.012.[39] Han, Miao, Liu, Zepeng, Shen, Xing, Yang, Lu, Shen, Xi, Zhang, Qinghua, Liu, Xiaozhi, Wang, Junyang, Lin, HongJi, Chen, ChienTe, Pao, ChihWen, Chen, JengLung, Kong, Qingyu, Yu, Xiqian, Yu, Richeng, Gu, Lin, Hu, Zhiwei, Wang, Xuefeng, Wang, Zhaoxiang, Chen, Liquan. Stacking Faults Hinder Lithium Insertion in Li2RuO3. ADVANCED ENERGY MATERIALS[J]. 2020, 10(48): https://www.webofscience.com/wos/woscc/full-record/WOS:000589184800001.[40] Jiao, Junyu, Xiao, Ruijuan, Han, Miao, Wang, Zhaoxiang, Chen, Liquan. Impact of hydrogen on lithium storage on graphene edges. APPLIED SURFACE SCIENCE[J]. 2020, 515: http://dx.doi.org/10.1016/j.apsusc.2020.145886.[41] Li, Shuai, Lu, Xia, Shi, Siqi, Chen, Liquan, Wang, Zhaoxiang, Zhao, Yusheng. Europium-Doped Ceria Nanowires as Anode for Solid Oxide Fuel Cells. FRONTIERS IN CHEMISTRY[J]. 2020, 8: https://doaj.org/article/ef9ac915ccf24a7794a6c1e9bf11de70.[42] Lu Yang, Zepeng Liu, Shuai Liu, Miao Han, Qinghua Zhang, Lin Gu, Qinghao Li, Zhiwei Hu, Xuefeng Wang, HongJi Lin, ChienTe Chen, JinMing Chen, ShuChih Haw, Zhaoxiang Wang, Liquan Chen. Superiority of native vacancies in activating anionic redox in P2-type Na2/3Mn7/9Mg1/9□1/9O2. Nano Energy. 2020, 78: http://dx.doi.org/10.1016/j.nanoen.2020.105172.[43] Han, Miao, Jiao, Junyu, Liu, Zepeng, Shen, Xi, Zhang, Qinghua, Lin, HongJi, Chen, ChienTe, Kong, Qingyu, Pang, Wei Kong, Guo, Zaiping, Yu, Richeng, Gu, Lin, Hu, Zhiwei, Wang, Zhaoxiang, Chen, Liquan. Eliminating Transition Metal Migration and Anionic Redox to Understand Voltage Hysteresis of Lithium-Rich Layered Oxides. ADVANCED ENERGY MATERIALS[J]. 2020, 10(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000509824200001.[44] Yang, Yang, Fan, Lijuan, Ngoc Duy Pham, Yao, Disheng, Wang, Teng, Wang, Zhaoxiang, Wang, Hongxia. Self-charging flexible solar capacitors based on integrated perovskite solar cells and quasi-solid-state supercapacitors fabricated at low temperature. JOURNAL OF POWER SOURCES[J]. 2020, 479: http://dx.doi.org/10.1016/j.jpowsour.2020.229046.[45] Li, Xiaoyun, Yang, Gaojing, Zhang, Simeng, Wang, Zhaoxiang, Chen, Liquan. Improved lithium deposition on silver plated carbon fiber paper. NANO ENERGY[J]. 2019, 66: http://dx.doi.org/10.1016/j.nanoen.2019.104144.[46] Wang, Zhaoxiang, Ma, Jun, Gao, Yurui, Liu, Shuai, Feng, Xin, Chen, Liquan. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials. PROGRESS IN CHEMISTRY[J]. 2019, 31(11): 1591-1614, https://www.webofscience.com/wos/woscc/full-record/WOS:000501469800010.[47] Yang, Gaojing, Zhang, Simeng, Tong, Yuxin, Li, Xiaoyun, Wang, Zhaoxiang, Chen, Liquan. Minimizing carbon particle size to improve lithium deposition on natural graphite. CARBON[J]. 2019, 155: 9-15, http://dx.doi.org/10.1016/j.carbon.2019.08.023.[48] Yang, Gaojing, Li, Yejing, Liu, Shuai, Zhang, Simeng, Wang, Zhaoxiang, Chen, Liquan. LiFSI to improve lithium deposition in carbonate electrolyte. ENERGY STORAGE MATERIALS[J]. 2019, 23: 350-357, https://www.webofscience.com/wos/woscc/full-record/WOS:000495867200033.[49] Liu, Shuai, Liu, Zepeng, Shen, Xi, Wang, Xuelong, Liao, ShengChieh, Yu, Richeng, Wang, Zhaoxiang, Hu, Zhiwei, Chen, ChienTe, Yu, Xiqian, Yang, Xiaoqing, Chen, Liquan. Li-Ti Cation Mixing Enhanced Structural and Performance Stability of Li-Rich Layered Oxide. ADVANCED ENERGY MATERIALS[J]. 2019, 9(32): [50] Zhaoxiang Wang. Trimethyl Borate as Film-forming Additive to Improve High-voltage Performances of Cathode Materials. ACS Applied Materials and Interfaces. 2019, [51] Yang, Yang, Ngoc Duy Pham, Yao, Disheng, Fan, Lijuan, Minh Tam Hoang, Tiong, Vincent Tiing, Wang, Zhaoxiang, Zhu, Huaiyong, Wang, Hongxia. Interface Engineering to Eliminate Hysteresis of Carbon-Based Planar Heterojunction Perovskite Solar Cells via CuSCN Incorporation. ACS APPLIED MATERIALS & INTERFACES[J]. 2019, 11(31): 28431-28441, http://dx.doi.org/10.1021/acsami.9b07318.[52] Gao, Yurui, Wang, Zhaoxiang, Lu, Gang. Atomistic understanding of structural evolution, ion transport and oxygen stability in layered NaFeO2. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2019, 7(6): 2619-2625, [53] Li, Yejing, Wang, Xuefeng, Gao, Yurui, Zhang, Qinghua, Tan, Guoqiong, Kong, Qingyu, Bak, Seongmin, Lu, Gang, Yang, XiaoQing, Gu, Lin, Lu, Jun, Amine, Khalil, Wang, Zhaoxiang, Chen, Liquan. Native Vacancy Enhanced Oxygen Redox Reversibility and Structural Robustness. ADVANCED ENERGY MATERIALS[J]. 2019, 9(4): [54] 王兆翔, 马君, 高玉瑞, 刘帅, 冯欣, 陈立泉. 稳定富锂层状氧化物正极材料的结构与性能. 化学进展[J]. 2019, 31(11): 1591-1614, http://lib.cqvip.com/Qikan/Article/Detail?id=7100632373.[55] Sun, Ning, Guan, Zhaoruxin, Liu, Yuwen, Cao, Yuliang, Zhu, Qizhen, Liu, Huan, Wang, Zhaoxiang, Zhang, Peng, Xu, Bin. Extended "Adsorption-Insertion" Model: A New Insight into the Sodium Storage Mechanism of Hard Carbons. ADVANCED ENERGY MATERIALS[J]. 2019, 9(32): [56] Yang, Gaojing, Li, Yejing, Tong, Yuxin, Qiu, Jiliang, Liu, Shuai, Zhang, Simeng, Guan, Zhaoruxin, Xu, Bin, Wang, Zhaoxiang, Chen, Liquan. Lithium Plating and Stripping on Carbon Nanotube Sponge. NANO LETTERS[J]. 2019, 19(1): 494-499, https://www.webofscience.com/wos/woscc/full-record/WOS:000455561300064.[57] Li, Xiaoyun, Yang, Gaojing, Zhang, Simeng, Wang, Zhaoxiang, Chen, Liquan. Improved lithium deposition on silver plated carbon fiber paper. NANO ENERGY[J]. 2019, 66: http://dx.doi.org/10.1016/j.nanoen.2019.104144.[58] Wang, Zhaoxiang, Ma, Jun, Gao, Yurui, Liu, Shuai, Feng, Xin, Chen, Liquan. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials. PROGRESS IN CHEMISTRY[J]. 2019, 31(11): 1591-1614, https://www.webofscience.com/wos/woscc/full-record/WOS:000501469800010.[59] Yang, Gaojing, Zhang, Simeng, Tong, Yuxin, Li, Xiaoyun, Wang, Zhaoxiang, Chen, Liquan. Minimizing carbon particle size to improve lithium deposition on natural graphite. CARBON[J]. 2019, 155: 9-15, http://dx.doi.org/10.1016/j.carbon.2019.08.023.[60] Yang, Gaojing, Li, Yejing, Liu, Shuai, Zhang, Simeng, Wang, Zhaoxiang, Chen, Liquan. LiFSI to improve lithium deposition in carbonate electrolyte. ENERGY STORAGE MATERIALS[J]. 2019, 23: 350-357, https://www.webofscience.com/wos/woscc/full-record/WOS:000495867200033.[61] Liu, Shuai, Liu, Zepeng, Shen, Xi, Wang, Xuelong, Liao, ShengChieh, Yu, Richeng, Wang, Zhaoxiang, Hu, Zhiwei, Chen, ChienTe, Yu, Xiqian, Yang, Xiaoqing, Chen, Liquan. Li-Ti Cation Mixing Enhanced Structural and Performance Stability of Li-Rich Layered Oxide. ADVANCED ENERGY MATERIALS[J]. 2019, 9(32): [62] Zhaoxiang Wang. Trimethyl Borate as Film-forming Additive to Improve High-voltage Performances of Cathode Materials. ACS Applied Materials and Interfaces. 2019, [63] Yang, Yang, Ngoc Duy Pham, Yao, Disheng, Fan, Lijuan, Minh Tam Hoang, Tiong, Vincent Tiing, Wang, Zhaoxiang, Zhu, Huaiyong, Wang, Hongxia. Interface Engineering to Eliminate Hysteresis of Carbon-Based Planar Heterojunction Perovskite Solar Cells via CuSCN Incorporation. ACS APPLIED MATERIALS & INTERFACES[J]. 2019, 11(31): 28431-28441, http://dx.doi.org/10.1021/acsami.9b07318.[64] Gao, Yurui, Wang, Zhaoxiang, Lu, Gang. Atomistic understanding of structural evolution, ion transport and oxygen stability in layered NaFeO2. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2019, 7(6): 2619-2625, [65] Li, Yejing, Wang, Xuefeng, Gao, Yurui, Zhang, Qinghua, Tan, Guoqiong, Kong, Qingyu, Bak, Seongmin, Lu, Gang, Yang, XiaoQing, Gu, Lin, Lu, Jun, Amine, Khalil, Wang, Zhaoxiang, Chen, Liquan. Native Vacancy Enhanced Oxygen Redox Reversibility and Structural Robustness. ADVANCED ENERGY MATERIALS[J]. 2019, 9(4): [66] 王兆翔, 马君, 高玉瑞, 刘帅, 冯欣, 陈立泉. 稳定富锂层状氧化物正极材料的结构与性能. 化学进展[J]. 2019, 31(11): 1591-1614, http://lib.cqvip.com/Qikan/Article/Detail?id=7100632373.[67] Sun, Ning, Guan, Zhaoruxin, Liu, Yuwen, Cao, Yuliang, Zhu, Qizhen, Liu, Huan, Wang, Zhaoxiang, Zhang, Peng, Xu, Bin. Extended "Adsorption-Insertion" Model: A New Insight into the Sodium Storage Mechanism of Hard Carbons. ADVANCED ENERGY MATERIALS[J]. 2019, 9(32): [68] Yang, Gaojing, Li, Yejing, Tong, Yuxin, Qiu, Jiliang, Liu, Shuai, Zhang, Simeng, Guan, Zhaoruxin, Xu, Bin, Wang, Zhaoxiang, Chen, Liquan. Lithium Plating and Stripping on Carbon Nanotube Sponge. NANO LETTERS[J]. 2019, 19(1): 494-499, https://www.webofscience.com/wos/woscc/full-record/WOS:000455561300064.[69] Liu, Shuai, Liu, Zepeng, Shen, Xi, Li, Weihan, Gao, Yurui, Banis, Mohammad Norouzi, Li, Minsi, Chen, Kai, Zhu, Liang, Yu, Richeng, Wang, Zhaoxiang, Sun, Xueliang, Lu, Gang, Kong, Qingyu, Bai, Xuedong, Chen, Liquan. Surface Doping to Enhance Structural Integrity and Performance of Li-Rich Layered Oxide. ADVANCED ENERGY MATERIALS[J]. 2018, 8(31): https://www.webofscience.com/wos/woscc/full-record/WOS:000452679100009.[70] Yue, Hongyun, Yang, Yange, Wang, Lan, Dong, Zhiyuan, Yin, Yanhong, Wang, Zhaoxiang, Yang, Shuting, Chen, Liquan. In situ constructed organic/inorganic hybrid interphase layers for high voltage Li-ion cells. JOURNAL OF POWER SOURCES[J]. 2018, 407: 132-136, http://dx.doi.org/10.1016/j.jpowsour.2018.10.068.[71] 刘金辉, 刘帅, 王兆翔, 马丽霞. 表面Ti掺杂对锂离子电池正极材料Li1.2Mn0.54Ni0.13Co0.13O2的改性研究. 科技创新导报[J]. 2018, 15(25): 153-157, http://lib.cqvip.com/Qikan/Article/Detail?id=7001426262.[72] Liu, Shuai, Feng, Xin, Wang, Xuelong, Shen, Xi, Hu, Enyuan, Xiao, Ruijuan, Yu, Richeng, Yang, Haitao, Song, Ningning, Wang, Zhaoxiang, Yang, Xiaoqing, Chen, Liquan. Another Strategy, Detouring Potential Decay by Fast Completion of Cation Mixing. ADVANCED ENERGY MATERIALS[J]. 2018, 8(15): https://www.webofscience.com/wos/woscc/full-record/WOS:000434031400013.[73] Zhaoxiang Wang. Surface Doping to Enhance Structural Integrity and Performances of Li-rich Layered Oxide. Advanced Energy Materials. 2018, [74] Li, Yejing, Gao, Yurui, Wang, Xuefeng, Shen, Xi, Kong, Qingyu, Yu, Richeng, Lu, Gang, Wang, Zhaoxiang, Chen, Liquan. Iron migration and oxygen oxidation during sodium extraction from NaFeO2. NANO ENERGY[J]. 2018, 47: 519-526, http://dx.doi.org/10.1016/j.nanoen.2018.03.007.[75] Zhaoxiang Wang. Reduction Depth Dependent Structural Reversibility of Sn3(PO4)2. ACS Applied Energy Materials. 2018, [76] Fan, Lijuan, Guo, Xianwei, Shen, Lian, Yang, Gaojing, Liu, Shuai, Tian, Na, Wang, Zhaoxiang, Chen, Liquan. Reduction Depth Dependent Structural Reversibility of Sn-3(PO4)(2). ACS APPLIED ENERGY MATERIALS[J]. 2018, 1(1): 129-133, https://www.webofscience.com/wos/woscc/full-record/WOS:000458705000019.[77] Mushtaq, Muhammad, Guo, XianWei, Bi, JiePeng, Wang, ZhaoXiang, Yu, HaiJun. Polymer electrolyte with composite cathode for solid-state Li-CO2 battery. RARE METALS[J]. 2018, 37(6): 520-526, http://lib.cqvip.com/Qikan/Article/Detail?id=675890823.[78] Jiao, Junyu, Xiao, Ruijuan, Tian, Meng, Wang, Zhaoxiang, Chen, Liquan. First-principles calculations on lithium and sodium adsorption on graphene edges. ELECTROCHIMICA ACTA[J]. 2018, 282: 205-212, http://dx.doi.org/10.1016/j.electacta.2018.05.200.[79] Liu, Shuai, Liu, Zepeng, Shen, Xi, Li, Weihan, Gao, Yurui, Banis, Mohammad Norouzi, Li, Minsi, Chen, Kai, Zhu, Liang, Yu, Richeng, Wang, Zhaoxiang, Sun, Xueliang, Lu, Gang, Kong, Qingyu, Bai, Xuedong, Chen, Liquan. Surface Doping to Enhance Structural Integrity and Performance of Li-Rich Layered Oxide. ADVANCED ENERGY MATERIALS[J]. 2018, 8(31): https://www.webofscience.com/wos/woscc/full-record/WOS:000452679100009.[80] Yue, Hongyun, Yang, Yange, Wang, Lan, Dong, Zhiyuan, Yin, Yanhong, Wang, Zhaoxiang, Yang, Shuting, Chen, Liquan. In situ constructed organic/inorganic hybrid interphase layers for high voltage Li-ion cells. JOURNAL OF POWER SOURCES[J]. 2018, 407: 132-136, http://dx.doi.org/10.1016/j.jpowsour.2018.10.068.[81] 刘金辉, 刘帅, 王兆翔, 马丽霞. 表面Ti掺杂对锂离子电池正极材料Li1.2Mn0.54Ni0.13Co0.13O2的改性研究. 科技创新导报[J]. 2018, 15(25): 153-157, http://lib.cqvip.com/Qikan/Article/Detail?id=7001426262.[82] Liu, Shuai, Feng, Xin, Wang, Xuelong, Shen, Xi, Hu, Enyuan, Xiao, Ruijuan, Yu, Richeng, Yang, Haitao, Song, Ningning, Wang, Zhaoxiang, Yang, Xiaoqing, Chen, Liquan. Another Strategy, Detouring Potential Decay by Fast Completion of Cation Mixing. ADVANCED ENERGY MATERIALS[J]. 2018, 8(15): https://www.webofscience.com/wos/woscc/full-record/WOS:000434031400013.[83] Zhaoxiang Wang. Surface Doping to Enhance Structural Integrity and Performances of Li-rich Layered Oxide. Advanced Energy Materials. 2018, [84] Li, Yejing, Gao, Yurui, Wang, Xuefeng, Shen, Xi, Kong, Qingyu, Yu, Richeng, Lu, Gang, Wang, Zhaoxiang, Chen, Liquan. Iron migration and oxygen oxidation during sodium extraction from NaFeO2. NANO ENERGY[J]. 2018, 47: 519-526, http://dx.doi.org/10.1016/j.nanoen.2018.03.007.[85] Zhaoxiang Wang. Reduction Depth Dependent Structural Reversibility of Sn3(PO4)2. ACS Applied Energy Materials. 2018, [86] Fan, Lijuan, Guo, Xianwei, Shen, Lian, Yang, Gaojing, Liu, Shuai, Tian, Na, Wang, Zhaoxiang, Chen, Liquan. Reduction Depth Dependent Structural Reversibility of Sn-3(PO4)(2). ACS APPLIED ENERGY MATERIALS[J]. 2018, 1(1): 129-133, https://www.webofscience.com/wos/woscc/full-record/WOS:000458705000019.[87] Mushtaq, Muhammad, Guo, XianWei, Bi, JiePeng, Wang, ZhaoXiang, Yu, HaiJun. Polymer electrolyte with composite cathode for solid-state Li-CO2 battery. RARE METALS[J]. 2018, 37(6): 520-526, http://lib.cqvip.com/Qikan/Article/Detail?id=675890823.[88] Jiao, Junyu, Xiao, Ruijuan, Tian, Meng, Wang, Zhaoxiang, Chen, Liquan. First-principles calculations on lithium and sodium adsorption on graphene edges. ELECTROCHIMICA ACTA[J]. 2018, 282: 205-212, http://dx.doi.org/10.1016/j.electacta.2018.05.200.[89] Tian, Meng, Gao, Yurui, Ouyang, Chuying, Wang, Zhaoxiang, Chen, Liquan. Design and Properties Prediction of AMCO(3)F by First-Principles Calculations. ACS APPLIED MATERIALS & INTERFACES[J]. 2017, 9(15): 13255-13261, http://dx.doi.org/10.1021/acsami.7b03304.[90] Li, Yejing, Jiao, Junyu, Bi, Jiepeng, Wang, Xuefeng, Wang, Zhaoxiang, Chen, Liquan. Controlled deposition of Li metal. NANO ENERGY[J]. 2017, 32: 241-246, http://dx.doi.org/10.1016/j.nanoen.2016.12.030.[91] Gao, Yurui, Ma, Jun, Wang, Zhaoxiang, Lu, Gang, Chen, Liquan. Vacancy-induced MnO6 distortion and its impacts on structural transition of Li2MnO3. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2017, 19(10): 7025-7031, http://ir.qibebt.ac.cn/handle/337004/9292.[92] Tian, Meng, Gao, Yurui, Xiao, Ruijuan, Wang, Zhaoxiang, Chen, Liquan. Structural stability and stabilization of Li2MoO3. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2017, 19(27): 17538-17543, http://dx.doi.org/10.1039/c7cp03594b.[93] Hao, Shuai, Shen, Xi, Tian, Meng, Yu, Richeng, Wang, Zhaoxiang, Chen, Liquan. Reversible conversion of MoS2 upon sodium extraction. NANO ENERGY[J]. 2017, 41: 217-224, http://dx.doi.org/10.1016/j.nanoen.2017.09.039.[94] Tian, Meng, Gao, Yurui, Ouyang, Chuying, Wang, Zhaoxiang, Chen, Liquan. Design and Properties Prediction of AMCO(3)F by First-Principles Calculations. ACS APPLIED MATERIALS & INTERFACES[J]. 2017, 9(15): 13255-13261, http://dx.doi.org/10.1021/acsami.7b03304.[95] Li, Yejing, Jiao, Junyu, Bi, Jiepeng, Wang, Xuefeng, Wang, Zhaoxiang, Chen, Liquan. Controlled deposition of Li metal. NANO ENERGY[J]. 2017, 32: 241-246, http://dx.doi.org/10.1016/j.nanoen.2016.12.030.[96] Gao, Yurui, Ma, Jun, Wang, Zhaoxiang, Lu, Gang, Chen, Liquan. Vacancy-induced MnO6 distortion and its impacts on structural transition of Li2MnO3. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2017, 19(10): 7025-7031, http://ir.qibebt.ac.cn/handle/337004/9292.[97] Tian, Meng, Gao, Yurui, Xiao, Ruijuan, Wang, Zhaoxiang, Chen, Liquan. Structural stability and stabilization of Li2MoO3. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2017, 19(27): 17538-17543, http://dx.doi.org/10.1039/c7cp03594b.[98] Hao, Shuai, Shen, Xi, Tian, Meng, Yu, Richeng, Wang, Zhaoxiang, Chen, Liquan. Reversible conversion of MoS2 upon sodium extraction. NANO ENERGY[J]. 2017, 41: 217-224, http://dx.doi.org/10.1016/j.nanoen.2017.09.039.[99] Feng, Xin, Gao, Yurui, Ben, Liubin, Yang, Zhenzhong, Wang, Zhaoxiang, Chen, Liquan. Enhanced electrochemical performance of Ti-doped Li1.2Mn0.54Co0.13Ni0.13O2 for lithium-ion batteries. JOURNAL OF POWER SOURCES[J]. 2016, 317: 74-80, http://dx.doi.org/10.1016/j.jpowsour.2016.03.101.[100] Fan, Lijuan, Tang, Daichun, Wang, Deyu, Wang, Zhaoxiang, Chen, Liquan. LiCoO2-catalyzed electrochemical oxidation of Li2CO3. NANO RESEARCH[J]. 2016, 9(12): 3903-3913, https://www.webofscience.com/wos/woscc/full-record/WOS:000388114400028.[101] Guan, Zhaoruxin, Shen, Xi, Yu, Richeng, Wang, Zhaoxiang, Chen, Liquan. Chemical intercalation of solvated sodium ions in graphite. ELECTROCHIMICA ACTA[J]. 2016, 222: 1365-1370, http://dx.doi.org/10.1016/j.electacta.2016.11.112.[102] Hao, Shuai, Wang, Zhaoxiang, Chen, Liquan. Amorphous SiO2 in tunnel-structured mesoporous carbon and its anode performance in Li-ion batteries. MATERIALS & DESIGN[J]. 2016, 111: 616-621, http://dx.doi.org/10.1016/j.matdes.2016.09.020.[103] Tian, Meng, Gao, Yurui, Wang, Zhaoxiang, Chen, Liquan. Understanding structural stability of monoclinic LiMnO2 and NaMnO2 upon de-intercalation. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2016, 18(26): 17345-17350, https://www.webofscience.com/wos/woscc/full-record/WOS:000379482100027.[104] Tian, Na, Gao, Yurui, Li, Yurong, Wang, Zhaoxiang, Song, Xiaoyan, Chen, Liquan. Li2C2, a High-Capacity Cathode Material for Lithium Ion Batteries. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2016, 55(2): 644-648, https://www.webofscience.com/wos/woscc/full-record/WOS:000368069200031.[105] Zhaoxiang Wang. A new high capacity cathode material for Li-ion battery. Angewandte Chemie International Edition. 2016, [106] Feng, Xin, Gao, Yurui, Ben, Liubin, Yang, Zhenzhong, Wang, Zhaoxiang, Chen, Liquan. Enhanced electrochemical performance of Ti-doped Li1.2Mn0.54Co0.13Ni0.13O2 for lithium-ion batteries. JOURNAL OF POWER SOURCES[J]. 2016, 317: 74-80, http://dx.doi.org/10.1016/j.jpowsour.2016.03.101.[107] Fan, Lijuan, Tang, Daichun, Wang, Deyu, Wang, Zhaoxiang, Chen, Liquan. LiCoO2-catalyzed electrochemical oxidation of Li2CO3. NANO RESEARCH[J]. 2016, 9(12): 3903-3913, https://www.webofscience.com/wos/woscc/full-record/WOS:000388114400028.[108] Guan, Zhaoruxin, Shen, Xi, Yu, Richeng, Wang, Zhaoxiang, Chen, Liquan. Chemical intercalation of solvated sodium ions in graphite. ELECTROCHIMICA ACTA[J]. 2016, 222: 1365-1370, http://dx.doi.org/10.1016/j.electacta.2016.11.112.[109] Hao, Shuai, Wang, Zhaoxiang, Chen, Liquan. Amorphous SiO2 in tunnel-structured mesoporous carbon and its anode performance in Li-ion batteries. MATERIALS & DESIGN[J]. 2016, 111: 616-621, http://dx.doi.org/10.1016/j.matdes.2016.09.020.[110] Tian, Meng, Gao, Yurui, Wang, Zhaoxiang, Chen, Liquan. Understanding structural stability of monoclinic LiMnO2 and NaMnO2 upon de-intercalation. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2016, 18(26): 17345-17350, https://www.webofscience.com/wos/woscc/full-record/WOS:000379482100027.[111] Tian, Na, Gao, Yurui, Li, Yurong, Wang, Zhaoxiang, Song, Xiaoyan, Chen, Liquan. Li2C2, a High-Capacity Cathode Material for Lithium Ion Batteries. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2016, 55(2): 644-648, https://www.webofscience.com/wos/woscc/full-record/WOS:000368069200031.[112] Zhaoxiang Wang. A new high capacity cathode material for Li-ion battery. Angewandte Chemie International Edition. 2016, [113] Wang, Xuefeng, Li, Yejing, Gao, Yurui, Wang, Zhaoxiang, Chen, Liquan. Additive-free sodium titanate nanotube array as advanced electrode for sodium ion batteries. NANO ENERGY[J]. 2015, 13: 687-692, http://dx.doi.org/10.1016/j.nanoen.2015.03.029.[114] Feng, Xin, Yang, Zhenzhong, Tang, Daichun, Kong, Qingyu, Gu, Lin, Wang, Zhaoxiang, Chen, Liquan. Performance improvement of Li-rich layer-structured Li1.2Mn0.54Ni0.13Co0.13O2 by integration with spinel LiNi0.5Mn1.5O4. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2015, 17(2): 1257-1264, http://ir.iphy.ac.cn/handle/311004/60931.[115] Tian, Na, Hua, Chunxiu, Wang, Zhaoxiang, Chen, Liquan. Reversible reduction of Li2CO3. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2015, 3(27): 14173-14177, http://ir.iphy.ac.cn/handle/311004/60856.[116] Liang, Xin, Zhang, Mingang, Kaiser, Mohammad Rejaul, Gao, Xuanwen, Konstantinov, Konstantin, Tandiono, Richard, Wang, Zhaoxiang, Liu, HuaKun, Dou, ShiXue, Wang, Jiazhao. Split-half-tubular polypyrrole@sulfur@polypyrrole composite with a novel three-layer-3D structure as cathode for lithium/sulfur batteries. NANO ENERGY[J]. 2015, 11: 587-599, http://dx.doi.org/10.1016/j.nanoen.2014.10.009.[117] Wang, Xuefeng, Gao, Yurui, Wang, Jiazhao, Wang, Zhaoxiang, Chen, Liquan. Chemical adsorption: another way to anchor polysulfides. NANO ENERGY[J]. 2015, 12: 810-815, http://dx.doi.org/10.1016/j.nanoen.2014.12.002.[118] Wang, Xuefeng, Guan, Zhaoruxin, Li, Yejing, Wang, Zhaoxiang, Chen, Liquan. Guest-host interactions and their impacts on structure and performance of nano-MoS2. NANOSCALE[J]. 2015, 7(2): 637-641, http://ir.iphy.ac.cn/handle/311004/60666.[119] Wang, Xuefeng, Li, Yejing, Guan, Zhaoruxin, Wang, Zhaoxiang, Chen, Liquan. Micro-MoS2 with Excellent Reversible Sodium-Ion Storage. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2015, 21(17): 6465-6468, http://ir.iphy.ac.cn/handle/311004/60377.[120] Shen, Lian, Shen, Lanyao, Wang, Zhaoxiang, Chen, Liquan. Lithium Storage in Heat-Treated SnF2/Polyacrylonitrile Anode. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2015, 21(23): 8491-8496, http://ir.iphy.ac.cn/handle/311004/60376.[121] Wang, Xuefeng, Gao, Yurui, Shen, Xi, Li, Yejing, Kong, Qingyu, Lee, Sungsik, Wang, Zhaoxiang, Yu, Richeng, Hu, YongSheng, Chen, Liquan. Anti-P-2 structured Na0.5NbO2 and its negative strain effect. ENERGY & ENVIRONMENTAL SCIENCE[J]. 2015, 8(9): 2753-2759, http://ir.iphy.ac.cn/handle/311004/60542.[122] Guan, Zhaoruxin, Liu, Huan, Xu, Bin, Hao, Xin, Wang, Zhaoxiang, Chen, Liquan. Gelatin-pyrolyzed mesoporous carbon as a high-performance sodium-storage material. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2015, 3(15): 7849-7854, http://ir.iphy.ac.cn/handle/311004/60850.[123] Wang, Xuefeng, Shen, Xi, Gao, Yurui, Wang, Zhaoxiang, Yu, Richeng, Chen, Liquan. Atomic-Scale Recognition of Surface Structure and Intercalation Mechanism of Ti3C2X. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2015, 137(7): 2715-2721, http://ir.iphy.ac.cn/handle/311004/61047.[124] Ma, Jie, Fang, Zheng, Yan, Yong, Yang, Zhenzhong, Gu, Lin, Hu, YongSheng, Li, Hong, Wang, Zhaoxiang, Huang, Xuejie. Novel Large-Scale Synthesis of a C/S Nanocomposite with Mixed Conducting Networks through a Spray Drying Approach for Li-S Batteries. ADVANCED ENERGY MATERIALS[J]. 2015, 5(16): http://ir.iphy.ac.cn/handle/311004/60187.[125] Gao, Yurui, Wang, Xuefeng, Ma, Jun, Wang, Zhaoxiang, Chen, Liquan. Selecting Substituent Elements for Li-Rich Mn-Based Cathode Materials by Density Functional Theory (DFT) Calculations. CHEMISTRY OF MATERIALS[J]. 2015, 27(9): 3456-3461, http://ir.iphy.ac.cn/handle/311004/60374.[126] Ma, Jie, Fang, Zheng, Yan, Yong, Yang, Zhenzhong, Gu, Lin, Hu, YongSheng, Li, Hong, Wang, Zhaoxiang, Huang, Xuejie. Novel large-scale synthesis of C/S nanocomposite with mixed conducting networks through spray drying approach for Li-S batteries. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETYnull. 2015, 250: https://www.webofscience.com/wos/woscc/full-record/WOS:000432475504311.[127] Gao, Yurui, Wang, Zhaoxiang, Chen, Liquan. Workfunction, a new viewpoint to understand the electrolyte/electrode interface reaction. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2015, 3(46): 23420-23425, http://ir.iphy.ac.cn/handle/311004/60864.[128] Wang, Xuefeng, Li, Yejing, Gao, Yurui, Wang, Zhaoxiang, Chen, Liquan. Additive-free sodium titanate nanotube array as advanced electrode for sodium ion batteries. NANO ENERGY[J]. 2015, 13: 687-692, http://dx.doi.org/10.1016/j.nanoen.2015.03.029.[129] Feng, Xin, Yang, Zhenzhong, Tang, Daichun, Kong, Qingyu, Gu, Lin, Wang, Zhaoxiang, Chen, Liquan. Performance improvement of Li-rich layer-structured Li1.2Mn0.54Ni0.13Co0.13O2 by integration with spinel LiNi0.5Mn1.5O4. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2015, 17(2): 1257-1264, http://ir.iphy.ac.cn/handle/311004/60931.[130] Tian, Na, Hua, Chunxiu, Wang, Zhaoxiang, Chen, Liquan. Reversible reduction of Li2CO3. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2015, 3(27): 14173-14177, http://ir.iphy.ac.cn/handle/311004/60856.[131] Liang, Xin, Zhang, Mingang, Kaiser, Mohammad Rejaul, Gao, Xuanwen, Konstantinov, Konstantin, Tandiono, Richard, Wang, Zhaoxiang, Liu, HuaKun, Dou, ShiXue, Wang, Jiazhao. Split-half-tubular polypyrrole@sulfur@polypyrrole composite with a novel three-layer-3D structure as cathode for lithium/sulfur batteries. NANO ENERGY[J]. 2015, 11: 587-599, http://dx.doi.org/10.1016/j.nanoen.2014.10.009.[132] Wang, Xuefeng, Gao, Yurui, Wang, Jiazhao, Wang, Zhaoxiang, Chen, Liquan. Chemical adsorption: another way to anchor polysulfides. NANO ENERGY[J]. 2015, 12: 810-815, http://dx.doi.org/10.1016/j.nanoen.2014.12.002.[133] Wang, Xuefeng, Guan, Zhaoruxin, Li, Yejing, Wang, Zhaoxiang, Chen, Liquan. Guest-host interactions and their impacts on structure and performance of nano-MoS2. NANOSCALE[J]. 2015, 7(2): 637-641, http://ir.iphy.ac.cn/handle/311004/60666.[134] Wang, Xuefeng, Li, Yejing, Guan, Zhaoruxin, Wang, Zhaoxiang, Chen, Liquan. Micro-MoS2 with Excellent Reversible Sodium-Ion Storage. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2015, 21(17): 6465-6468, http://ir.iphy.ac.cn/handle/311004/60377.[135] Shen, Lian, Shen, Lanyao, Wang, Zhaoxiang, Chen, Liquan. Lithium Storage in Heat-Treated SnF2/Polyacrylonitrile Anode. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2015, 21(23): 8491-8496, http://ir.iphy.ac.cn/handle/311004/60376.[136] Wang, Xuefeng, Gao, Yurui, Shen, Xi, Li, Yejing, Kong, Qingyu, Lee, Sungsik, Wang, Zhaoxiang, Yu, Richeng, Hu, YongSheng, Chen, Liquan. Anti-P-2 structured Na0.5NbO2 and its negative strain effect. ENERGY & ENVIRONMENTAL SCIENCE[J]. 2015, 8(9): 2753-2759, http://ir.iphy.ac.cn/handle/311004/60542.[137] Guan, Zhaoruxin, Liu, Huan, Xu, Bin, Hao, Xin, Wang, Zhaoxiang, Chen, Liquan. Gelatin-pyrolyzed mesoporous carbon as a high-performance sodium-storage material. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2015, 3(15): 7849-7854, http://ir.iphy.ac.cn/handle/311004/60850.[138] Wang, Xuefeng, Shen, Xi, Gao, Yurui, Wang, Zhaoxiang, Yu, Richeng, Chen, Liquan. Atomic-Scale Recognition of Surface Structure and Intercalation Mechanism of Ti3C2X. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2015, 137(7): 2715-2721, http://ir.iphy.ac.cn/handle/311004/61047.[139] Ma, Jie, Fang, Zheng, Yan, Yong, Yang, Zhenzhong, Gu, Lin, Hu, YongSheng, Li, Hong, Wang, Zhaoxiang, Huang, Xuejie. Novel Large-Scale Synthesis of a C/S Nanocomposite with Mixed Conducting Networks through a Spray Drying Approach for Li-S Batteries. ADVANCED ENERGY MATERIALS[J]. 2015, 5(16): http://ir.iphy.ac.cn/handle/311004/60187.[140] Gao, Yurui, Wang, Xuefeng, Ma, Jun, Wang, Zhaoxiang, Chen, Liquan. Selecting Substituent Elements for Li-Rich Mn-Based Cathode Materials by Density Functional Theory (DFT) Calculations. CHEMISTRY OF MATERIALS[J]. 2015, 27(9): 3456-3461, http://ir.iphy.ac.cn/handle/311004/60374.[141] Ma, Jie, Fang, Zheng, Yan, Yong, Yang, Zhenzhong, Gu, Lin, Hu, YongSheng, Li, Hong, Wang, Zhaoxiang, Huang, Xuejie. Novel large-scale synthesis of C/S nanocomposite with mixed conducting networks through spray drying approach for Li-S batteries. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETYnull. 2015, 250: https://www.webofscience.com/wos/woscc/full-record/WOS:000432475504311.[142] Gao, Yurui, Wang, Zhaoxiang, Chen, Liquan. Workfunction, a new viewpoint to understand the electrolyte/electrode interface reaction. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2015, 3(46): 23420-23425, http://ir.iphy.ac.cn/handle/311004/60864.[143] Zhou, YongNing, Ma, Jun, Hu, Enyuan, Yu, Xiqian, Gu, Lin, Nam, KyungWan, Chen, Liquan, Wang, Zhaoxiang, Yang, XiaoQing. Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries. NATURE COMMUNICATIONS[J]. 2014, 5: http://ir.iphy.ac.cn/handle/311004/59379.[144] Hua, Chunxiu, Fang, Xiangpeng, Wang, Zhaoxiang, Chen, Liquan. Transition-Metal-Catalyzed Oxidation of Metallic Sn in NiO/SnO2 Nanocomposite. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2014, 20(18): 5487-5491, http://ir.iphy.ac.cn/handle/311004/58960.[145] Shen, Lanyao, Wang, Zhaoxiang, Chen, Liquan. Carbon-coated hierarchically porous silicon as anode material for lithium ion batteries. RSC ADVANCES[J]. 2014, 4(29): 15314-15318, http://ir.iphy.ac.cn/handle/311004/59655.[146] Ma, Jun, Gao, Yurui, Wang, Zhaoxiang, Chen, Liquan. Structural and electrochemical stability of Li-rich layer structured Li2MoO3 in air. JOURNAL OF POWER SOURCES[J]. 2014, 258: 314-320, http://dx.doi.org/10.1016/j.jpowsour.2014.02.056.[147] Shen, Lanyao, Shen, Lian, Wang, Zhaoxiang, Chen, Liquan. In Situ Thermally Cross-linked Polyacrylonitrile as Binder for High-Performance Silicon as Lithium Ion Battery Anode. CHEMSUSCHEM[J]. 2014, 7(7): 1951-1956, http://ir.iphy.ac.cn/handle/311004/58962.[148] Jyoti Prakash Dhal, Braja Gopal Mishra, Garudadhwaj Hota. Fe2O3–SnO2 composite nanorods: Facile synthesis and sorption properties. Journal of Environmental Chemical Engineering. 2014, 2(4): 2188-2198, http://dx.doi.org/10.1016/j.jece.2014.09.016.[149] Mao, Ya, Kong, Qingyu, Shen, Lian, Wang, Zhaoxiang, Chen, Liquan. Corrigendum to "Polythiophene coordination complexes as high performance lithium storage materials" (vol 248, pg 343, 2014). JOURNAL OF POWER SOURCES. 2014, 254: 361-361, http://ir.iphy.ac.cn/handle/311004/59278.[150] Mao, Ya, Kong, Qingyu, Shen, Lian, Wang, Zhaoxiang, Chen, Liquan. Polythiophene coordination complexes as high performance lithium storage materials. JOURNAL OF POWER SOURCES[J]. 2014, 248: 343-347, http://dx.doi.org/10.1016/j.jpowsour.2013.09.019.[151] Gao, Yurui, Wang, Zhaoxiang, Chen, Liquan. Stability of spinel Li4Ti5O12 in air. JOURNAL OF POWER SOURCES[J]. 2014, 245: 684-690, http://dx.doi.org/10.1016/j.jpowsour.2013.07.031.[152] Fang, Xiangpeng, Yu, Xiqian, Liao, Saifen, Shi, Yifeng, Hu, YongSheng, Wang, Zhaoxiang, Stucky, Galen D, Chen, Liquan. Lithium storage performance in ordered mesoporous MoS2 electrode material (vol 151, pg 418, 2012). MICROPOROUS AND MESOPOROUS MATERIALS. 2014, 196: 359-359, http://ir.iphy.ac.cn/handle/311004/59326.[153] Ma, Jun, Zhou, YongNing, Gao, Yurui, Yu, Xiqian, Kong, Qingyu, Gu, Lin, Wang, Zhaoxiang, Yang, XiaoQing, Chen, Liquan. Feasibility of Using Li2MoO3 in Constructing Li-Rich High Energy Density Cathode Materials. CHEMISTRY OF MATERIALS[J]. 2014, 26(10): 3256-3262, http://ir.iphy.ac.cn/handle/311004/58957.[154] Liang, Xin, Kaiser, Mohammad, Konstantinov, Konstantin, Tandiono, Richard, Wang, Zhaoxiang, Liu, HuaKun, Dou, ShiXue, Wang, Jiazhao. High performance pure sulfur honeycomb-like architectures synthesized by a cooperative self-assembly strategy for lithium-sulfur batteries. RSC ADVANCES[J]. 2014, 4(69): 36513-36516, http://ir.iphy.ac.cn/handle/311004/59651.[155] Wang, Xuefeng, Shen, Xi, Wang, Zhaoxiang, Yu, Richeng, Chen, Liquan. Atomic-Scale Clarification of Structural Transition of MoS2 upon Sodium Intercalation. ACS NANO[J]. 2014, 8(11): 11394-11400, http://ir.iphy.ac.cn/handle/311004/58788.[156] Gao, Yurui, Ma, Jun, Wang, Xuefeng, Lu, Xia, Bai, Ying, Wang, Zhaoxiang, Chen, Liquan. Improved electron/Li-ion transport and oxygen stability of Mo-doped Li2MnO3. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2014, 2(13): 4811-4818, http://ir.iphy.ac.cn/handle/311004/59217.[157] Shen, Lian, Wang, Zhaoxiang, Chen, Liquan. Prussian Blues as a Cathode Material for Lithium Ion Batteries. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2014, 20(39): 12559-12562, http://ir.iphy.ac.cn/handle/311004/58958.[158] Ma, Jun, Zhou, YongNing, Gao, Yurui, Kong, Qingyu, Wang, Zhaoxiang, Yang, XiaoQing, Chen, Liquan. Molybdenum Substitution for Improving the Charge Compensation and Activity of Li2MnO3. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2014, 20(28): 8723-8730, http://ir.iphy.ac.cn/handle/311004/58959.[159] Liu, Xudong, Lyu, Yingchun, Zhang, Zhihua, Li, Hong, Hu, Yongsheng, Wang, ZhaoXiang, Zhao, Yanming, Kuang, Quan, Dong, Youzhong, Liang, Zhiyong, Fan, Qinghua, Chen, Liquan. Nanotube Li2MoO4: a novel and high-capacity material as a lithium-ion battery anode. NANOSCALE[J]. 2014, 6(22): 13660-13667, http://ir.iphy.ac.cn/handle/311004/59351.[160] Zhou, YongNing, Ma, Jun, Hu, Enyuan, Yu, Xiqian, Gu, Lin, Nam, KyungWan, Chen, Liquan, Wang, Zhaoxiang, Yang, XiaoQing. Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries. NATURE COMMUNICATIONS[J]. 2014, 5: http://ir.iphy.ac.cn/handle/311004/59379.[161] Hua, Chunxiu, Fang, Xiangpeng, Wang, Zhaoxiang, Chen, Liquan. Transition-Metal-Catalyzed Oxidation of Metallic Sn in NiO/SnO2 Nanocomposite. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2014, 20(18): 5487-5491, http://ir.iphy.ac.cn/handle/311004/58960.[162] Shen, Lanyao, Wang, Zhaoxiang, Chen, Liquan. Carbon-coated hierarchically porous silicon as anode material for lithium ion batteries. RSC ADVANCES[J]. 2014, 4(29): 15314-15318, http://ir.iphy.ac.cn/handle/311004/59655.[163] Ma, Jun, Gao, Yurui, Wang, Zhaoxiang, Chen, Liquan. Structural and electrochemical stability of Li-rich layer structured Li2MoO3 in air. JOURNAL OF POWER SOURCES[J]. 2014, 258: 314-320, http://dx.doi.org/10.1016/j.jpowsour.2014.02.056.[164] Shen, Lanyao, Shen, Lian, Wang, Zhaoxiang, Chen, Liquan. In Situ Thermally Cross-linked Polyacrylonitrile as Binder for High-Performance Silicon as Lithium Ion Battery Anode. CHEMSUSCHEM[J]. 2014, 7(7): 1951-1956, http://ir.iphy.ac.cn/handle/311004/58962.[165] Jyoti Prakash Dhal, Braja Gopal Mishra, Garudadhwaj Hota. Fe2O3–SnO2 composite nanorods: Facile synthesis and sorption properties. Journal of Environmental Chemical Engineering. 2014, 2(4): 2188-2198, http://dx.doi.org/10.1016/j.jece.2014.09.016.[166] Mao, Ya, Kong, Qingyu, Shen, Lian, Wang, Zhaoxiang, Chen, Liquan. Corrigendum to "Polythiophene coordination complexes as high performance lithium storage materials" (vol 248, pg 343, 2014). JOURNAL OF POWER SOURCES. 2014, 254: 361-361, http://ir.iphy.ac.cn/handle/311004/59278.[167] Mao, Ya, Kong, Qingyu, Shen, Lian, Wang, Zhaoxiang, Chen, Liquan. Polythiophene coordination complexes as high performance lithium storage materials. JOURNAL OF POWER SOURCES[J]. 2014, 248: 343-347, http://dx.doi.org/10.1016/j.jpowsour.2013.09.019.[168] Gao, Yurui, Wang, Zhaoxiang, Chen, Liquan. Stability of spinel Li4Ti5O12 in air. JOURNAL OF POWER SOURCES[J]. 2014, 245: 684-690, http://dx.doi.org/10.1016/j.jpowsour.2013.07.031.[169] Fang, Xiangpeng, Yu, Xiqian, Liao, Saifen, Shi, Yifeng, Hu, YongSheng, Wang, Zhaoxiang, Stucky, Galen D, Chen, Liquan. Lithium storage performance in ordered mesoporous MoS2 electrode material (vol 151, pg 418, 2012). MICROPOROUS AND MESOPOROUS MATERIALS. 2014, 196: 359-359, http://ir.iphy.ac.cn/handle/311004/59326.[170] Ma, Jun, Zhou, YongNing, Gao, Yurui, Yu, Xiqian, Kong, Qingyu, Gu, Lin, Wang, Zhaoxiang, Yang, XiaoQing, Chen, Liquan. Feasibility of Using Li2MoO3 in Constructing Li-Rich High Energy Density Cathode Materials. CHEMISTRY OF MATERIALS[J]. 2014, 26(10): 3256-3262, http://ir.iphy.ac.cn/handle/311004/58957.[171] Liang, Xin, Kaiser, Mohammad, Konstantinov, Konstantin, Tandiono, Richard, Wang, Zhaoxiang, Liu, HuaKun, Dou, ShiXue, Wang, Jiazhao. High performance pure sulfur honeycomb-like architectures synthesized by a cooperative self-assembly strategy for lithium-sulfur batteries. RSC ADVANCES[J]. 2014, 4(69): 36513-36516, http://ir.iphy.ac.cn/handle/311004/59651.[172] Wang, Xuefeng, Shen, Xi, Wang, Zhaoxiang, Yu, Richeng, Chen, Liquan. Atomic-Scale Clarification of Structural Transition of MoS2 upon Sodium Intercalation. ACS NANO[J]. 2014, 8(11): 11394-11400, http://ir.iphy.ac.cn/handle/311004/58788.[173] Gao, Yurui, Ma, Jun, Wang, Xuefeng, Lu, Xia, Bai, Ying, Wang, Zhaoxiang, Chen, Liquan. Improved electron/Li-ion transport and oxygen stability of Mo-doped Li2MnO3. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2014, 2(13): 4811-4818, http://ir.iphy.ac.cn/handle/311004/59217.[174] Shen, Lian, Wang, Zhaoxiang, Chen, Liquan. Prussian Blues as a Cathode Material for Lithium Ion Batteries. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2014, 20(39): 12559-12562, http://ir.iphy.ac.cn/handle/311004/58958.[175] Ma, Jun, Zhou, YongNing, Gao, Yurui, Kong, Qingyu, Wang, Zhaoxiang, Yang, XiaoQing, Chen, Liquan. Molybdenum Substitution for Improving the Charge Compensation and Activity of Li2MnO3. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2014, 20(28): 8723-8730, http://ir.iphy.ac.cn/handle/311004/58959.[176] Liu, Xudong, Lyu, Yingchun, Zhang, Zhihua, Li, Hong, Hu, Yongsheng, Wang, ZhaoXiang, Zhao, Yanming, Kuang, Quan, Dong, Youzhong, Liang, Zhiyong, Fan, Qinghua, Chen, Liquan. Nanotube Li2MoO4: a novel and high-capacity material as a lithium-ion battery anode. NANOSCALE[J]. 2014, 6(22): 13660-13667, http://ir.iphy.ac.cn/handle/311004/59351.[177] Wu, Chengren, Fang, Xiangpeng, Guo, Xianwei, Mao, Ya, Ma, Jun, Zhao, Changchun, Wang, Zhaoxiang, Chen, Liquan. Surface modification of Li1.2Mn0.54Co0.13Ni0.13O2 with conducting polypyrrole. JOURNAL OF POWER SOURCES[J]. 2013, 231: 44-49, http://dx.doi.org/10.1016/j.jpowsour.2012.11.138.[178] Fang, Xiangpeng, Hua, Chunxiu, Wu, Chengren, Wang, Xuefeng, Shen, Lanyao, Kong, Qingyu, Wang, Jiazhao, Hu, Yongsheng, Wang, Zhaoxiang, Chen, Liquan. Synthesis and Electrochemical Performance of Graphene-like WS2. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2013, 19(18): 5694-5700, http://ir.iphy.ac.cn/handle/311004/57538.[179] 索鎏敏, 胡勇胜, 李泓, 王兆翔, 陈立泉, 黄学杰. 高比能锂硫二次电池研究进展. 科学通报[J]. 2013, 58(31): 3172-3188, http://ir.iphy.ac.cn/handle/311004/57683.[180] Wang, Jiazhao, Lu, Lin, Shi, Dongqi, Tandiono, Richard, Wang, Zhaoxiang, Konstantinov, Konstantin, Liu, Huakun. A Conductive Polypyrrole-Coated, Sulfur-Carbon Nanotube Composite for Use in Lithium-Sulfur Batteries. CHEMPLUSCHEM[J]. 2013, 78(4): 318-324, http://ir.iphy.ac.cn/handle/311004/56712.[181] 毛亚, 孔庆宇, 郭炳焜, 王兆翔, 陈立泉. 聚吡咯-过渡金属-氧配合物储锂材料的结构与性能研究. 电化学[J]. 2013, 19(3): 225-231, [182] Hua, Chunxiu, Fang, Xiangpeng, Wang, Zhaoxiang, Chen, Liquan. Lithium storage in perovskite lithium lanthanum titanate. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2013, 32: 5-8, http://dx.doi.org/10.1016/j.elecom.2013.03.038.[183] Wang, Xuefeng, Fang, Xiangpeng, Guo, Xianwei, Wang, Zhaoxiang, Chen, Liquan. Sulfur in hierarchically pore-structured carbon pillars as cathode material for lithium-sulfur batteries. ELECTROCHIMICA ACTA[J]. 2013, 97: 238-243, http://dx.doi.org/10.1016/j.electacta.2013.02.126.[184] Wang, Xuefeng, Wang, Zhaoxiang, Chen, Liquan. Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium-sulfur battery. JOURNAL OF POWER SOURCES[J]. 2013, 242: 65-69, http://dx.doi.org/10.1016/j.jpowsour.2013.05.063.[185] Shi, Yifeng, Hua, Chunxiu, Li, Bin, Fang, Xiangpeng, Yao, Chaohua, Zhang, Yichi, Hu, YongSheng, Wang, Zhaoxiang, Chen, Liquan, Zhao, Dongyuan, Stucky, Galen D. Highly Ordered Mesoporous Crystalline MoSe2 Material with Efficient Visible-Light-Driven Photocatalytic Activity and Enhanced Lithium Storage Performance. ADVANCED FUNCTIONAL MATERIALS[J]. 2013, 23(14): 1832-1838, http://dx.doi.org/10.1002/adfm.201202144.[186] Mao, Ya, Kong, Qingyu, Guo, Bingkun, Shen, Lian, Wang, Zhaoxiang, Chen, Liquan. Polypyrrole-NiO composite as high-performance lithium storage material. ELECTROCHIMICA ACTA[J]. 2013, 105: 162-169, http://dx.doi.org/10.1016/j.electacta.2013.04.086.[187] Wu, Chengren, Fang, Xiangpeng, Guo, Xianwei, Mao, Ya, Ma, Jun, Zhao, Changchun, Wang, Zhaoxiang, Chen, Liquan. Surface modification of Li1.2Mn0.54Co0.13Ni0.13O2 with conducting polypyrrole. JOURNAL OF POWER SOURCES[J]. 2013, 231: 44-49, http://dx.doi.org/10.1016/j.jpowsour.2012.11.138.[188] Fang, Xiangpeng, Hua, Chunxiu, Wu, Chengren, Wang, Xuefeng, Shen, Lanyao, Kong, Qingyu, Wang, Jiazhao, Hu, Yongsheng, Wang, Zhaoxiang, Chen, Liquan. Synthesis and Electrochemical Performance of Graphene-like WS2. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2013, 19(18): 5694-5700, http://ir.iphy.ac.cn/handle/311004/57538.[189] 索鎏敏, 胡勇胜, 李泓, 王兆翔, 陈立泉, 黄学杰. 高比能锂硫二次电池研究进展. 科学通报[J]. 2013, 58(31): 3172-3188, http://ir.iphy.ac.cn/handle/311004/57683.[190] Wang, Jiazhao, Lu, Lin, Shi, Dongqi, Tandiono, Richard, Wang, Zhaoxiang, Konstantinov, Konstantin, Liu, Huakun. A Conductive Polypyrrole-Coated, Sulfur-Carbon Nanotube Composite for Use in Lithium-Sulfur Batteries. CHEMPLUSCHEM[J]. 2013, 78(4): 318-324, http://ir.iphy.ac.cn/handle/311004/56712.[191] 毛亚, 孔庆宇, 郭炳焜, 王兆翔, 陈立泉. 聚吡咯-过渡金属-氧配合物储锂材料的结构与性能研究. 电化学[J]. 2013, 19(3): 225-231, [192] Hua, Chunxiu, Fang, Xiangpeng, Wang, Zhaoxiang, Chen, Liquan. Lithium storage in perovskite lithium lanthanum titanate. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2013, 32: 5-8, http://dx.doi.org/10.1016/j.elecom.2013.03.038.[193] Wang, Xuefeng, Fang, Xiangpeng, Guo, Xianwei, Wang, Zhaoxiang, Chen, Liquan. Sulfur in hierarchically pore-structured carbon pillars as cathode material for lithium-sulfur batteries. ELECTROCHIMICA ACTA[J]. 2013, 97: 238-243, http://dx.doi.org/10.1016/j.electacta.2013.02.126.[194] Wang, Xuefeng, Wang, Zhaoxiang, Chen, Liquan. Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium-sulfur battery. JOURNAL OF POWER SOURCES[J]. 2013, 242: 65-69, http://dx.doi.org/10.1016/j.jpowsour.2013.05.063.[195] Shi, Yifeng, Hua, Chunxiu, Li, Bin, Fang, Xiangpeng, Yao, Chaohua, Zhang, Yichi, Hu, YongSheng, Wang, Zhaoxiang, Chen, Liquan, Zhao, Dongyuan, Stucky, Galen D. Highly Ordered Mesoporous Crystalline MoSe2 Material with Efficient Visible-Light-Driven Photocatalytic Activity and Enhanced Lithium Storage Performance. ADVANCED FUNCTIONAL MATERIALS[J]. 2013, 23(14): 1832-1838, http://dx.doi.org/10.1002/adfm.201202144.[196] Mao, Ya, Kong, Qingyu, Guo, Bingkun, Shen, Lian, Wang, Zhaoxiang, Chen, Liquan. Polypyrrole-NiO composite as high-performance lithium storage material. ELECTROCHIMICA ACTA[J]. 2013, 105: 162-169, http://dx.doi.org/10.1016/j.electacta.2013.04.086.[197] Fang, Xiangpeng, Guo, Bingkun, Shi, Yifeng, Li, Bin, Hua, Chunxiu, Yao, Chaohua, Zhang, Yichi, Hu, YongSheng, Wang, Zhaoxiang, Stucky, Galen D, Chen, Liquan. Enhanced Li storage performance of ordered mesoporous MoO2 via tungsten doping. NANOSCALE[J]. 2012, 4(5): 1541-1544, http://dx.doi.org/10.1039/c2nr12017h.[198] Shen, Lanyao, Guo, Xianwei, Fang, Xiangpeng, Wang, Zhaoxiang, Chen, Liquan. Magnesiothermically reduced diatomaceous earth as a porous silicon anode material for lithium ion batteries. JOURNAL OF POWER SOURCES[J]. 2012, 213: 229-232, http://dx.doi.org/10.1016/j.jpowsour.2012.03.097.[199] Sharma, Neeraj, Guo, Xianwei, Du, Guodong, Guo, Zaiping, Wang, Jiazhou, Wang, Zhaoxiang, Peterson, Vanessa K. Direct Evidence of Concurrent Solid-Solution and Two-Phase Reactions and the Nonequilibrium Structural Evolution of LiFePO4. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2012, 134(18): 7867-7873, http://ir.iphy.ac.cn/handle/311004/36019.[200] Fang, Xiangpeng, Yu, Xiqian, Liao, Saifen, Shi, Yifeng, Hu, YongSheng, Wang, Zhaoxiang, Stucky, Galen D, Chen, Liquan. Lithium storage performance in ordered mesoporous MoS2 electrode material. MICROPOROUS AND MESOPOROUS MATERIALS[J]. 2012, 151: 418-423, http://dx.doi.org/10.1016/j.micromeso.2011.09.032.[201] Guo, Bingkun, Fang, Xiangpeng, Li, Bin, Shi, Yifeng, Ouyang, Chuying, Hu, YongSheng, Wang, Zhaoxiang, Stucky, Galen D, Chen, Liquan. Synthesis and Lithium Storage Mechanism of Ultrafine MoO2 Nanorods. CHEMISTRY OF MATERIALS[J]. 2012, 24(3): 457-463, http://dx.doi.org/10.1021/cm202459r.[202] Li, Shuai, Xian, Cunni, Yang, Kai, Sun, Chunwen, Wang, Zhaoxiang, Chen, Liquan. Feasibility and mechanism of lithium oxide as sintering aid for Ce0.8Sm0.2O delta electrolyte. JOURNAL OF POWER SOURCES[J]. 2012, 205: 57-62, http://ir.iphy.ac.cn/handle/311004/38042.[203] Fang, Xiangpeng, Hua, Chunxiu, Guo, Xianwei, Hu, Yongsheng, Wang, Zhaoxiang, Gao, Xueping, Wu, Feng, Wang, Jiazhao, Chen, Liquan. Lithium storage in commercial MoS2 in different potential ranges. ELECTROCHIMICA ACTA[J]. 2012, 81: 155-160, http://dx.doi.org/10.1016/j.electacta.2012.07.020.[204] Lu, Xia, Zhao, Liang, He, Xiaoqing, Xiao, Ruijuan, Gu, Lin, Hu, YongSheng, Li, Hong, Wang, Zhaoxiang, Duan, Xiaofeng, Chen, Liquan, Maier, Joachim, Ikuhara, Yuichi. Lithium Storage in Li4Ti5O12 Spinel: The Full Static Picture from Electron Microscopy. ADVANCED MATERIALS[J]. 2012, 24(24): 3233-3238, http://ir.iphy.ac.cn/handle/311004/40907.[205] Lu, Xia, Sun, Yang, Jian, Zelang, He, Xiaoqing, Gu, Lin, Hu, YongSheng, Li, Hong, Wang, Zhaoxiang, Chen, Wen, Duan, Xiaofeng, Chen, Liquan, Maier, Joachim, Tsukimoto, Susumu, Ikuhara, Yuichi. New Insight into the Atomic Structure of Electrochemically Delithiated O3-Li(1-x)CoO2 (0 <= x <= 0.5) Nanoparticles. NANO LETTERS[J]. 2012, 12(12): 6192-6197, http://dx.doi.org/10.1021/nl303036e.[206] Fang, Xiangpeng, Guo, Xianwei, Mao, Ya, Hua, Chunxiu, Shen, Lanyao, Hu, Yongsheng, Wang, Zhaoxiang, Wu, Feng, Chen, Liquan. Mechanism of Lithium Storage in MoS2 and the Feasibility of Using Li2S/Mo Nanocomposites as Cathode Materials for Lithium-Sulfur Batteries. CHEMISTRY-AN ASIAN JOURNAL[J]. 2012, 7(5): 1013-1017, http://dx.doi.org/10.1002/asia.201100796.[207] Hua, Chunxiu, Fang, Xiangpeng, Yang, Zhiwei, Gao, Yurui, Wang, Zhaoxiang, Chen, Liquan. Lithium storage mechanism and catalytic behavior of CeO2. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2012, 25: 66-69, http://dx.doi.org/10.1016/j.elecom.2012.09.030.[208] Fang, Xiangpeng, Guo, Bingkun, Shi, Yifeng, Li, Bin, Hua, Chunxiu, Yao, Chaohua, Zhang, Yichi, Hu, YongSheng, Wang, Zhaoxiang, Stucky, Galen D, Chen, Liquan. Enhanced Li storage performance of ordered mesoporous MoO2 via tungsten doping. NANOSCALE[J]. 2012, 4(5): 1541-1544, http://dx.doi.org/10.1039/c2nr12017h.[209] Shen, Lanyao, Guo, Xianwei, Fang, Xiangpeng, Wang, Zhaoxiang, Chen, Liquan. Magnesiothermically reduced diatomaceous earth as a porous silicon anode material for lithium ion batteries. JOURNAL OF POWER SOURCES[J]. 2012, 213: 229-232, http://dx.doi.org/10.1016/j.jpowsour.2012.03.097.[210] Sharma, Neeraj, Guo, Xianwei, Du, Guodong, Guo, Zaiping, Wang, Jiazhou, Wang, Zhaoxiang, Peterson, Vanessa K. Direct Evidence of Concurrent Solid-Solution and Two-Phase Reactions and the Nonequilibrium Structural Evolution of LiFePO4. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2012, 134(18): 7867-7873, http://ir.iphy.ac.cn/handle/311004/36019.[211] Fang, Xiangpeng, Yu, Xiqian, Liao, Saifen, Shi, Yifeng, Hu, YongSheng, Wang, Zhaoxiang, Stucky, Galen D, Chen, Liquan. Lithium storage performance in ordered mesoporous MoS2 electrode material. MICROPOROUS AND MESOPOROUS MATERIALS[J]. 2012, 151: 418-423, http://dx.doi.org/10.1016/j.micromeso.2011.09.032.[212] Guo, Bingkun, Fang, Xiangpeng, Li, Bin, Shi, Yifeng, Ouyang, Chuying, Hu, YongSheng, Wang, Zhaoxiang, Stucky, Galen D, Chen, Liquan. Synthesis and Lithium Storage Mechanism of Ultrafine MoO2 Nanorods. CHEMISTRY OF MATERIALS[J]. 2012, 24(3): 457-463, http://dx.doi.org/10.1021/cm202459r.[213] Li, Shuai, Xian, Cunni, Yang, Kai, Sun, Chunwen, Wang, Zhaoxiang, Chen, Liquan. Feasibility and mechanism of lithium oxide as sintering aid for Ce0.8Sm0.2O delta electrolyte. JOURNAL OF POWER SOURCES[J]. 2012, 205: 57-62, http://ir.iphy.ac.cn/handle/311004/38042.[214] Fang, Xiangpeng, Hua, Chunxiu, Guo, Xianwei, Hu, Yongsheng, Wang, Zhaoxiang, Gao, Xueping, Wu, Feng, Wang, Jiazhao, Chen, Liquan. Lithium storage in commercial MoS2 in different potential ranges. ELECTROCHIMICA ACTA[J]. 2012, 81: 155-160, http://dx.doi.org/10.1016/j.electacta.2012.07.020.[215] Lu, Xia, Zhao, Liang, He, Xiaoqing, Xiao, Ruijuan, Gu, Lin, Hu, YongSheng, Li, Hong, Wang, Zhaoxiang, Duan, Xiaofeng, Chen, Liquan, Maier, Joachim, Ikuhara, Yuichi. Lithium Storage in Li4Ti5O12 Spinel: The Full Static Picture from Electron Microscopy. ADVANCED MATERIALS[J]. 2012, 24(24): 3233-3238, http://ir.iphy.ac.cn/handle/311004/40907.[216] Lu, Xia, Sun, Yang, Jian, Zelang, He, Xiaoqing, Gu, Lin, Hu, YongSheng, Li, Hong, Wang, Zhaoxiang, Chen, Wen, Duan, Xiaofeng, Chen, Liquan, Maier, Joachim, Tsukimoto, Susumu, Ikuhara, Yuichi. New Insight into the Atomic Structure of Electrochemically Delithiated O3-Li(1-x)CoO2 (0 <= x <= 0.5) Nanoparticles. NANO LETTERS[J]. 2012, 12(12): 6192-6197, http://dx.doi.org/10.1021/nl303036e.[217] Fang, Xiangpeng, Guo, Xianwei, Mao, Ya, Hua, Chunxiu, Shen, Lanyao, Hu, Yongsheng, Wang, Zhaoxiang, Wu, Feng, Chen, Liquan. Mechanism of Lithium Storage in MoS2 and the Feasibility of Using Li2S/Mo Nanocomposites as Cathode Materials for Lithium-Sulfur Batteries. CHEMISTRY-AN ASIAN JOURNAL[J]. 2012, 7(5): 1013-1017, http://dx.doi.org/10.1002/asia.201100796.[218] Hua, Chunxiu, Fang, Xiangpeng, Yang, Zhiwei, Gao, Yurui, Wang, Zhaoxiang, Chen, Liquan. Lithium storage mechanism and catalytic behavior of CeO2. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2012, 25: 66-69, http://dx.doi.org/10.1016/j.elecom.2012.09.030.[219] Wang Zhaoxiang, Chen Liquan, Huang Xuejie. Structural Design and Modification of Cathode Materials for Lithium Ion Batteries. PROGRESS IN CHEMISTRY[J]. 2011, 23(2-3): 284-301, http://ir.iphy.ac.cn/handle/311004/53295.[220] 陈仕玉, 王兆翔, 房向鹏, 赵海雷, 刘效疆, 陈立泉. 二硫化钛作为锂离子电池负极材料的特性. 物理化学学报[J]. 2011, 27(1): 97-102, http://lib.cqvip.com/Qikan/Article/Detail?id=36358813.[221] Guo, Bingkun, Kong, Qingyu, Zhu, Ying, Mao, Ya, Wang, Zhaoxiang, Wan, Meixiang, Chen, Liquan. Electrochemically Fabricated Polypyrrole-Cobalt-Oxygen Coordination Complex as High-Performance Lithium-Storage Materials. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2011, 17(52): 14878-14884, http://ir.iphy.ac.cn/handle/311004/37018.[222] Zhao, Liang, Hu, YongSheng, Li, Hong, Wang, Zhaoxiang, Chen, Liquan. Porous Li4Ti5O12 Coated with N-Doped Carbon from Ionic Liquids for Li-Ion Batteries. ADVANCED MATERIALS[J]. 2011, 23(11): 1385-1388, http://ir.iphy.ac.cn/handle/311004/51153.[223] Chen ShiYu, Wang ZhaoXiang, Fang XiangPeng, Zhao HaiLei, Liu XiaoJiang, Chen LiQuan. Characterization of TiS2 as an Anode Material for Lithium Ion Batteries. ACTA PHYSICO-CHIMICA SINICA[J]. 2011, 27(1): 97-102, http://ir.iphy.ac.cn/handle/311004/34663.[224] 吴承仁, 赵长春, 王兆翔, 陈立泉. 锂离子电池用富锂层状正极材料. 化学进展[J]. 2011, 23(10): 2038-2044, http://lib.cqvip.com/Qikan/Article/Detail?id=39460682.[225] 王兆翔, 陈立泉, 黄学杰. 锂离子电池正极材料的结构设计与改性. 化学进展[J]. 2011, 23(2): 284-301, http://lib.cqvip.com/Qikan/Article/Detail?id=37026540.[226] Wu Chengren, Zhao Changchun, Wang Zhaoxiang, Chen Liquan. Li-Rich Layer-Structured Cathode Materials for Li-Ion Batteries. PROGRESS IN CHEMISTRY[J]. 2011, 23(10): 2038-2044, http://ir.iphy.ac.cn/handle/311004/40891.[227] Wang, JiaZhao, Zhong, Chao, Wexler, David, Idris, Nurul Hayati, Wang, ZhaoXiang, Chen, LiQuan, Liu, HuaKun. Graphene-Encapsulated Fe3O4 Nanoparticles with 3D Laminated Structure as Superior Anode in Lithium Ion Batteries. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2011, 17(2): 661-667, http://ir.iphy.ac.cn/handle/311004/38823.[228] Mao, Ya, Kong, Qingyu, Guo, Bingkun, Fang, Xiangpeng, Guo, Xianwei, Shen, Lian, Armand, Michel, Wang, Zhaoxiang, Chen, Liquan. Polypyrrole-iron-oxygen coordination complex as high performance lithium storage material. ENERGY & ENVIRONMENTAL SCIENCE[J]. 2011, 4(9): 3442-3447, http://ir.iphy.ac.cn/handle/311004/51148.[229] Guo, Xianwei, Fang, Xiangpeng, Mao, Ya, Wang, Zhaoxiang, Wu, Feng, Chen, Liquan. Capacitive Energy Storage on Fe/Li3PO4 Grain Boundaries. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2011, 115(9): 3803-3808, http://dx.doi.org/10.1021/jp111015j.[230] Chou, ShuLei, Gao, XuanWen, Wang, JiaZhao, Wexler, David, Wang, ZhaoXiang, Chen, LiQuan, Liu, HuaKun. Tin/polypyrrole composite anode using sodium carboxymethyl cellulose binder for lithium-ion batteries. DALTON TRANSACTIONS[J]. 2011, 40(48): 12801-12807, http://ir.iphy.ac.cn/handle/311004/45932.[231] Lu, Xia, Jian, Zelang, Fang, Zheng, Gu, Lin, Hu, YongSheng, Chen, Wen, Wang, Zhaoxiang, Chen, Liquan. Atomic-scale investigation on lithium storage mechanism in TiNb2O7. ENERGY & ENVIRONMENTAL SCIENCE[J]. 2011, 4(8): 2638-2644, http://ir.iphy.ac.cn/handle/311004/34051.[232] 赵亮, 胡勇胜, 李泓, 王兆翔, 徐红星, 黄学杰, 陈立泉. 拉曼光谱在锂离子电池研究中的应用. 电化学[J]. 2011, 17(1): 12-23, http://lib.cqvip.com/Qikan/Article/Detail?id=37012094.[233] Ding, Zijing, Zhao, Liang, Suo, Liumin, Jiao, Yang, Meng, Sheng, Hu, YongSheng, Wang, Zhaoxiang, Chen, Liquan. Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: a combined experimental and theoretical study. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2011, 13(33): 15127-15133, http://ir.iphy.ac.cn/handle/311004/45998.[234] Xu, Bin, Shi, Lu, Guo, Xianwei, Peng, Lu, Wang, Zhaoxiang, Chen, Shi, Cao, Gaoping, Wu, Feng, Yang, Yusheng. Nano-CaCO3 templated mesoporous carbon as anode material for Li-ion batteries. ELECTROCHIMICA ACTA[J]. 2011, 56(18): 6464-6468, http://dx.doi.org/10.1016/j.electacta.2011.04.130.[235] Kong, Qingyu, Guo, Bingkun, Baudelet, Francois, Zhu, Ying, Mao, Ya, Wang, Zhaoxiang, Wan, Meixiang, Chen, Liquan. Structual Characterization of High-performance Co-polymer Lithium Storage Material by EXAFS and DFT Calculations. JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS[J]. 2011, 14(1): 31-37, http://www.corc.org.cn/handle/1471x/2373763.[236] Wang Zhaoxiang, Chen Liquan, Huang Xuejie. Structural Design and Modification of Cathode Materials for Lithium Ion Batteries. PROGRESS IN CHEMISTRY[J]. 2011, 23(2-3): 284-301, http://ir.iphy.ac.cn/handle/311004/53295.[237] 陈仕玉, 王兆翔, 房向鹏, 赵海雷, 刘效疆, 陈立泉. 二硫化钛作为锂离子电池负极材料的特性. 物理化学学报[J]. 2011, 27(1): 97-102, http://lib.cqvip.com/Qikan/Article/Detail?id=36358813.[238] Guo, Bingkun, Kong, Qingyu, Zhu, Ying, Mao, Ya, Wang, Zhaoxiang, Wan, Meixiang, Chen, Liquan. Electrochemically Fabricated Polypyrrole-Cobalt-Oxygen Coordination Complex as High-Performance Lithium-Storage Materials. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2011, 17(52): 14878-14884, http://ir.iphy.ac.cn/handle/311004/37018.[239] Zhao, Liang, Hu, YongSheng, Li, Hong, Wang, Zhaoxiang, Chen, Liquan. Porous Li4Ti5O12 Coated with N-Doped Carbon from Ionic Liquids for Li-Ion Batteries. ADVANCED MATERIALS[J]. 2011, 23(11): 1385-1388, http://ir.iphy.ac.cn/handle/311004/51153.[240] Chen ShiYu, Wang ZhaoXiang, Fang XiangPeng, Zhao HaiLei, Liu XiaoJiang, Chen LiQuan. Characterization of TiS2 as an Anode Material for Lithium Ion Batteries. ACTA PHYSICO-CHIMICA SINICA[J]. 2011, 27(1): 97-102, http://ir.iphy.ac.cn/handle/311004/34663.[241] 吴承仁, 赵长春, 王兆翔, 陈立泉. 锂离子电池用富锂层状正极材料. 化学进展[J]. 2011, 23(10): 2038-2044, http://lib.cqvip.com/Qikan/Article/Detail?id=39460682.[242] 王兆翔, 陈立泉, 黄学杰. 锂离子电池正极材料的结构设计与改性. 化学进展[J]. 2011, 23(2): 284-301, http://lib.cqvip.com/Qikan/Article/Detail?id=37026540.[243] Wu Chengren, Zhao Changchun, Wang Zhaoxiang, Chen Liquan. Li-Rich Layer-Structured Cathode Materials for Li-Ion Batteries. PROGRESS IN CHEMISTRY[J]. 2011, 23(10): 2038-2044, http://ir.iphy.ac.cn/handle/311004/40891.[244] Wang, JiaZhao, Zhong, Chao, Wexler, David, Idris, Nurul Hayati, Wang, ZhaoXiang, Chen, LiQuan, Liu, HuaKun. Graphene-Encapsulated Fe3O4 Nanoparticles with 3D Laminated Structure as Superior Anode in Lithium Ion Batteries. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2011, 17(2): 661-667, http://ir.iphy.ac.cn/handle/311004/38823.[245] Mao, Ya, Kong, Qingyu, Guo, Bingkun, Fang, Xiangpeng, Guo, Xianwei, Shen, Lian, Armand, Michel, Wang, Zhaoxiang, Chen, Liquan. Polypyrrole-iron-oxygen coordination complex as high performance lithium storage material. ENERGY & ENVIRONMENTAL SCIENCE[J]. 2011, 4(9): 3442-3447, http://ir.iphy.ac.cn/handle/311004/51148.[246] Guo, Xianwei, Fang, Xiangpeng, Mao, Ya, Wang, Zhaoxiang, Wu, Feng, Chen, Liquan. Capacitive Energy Storage on Fe/Li3PO4 Grain Boundaries. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2011, 115(9): 3803-3808, http://dx.doi.org/10.1021/jp111015j.[247] Chou, ShuLei, Gao, XuanWen, Wang, JiaZhao, Wexler, David, Wang, ZhaoXiang, Chen, LiQuan, Liu, HuaKun. Tin/polypyrrole composite anode using sodium carboxymethyl cellulose binder for lithium-ion batteries. DALTON TRANSACTIONS[J]. 2011, 40(48): 12801-12807, http://ir.iphy.ac.cn/handle/311004/45932.[248] Lu, Xia, Jian, Zelang, Fang, Zheng, Gu, Lin, Hu, YongSheng, Chen, Wen, Wang, Zhaoxiang, Chen, Liquan. Atomic-scale investigation on lithium storage mechanism in TiNb2O7. ENERGY & ENVIRONMENTAL SCIENCE[J]. 2011, 4(8): 2638-2644, http://ir.iphy.ac.cn/handle/311004/34051.[249] 赵亮, 胡勇胜, 李泓, 王兆翔, 徐红星, 黄学杰, 陈立泉. 拉曼光谱在锂离子电池研究中的应用. 电化学[J]. 2011, 17(1): 12-23, http://lib.cqvip.com/Qikan/Article/Detail?id=37012094.[250] Ding, Zijing, Zhao, Liang, Suo, Liumin, Jiao, Yang, Meng, Sheng, Hu, YongSheng, Wang, Zhaoxiang, Chen, Liquan. Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: a combined experimental and theoretical study. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2011, 13(33): 15127-15133, http://ir.iphy.ac.cn/handle/311004/45998.[251] Xu, Bin, Shi, Lu, Guo, Xianwei, Peng, Lu, Wang, Zhaoxiang, Chen, Shi, Cao, Gaoping, Wu, Feng, Yang, Yusheng. Nano-CaCO3 templated mesoporous carbon as anode material for Li-ion batteries. ELECTROCHIMICA ACTA[J]. 2011, 56(18): 6464-6468, http://dx.doi.org/10.1016/j.electacta.2011.04.130.[252] Kong, Qingyu, Guo, Bingkun, Baudelet, Francois, Zhu, Ying, Mao, Ya, Wang, Zhaoxiang, Wan, Meixiang, Chen, Liquan. Structual Characterization of High-performance Co-polymer Lithium Storage Material by EXAFS and DFT Calculations. JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS[J]. 2011, 14(1): 31-37, http://www.corc.org.cn/handle/1471x/2373763.[253] Guo, Xianwei, Lu, Xia, Fang, Xiangpeng, Mao, Ya, Wang, Zhaoxiang, Chen, Liquan, Xu, Xiaoxue, Yang, Hong, Liu, Yinong. Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2010, 12(6): 847-850, http://dx.doi.org/10.1016/j.elecom.2010.04.003.[254] Zhong, Kaifu, Xia, Xin, Zhang, Bin, Li, Hong, Wang, Zhaoxiang, Chen, Liquan. MnO powder as anode active materials for lithium ion batteries. JOURNAL OF POWER SOURCES[J]. 2010, 195(10): 3300-3308, http://dx.doi.org/10.1016/j.jpowsour.2009.11.133.[255] Wei, GuoZhen, Lu, Xia, Ke, FuSheng, Huang, Ling, Li, JunTao, Wang, ZhaoXiang, Zhou, ZhiYou, Sun, ShiGang. Crystal Habit-Tuned Nanoplate Material of LiLi1/3-2x/3NixMn2/3-x/3O-2 for High-Rate Performance Lithium-Ion Batteries. ADVANCED MATERIALS[J]. 2010, 22(39): 4364-+, http://ir.iphy.ac.cn/handle/311004/35340.[256] Qu XiaoHua, Liu Jie, Wang ZhaoXiang, Cao DianLiang, Fang XiangPeng, Zhang Ling, Duan JingLai, Yao HuiJun, Chen YanFeng, Sun YouMei, Hou MingDong. Preparation of Microporous Membranes by Swift Heavy Ion Irradiation and Impedance Characterization. ACTA PHYSICO-CHIMICA SINICA[J]. 2010, 26(6): 1722-1726, http://ir.impcas.ac.cn/handle/113462/7579.[257] Fang, Xiangpeng, Lu, Xia, Guo, Xianwei, Mao, Ya, Hu, YongSheng, Wang, Jiazhao, Wang, Zhaoxiang, Wu, Feng, Liu, Huakun, Chen, Liquan. Electrode reactions of manganese oxides for secondary lithium batteries. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2010, 12(11): 1520-1523, https://doaj.org/article/42dc75c39e1747c1b93458006bcbb790.[258] 曲晓华, 刘杰, 王兆翔, 曹殿亮, 房向鹏, 张苓, 段敬来, 姚会军, 陈艳峰, 孙友梅, 侯明东. 重离子辐照制备电池用微孔膜及其阻抗性质. 物理化学学报[J]. 2010, 1722-1726, http://lib.cqvip.com/Qikan/Article/Detail?id=34164248.[259] Guo, Xianwei, Lu, Xia, Fang, Xiangpeng, Mao, Ya, Wang, Zhaoxiang, Chen, Liquan, Xu, Xiaoxue, Yang, Hong, Liu, Yinong. Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2010, 12(6): 847-850, http://dx.doi.org/10.1016/j.elecom.2010.04.003.[260] Zhong, Kaifu, Xia, Xin, Zhang, Bin, Li, Hong, Wang, Zhaoxiang, Chen, Liquan. MnO powder as anode active materials for lithium ion batteries. JOURNAL OF POWER SOURCES[J]. 2010, 195(10): 3300-3308, http://dx.doi.org/10.1016/j.jpowsour.2009.11.133.[261] Wei, GuoZhen, Lu, Xia, Ke, FuSheng, Huang, Ling, Li, JunTao, Wang, ZhaoXiang, Zhou, ZhiYou, Sun, ShiGang. Crystal Habit-Tuned Nanoplate Material of LiLi1/3-2x/3NixMn2/3-x/3O-2 for High-Rate Performance Lithium-Ion Batteries. ADVANCED MATERIALS[J]. 2010, 22(39): 4364-+, http://ir.iphy.ac.cn/handle/311004/35340.[262] Qu XiaoHua, Liu Jie, Wang ZhaoXiang, Cao DianLiang, Fang XiangPeng, Zhang Ling, Duan JingLai, Yao HuiJun, Chen YanFeng, Sun YouMei, Hou MingDong. Preparation of Microporous Membranes by Swift Heavy Ion Irradiation and Impedance Characterization. ACTA PHYSICO-CHIMICA SINICA[J]. 2010, 26(6): 1722-1726, http://ir.impcas.ac.cn/handle/113462/7579.[263] Fang, Xiangpeng, Lu, Xia, Guo, Xianwei, Mao, Ya, Hu, YongSheng, Wang, Jiazhao, Wang, Zhaoxiang, Wu, Feng, Liu, Huakun, Chen, Liquan. Electrode reactions of manganese oxides for secondary lithium batteries. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2010, 12(11): 1520-1523, https://doaj.org/article/42dc75c39e1747c1b93458006bcbb790.[264] 曲晓华, 刘杰, 王兆翔, 曹殿亮, 房向鹏, 张苓, 段敬来, 姚会军, 陈艳峰, 孙友梅, 侯明东. 重离子辐照制备电池用微孔膜及其阻抗性质. 物理化学学报[J]. 2010, 1722-1726, http://lib.cqvip.com/Qikan/Article/Detail?id=34164248.[265] Chen Shiyu, Wang Zhaoxiang, Zhao Hailei, Chen Liquan. Safety-Enhancing Additives for Lithium Ion Batteries. PROGRESS IN CHEMISTRY[J]. 2009, 21(4): 629-636, http://ir.iphy.ac.cn/handle/311004/52289.[266] 陈仕玉, 王兆翔, 赵海雷, 陈立泉. 锂离子电池安全性添加剂. 化学进展[J]. 2009, 21(4): 629-636, http://lib.cqvip.com/Qikan/Article/Detail?id=29998679.[267] 郭炳焜, 舒杰, 唐堃, 白莹, 王兆翔, 陈立泉. 纳米锡/硬碳复合材料作为嵌锂负极的研究. 电化学[J]. 2009, 15(1): 5-8, http://lib.cqvip.com/Qikan/Article/Detail?id=29745300.[268] Chen, Shiyu, Wang, Zhaoxiang, Zhao, Hailei, Qiao, Hongwei, Luan, Helin, Chen, Liquan. A novel flame retardant and film-forming electrolyte additive for lithium ion batteries. JOURNAL OF POWER SOURCES[J]. 2009, 187(1): 229-232, http://dx.doi.org/10.1016/j.jpowsour.2008.10.091.[269] Li, Hong, Wang, Zhaoxiang, Chen, Liquan, Huang, Xuejie. Research on Advanced Materials for Li-ion Batteries. ADVANCED MATERIALS[J]. 2009, 21(45): 4593-4607, http://ir.iphy.ac.cn/handle/311004/52077.[270] Chen Shiyu, Wang Zhaoxiang, Zhao Hailei, Chen Liquan. Safety-Enhancing Additives for Lithium Ion Batteries. PROGRESS IN CHEMISTRY[J]. 2009, 21(4): 629-636, http://ir.iphy.ac.cn/handle/311004/52289.[271] 陈仕玉, 王兆翔, 赵海雷, 陈立泉. 锂离子电池安全性添加剂. 化学进展[J]. 2009, 21(4): 629-636, http://lib.cqvip.com/Qikan/Article/Detail?id=29998679.[272] 郭炳焜, 舒杰, 唐堃, 白莹, 王兆翔, 陈立泉. 纳米锡/硬碳复合材料作为嵌锂负极的研究. 电化学[J]. 2009, 15(1): 5-8, http://lib.cqvip.com/Qikan/Article/Detail?id=29745300.[273] Chen, Shiyu, Wang, Zhaoxiang, Zhao, Hailei, Qiao, Hongwei, Luan, Helin, Chen, Liquan. A novel flame retardant and film-forming electrolyte additive for lithium ion batteries. JOURNAL OF POWER SOURCES[J]. 2009, 187(1): 229-232, http://dx.doi.org/10.1016/j.jpowsour.2008.10.091.[274] Li, Hong, Wang, Zhaoxiang, Chen, Liquan, Huang, Xuejie. Research on Advanced Materials for Li-ion Batteries. ADVANCED MATERIALS[J]. 2009, 21(45): 4593-4607, http://ir.iphy.ac.cn/handle/311004/52077.[275] Xia, Xin, Wang, Zhaoxiang, Chen, Liquan. Regeneration and characterization of air-oxidized LiFePO4. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2008, 10(10): 1442-1444, http://dx.doi.org/10.1016/j.elecom.2008.07.036.[276] 李泓, 王兆翔, 黄学杰, 陈立泉. 锂离子电池中的尺寸效应与表界面问题研究. 物理[J]. 2008, 37(6): 416-420, http://lib.cqvip.com/Qikan/Article/Detail?id=27528375.[277] Guo, Bingkun, Shu, Jie, Wang, Zhaoxiang, Yang, Hong, Shi, Lihong, Liu, Yinong, Chen, Liquan. Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2008, 10(12): 1876-1878, http://dx.doi.org/10.1016/j.elecom.2008.09.032.[278] Guo, Bingkun, Shu, Jie, Tang, Kun, Bai, Ying, Wang, Zhaoxiang, Chen, Liquan. Nano-Sn/hard carbon composite anode material with high-initial coulombic efficiency. JOURNAL OF POWER SOURCES[J]. 2008, 177(1): 205-210, http://dx.doi.org/10.1016/j.jpowsour.2007.11.003.[279] Feng, Zhenzhen, Yang, Jun, NuLi, Yanna, Wang, Jiulin, Wang, Xiaojian, Wang, Zhaoxiang. Preparation and electrochemical study of a new magnesium intercalation material Mg1.03Mn0.97SiO4. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2008, 10(9): 1291-1294, http://dx.doi.org/10.1016/j.elecom.2008.06.021.[280] Xia, Xin, Wang, Zhaoxiang, Chen, Liquan. Regeneration and characterization of air-oxidized LiFePO4. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2008, 10(10): 1442-1444, http://dx.doi.org/10.1016/j.elecom.2008.07.036.[281] 李泓, 王兆翔, 黄学杰, 陈立泉. 锂离子电池中的尺寸效应与表界面问题研究. 物理[J]. 2008, 37(6): 416-420, http://lib.cqvip.com/Qikan/Article/Detail?id=27528375.[282] Guo, Bingkun, Shu, Jie, Wang, Zhaoxiang, Yang, Hong, Shi, Lihong, Liu, Yinong, Chen, Liquan. Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2008, 10(12): 1876-1878, http://dx.doi.org/10.1016/j.elecom.2008.09.032.[283] Guo, Bingkun, Shu, Jie, Tang, Kun, Bai, Ying, Wang, Zhaoxiang, Chen, Liquan. Nano-Sn/hard carbon composite anode material with high-initial coulombic efficiency. JOURNAL OF POWER SOURCES[J]. 2008, 177(1): 205-210, http://dx.doi.org/10.1016/j.jpowsour.2007.11.003.[284] Feng, Zhenzhen, Yang, Jun, NuLi, Yanna, Wang, Jiulin, Wang, Xiaojian, Wang, Zhaoxiang. Preparation and electrochemical study of a new magnesium intercalation material Mg1.03Mn0.97SiO4. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2008, 10(9): 1291-1294, http://dx.doi.org/10.1016/j.elecom.2008.06.021.[285] Bai, Ying, Shi, Hongjun, Wang, Zhaoxiang, Chen, Liquan. Performance improvement of LiCoO2 by molten salt surface modification. JOURNAL OF POWER SOURCES[J]. 2007, 167(2): 504-509, http://dx.doi.org/10.1016/j.jpowsour.2007.02.036.[286] Bai, Ying, Yin, Yanfeng, Liu, Na, Guo, Bingkun, Shi, Hongjun, Liu, Jianyong, Wang, Zhaoxiang, Chen, Liquan. New concept of surface modification to LiCoO2. JOURNAL OF POWER SOURCES[J]. 2007, 174(1): 328-334, http://dx.doi.org/10.1016/j.jpowsour.2007.09.023.[287] Liu, Jianyong, Liu, Na, Liu, Daotan, Bai, Ying, Shi, Lihong, Wang, Zhaoxiang, Chen, Liquan, Hennige, Volker, Schuch, Andreas. Improving the performances of LiCoO2 cathode materials by soaking nano-alumina in commercial electrolyte. JOURNAL OF THE ELECTROCHEMICAL SOCIETY[J]. 2007, 154(1): A55-A63, http://ir.iphy.ac.cn/handle/311004/39681.[288] Jiang, Jun, Ouyang, Chuying, Li, Hong, Wang, Zhaoxiang, Huang, Xuejie, Chen, Liquan. First-principles study on electronic structure of LiFePO4. SOLID STATE COMMUNICATIONS[J]. 2007, 143(3): 144-148, http://dx.doi.org/10.1016/j.ssc.2007.05.004.[289] Guo, Bingkun, Liu, Na, Liu, Jianyong, Shi, Hongjun, Wang, Zhaoxiang, Chen, Liquan. Compatibility of Co3O4 with commercial electrolyte. ELECTROCHEMICAL AND SOLID STATE LETTERS[J]. 2007, 10(4): A118-A121, http://ir.iphy.ac.cn/handle/311004/34970.[290] Bai, Ying, Shi, Hongjun, Wang, Zhaoxiang, Chen, Liquan. Performance improvement of LiCoO2 by molten salt surface modification. JOURNAL OF POWER SOURCES[J]. 2007, 167(2): 504-509, http://dx.doi.org/10.1016/j.jpowsour.2007.02.036.[291] Bai, Ying, Yin, Yanfeng, Liu, Na, Guo, Bingkun, Shi, Hongjun, Liu, Jianyong, Wang, Zhaoxiang, Chen, Liquan. New concept of surface modification to LiCoO2. JOURNAL OF POWER SOURCES[J]. 2007, 174(1): 328-334, http://dx.doi.org/10.1016/j.jpowsour.2007.09.023.[292] Liu, Jianyong, Liu, Na, Liu, Daotan, Bai, Ying, Shi, Lihong, Wang, Zhaoxiang, Chen, Liquan, Hennige, Volker, Schuch, Andreas. Improving the performances of LiCoO2 cathode materials by soaking nano-alumina in commercial electrolyte. JOURNAL OF THE ELECTROCHEMICAL SOCIETY[J]. 2007, 154(1): A55-A63, http://ir.iphy.ac.cn/handle/311004/39681.[293] Jiang, Jun, Ouyang, Chuying, Li, Hong, Wang, Zhaoxiang, Huang, Xuejie, Chen, Liquan. First-principles study on electronic structure of LiFePO4. SOLID STATE COMMUNICATIONS[J]. 2007, 143(3): 144-148, http://dx.doi.org/10.1016/j.ssc.2007.05.004.[294] Guo, Bingkun, Liu, Na, Liu, Jianyong, Shi, Hongjun, Wang, Zhaoxiang, Chen, Liquan. Compatibility of Co3O4 with commercial electrolyte. ELECTROCHEMICAL AND SOLID STATE LETTERS[J]. 2007, 10(4): A118-A121, http://ir.iphy.ac.cn/handle/311004/34970.[295] Liu, Jianyong, Wang, Zhaoxiang, Li, Hong, Huang, Xuejie. Synthesis and characterization of Cr8O21 as cathode material for rechargeable lithium batteries. SOLID STATE IONICS[J]. 2006, 177(26-32): 2675-2678, http://dx.doi.org/10.1016/j.ssi.2006.05.017.[296] Liu, Daotan, Wang, Zhaoxiang, Chen, Liquan. Comparison of structure and electrochemistry of Al- and Fe-doped LiNi1/3Co1/3Mn1/3O2. ELECTROCHIMICA ACTA[J]. 2006, 51(20): 4199-4203, http://dx.doi.org/10.1016/j.electacta.2005.11.045.[297] Shi, Siqi, Xu, Lifang, Ouyang, Chuying, Wang, Zhaoxiang, Chen, Liquan. Iodine ion transport in solid electrolyte LiI(C3H5NO)(2): a first-principles identification. IONICS[J]. 2006, 12(6): 343-347, http://ir.iphy.ac.cn/handle/311004/40358.[298] Liu, Na, Li, Hong, Wang, Zhaoxiang, Huang, Xuejie, Chen, Liquan. Origin of solid electrolyte interphase on nanosized LiCoO2. ELECTROCHEMICAL AND SOLID STATE LETTERS[J]. 2006, 9(7): A328-A331, http://ir.iphy.ac.cn/handle/311004/50479.[299] Zeng, Yuqun, Wu, Kai, Wang, Deyu, Wang, Zhaoxiang, Chen, Liquan. Overcharge investigation of lithium-ion polymer batteries. JOURNAL OF POWER SOURCES[J]. 2006, 160(2): 1302-1307, http://dx.doi.org/10.1016/j.jpowsour.2006.02.009.[300] Bai, Ying, Liu, Na, Liu, Jianyong, Wang, Zhaoxiang, Chen, Liquan. Coating material-induced acidic electrolyte improves LiCoO2 performances. ELECTROCHEMICAL AND SOLID STATE LETTERS[J]. 2006, 9(12): A552-A556, http://ir.iphy.ac.cn/handle/311004/34775.[301] Liu, Daotan, Ouyang, Chuying, Shu, Jie, Jiang, Jun, Wang, Zhaoxiang, Chen, Liquan. Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS[J]. 2006, 243(8): 1835-1841, http://ir.iphy.ac.cn/handle/311004/45648.[302] Liu, Jianyong, Wang, Zhaoxiang, Li, Hong, Huang, Xuejie. Synthesis and characterization of Cr8O21 as cathode material for rechargeable lithium batteries. SOLID STATE IONICS[J]. 2006, 177(26-32): 2675-2678, http://dx.doi.org/10.1016/j.ssi.2006.05.017.[303] Liu, Daotan, Wang, Zhaoxiang, Chen, Liquan. Comparison of structure and electrochemistry of Al- and Fe-doped LiNi1/3Co1/3Mn1/3O2. ELECTROCHIMICA ACTA[J]. 2006, 51(20): 4199-4203, http://dx.doi.org/10.1016/j.electacta.2005.11.045.[304] Shi, Siqi, Xu, Lifang, Ouyang, Chuying, Wang, Zhaoxiang, Chen, Liquan. Iodine ion transport in solid electrolyte LiI(C3H5NO)(2): a first-principles identification. IONICS[J]. 2006, 12(6): 343-347, http://ir.iphy.ac.cn/handle/311004/40358.[305] Liu, Na, Li, Hong, Wang, Zhaoxiang, Huang, Xuejie, Chen, Liquan. Origin of solid electrolyte interphase on nanosized LiCoO2. ELECTROCHEMICAL AND SOLID STATE LETTERS[J]. 2006, 9(7): A328-A331, http://ir.iphy.ac.cn/handle/311004/50479.[306] Zeng, Yuqun, Wu, Kai, Wang, Deyu, Wang, Zhaoxiang, Chen, Liquan. Overcharge investigation of lithium-ion polymer batteries. JOURNAL OF POWER SOURCES[J]. 2006, 160(2): 1302-1307, http://dx.doi.org/10.1016/j.jpowsour.2006.02.009.[307] Bai, Ying, Liu, Na, Liu, Jianyong, Wang, Zhaoxiang, Chen, Liquan. Coating material-induced acidic electrolyte improves LiCoO2 performances. ELECTROCHEMICAL AND SOLID STATE LETTERS[J]. 2006, 9(12): A552-A556, http://ir.iphy.ac.cn/handle/311004/34775.[308] Liu, Daotan, Ouyang, Chuying, Shu, Jie, Jiang, Jun, Wang, Zhaoxiang, Chen, Liquan. Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS[J]. 2006, 243(8): 1835-1841, http://ir.iphy.ac.cn/handle/311004/45648.[309] Wang, HX, Wang, ZX, Xue, BF, Meng, QB, Huang, XJ, Chen, LQ. Polymer-in-salt like conduction behavior of small-molecule electrolytes. CHEMICAL COMMUNICATIONS[J]. 2004, 2186-2187, http://ir.iphy.ac.cn/handle/311004/51140.[310] 施思齐, 欧阳楚英, 王兆翔. 锂离子电池中的物理问题及其研究进展. 物理[J]. 2004, 33(3): 182-185, http://lib.cqvip.com/Qikan/Article/Detail?id=9384679.[311] Wang, HX, Wang, ZX, Xue, BF, Meng, QB, Huang, XJ, Chen, LQ. Polymer-in-salt like conduction behavior of small-molecule electrolytes. CHEMICAL COMMUNICATIONS[J]. 2004, 2186-2187, http://ir.iphy.ac.cn/handle/311004/51140.[312] 施思齐, 欧阳楚英, 王兆翔. 锂离子电池中的物理问题及其研究进展. 物理[J]. 2004, 33(3): 182-185, http://lib.cqvip.com/Qikan/Article/Detail?id=9384679.[313] 高卫东, 王兆翔, 陈立泉, 莫育俊. 一种新型锂离子电池聚合物电解质的光谱学研究. 光散射学报[J]. 2003, 15(2): 69-74, http://lib.cqvip.com/Qikan/Article/Detail?id=8178805.[314] 高卫东, 王兆翔, 陈立泉, 莫育俊. 一种新型锂离子电池聚合物电解质的光谱学研究. 光散射学报[J]. 2003, 15(2): 69-74, http://lib.cqvip.com/Qikan/Article/Detail?id=8178805.[315] 王兆翔, 李泓, 吴川, 高卫东, 陈立泉, 莫育俊, 吴锋, 黄学杰. 锂离子电池相关材料的Raman光谱研究. 光散射学报[J]. 2001, 13: 20-, http://ir.iphy.ac.cn/handle/311004/49340.[316] 莫育俊, 李泓, 高卫东, 吴川, 王兆翔, 黄学杰, 陈立泉, 吴锋. 锂离子电池相关材料的Raman光谱学研究. 光散射学报[J]. 2001, 13(2): 82-, http://lib.cqvip.com/Qikan/Article/Detail?id=5795873.[317] 王兆翔, 李泓, 吴川, 高卫东, 陈立泉, 莫育俊, 吴锋, 黄学杰. 锂离子电池相关材料的Raman光谱研究. 光散射学报[J]. 2001, 13: 20-, http://ir.iphy.ac.cn/handle/311004/49340.[318] 莫育俊, 李泓, 高卫东, 吴川, 王兆翔, 黄学杰, 陈立泉, 吴锋. 锂离子电池相关材料的Raman光谱学研究. 光散射学报[J]. 2001, 13(2): 82-, http://lib.cqvip.com/Qikan/Article/Detail?id=5795873.[319] 薛荣坚, 黄学杰, 王兆翔, 黄碧英, 陈立泉. 聚合物电解质中离子输运机制的谱学研究. 电化学[J]. 1998, 4(1): 79-, http://lib.cqvip.com/Qikan/Article/Detail?id=2933886.[320] 薛荣坚, 黄学杰, 王兆翔, 黄碧英, 陈立泉. 聚合物电解质中离子输运机制的谱学研究. 电化学[J]. 1998, 4(1): 79-, http://lib.cqvip.com/Qikan/Article/Detail?id=2933886.[321] 王兆翔. 表面增强喇曼散射的应用研究. 1994, http://ir.iphy.ac.cn/handle/311004/54820.[322] 王兆翔. 表面增强喇曼散射的应用研究. 1994, http://ir.iphy.ac.cn/handle/311004/54820.