基本信息

​游淳研究员是国家优青青年基金获得者,海外高层次青年人才,已先后在ACS CatalysisPNASAngewandte Chemie International EditionBiotech.Bioeng.Biotech. BiofuelsApplied Environmental Microbiology 等重要学术期刊上发表40余篇SCI论文,申请20多项国内专利和2PCT专利。并且与国内多家企业建立合作关系。

研究领域

主要围绕体外生物合成系统组装的适配性、稳定性、有效性等关键科学问题,构建超稳酶元件库,阐明人工设计途径中酶元件的结构与功能关系,创建非天然生物酶,为体外生物合成途径提供特制元件;解析酶元件和人工辅酶识别的分子机制,创制人工辅酶介导的非天然功能模块;揭示多酶复合体物质与能量流传递及分配调控机制,建立多酶复合体的人工设计原则方法;建立非细胞合成途径的工业测试与调控技术,形成人工非细胞合成体系设计与调控标准与原则,为体外生物合成体系设计与定向改造提供理论指导;实现高附加值化学品生成路线的替代,降低高值化学品的生产成本。

招生信息

招生方向
体外合成生物学

教育背景

2003-09--2009-06   复旦大学   博士
1999-09--2003-06   复旦大学   学士

专利与奖励

   
奖励信息
(1) 上海市科学技术奖, 二等奖, 市地级, 2013
(2) 高等学校科学研究优秀成果奖, 二等奖, 部委级, 2012
专利成果
[1] 游淳, 徐淑霞, 谢雷朋, 张以恒. 一种L-乳酸催化反应体系及L-乳酸的制备方法. CN: CN107663517B, 2021-07-30.

[2] 游淳, 孟冬冬, 周伟. 一种耐热6-磷酸氨基葡萄糖磷酸酶突变体及其应用. CN: CN113122519A, 2021-07-16.

[3] 游淳, 李运杰, 李国玮. 一种淀粉或其衍生物的酶法催化利用方法. CN: CN113122592A, 2021-07-16.

[4] 游淳, 魏欣蕾. 一种甘露醇的生物制备方法. CN: CN112680482A, 2021-04-20.

[5] 游淳, 李运杰, 李国玮. 酶法催化木糖固定一碳化合物的方法. CN: CN112442521A, 2021-03-05.

[6] 游淳, 孙尚尚. 一种制备昆布二糖的方法. CN: CN109706200B, 2021-03-05.

[7] 游淳, 韩平平. 蛋白质PfuPGM作为葡萄糖磷酸变位酶在生产肌醇中的应用. CN: CN111763696B, 2021-02-05.

[8] 孙媛霞, 杨建刚, 李运杰, 朱玥明, 游淳, 马延和. 一种生产阿洛酮糖及其衍生物的工程菌株及其构建方法和应用. CN: CN111712570A, 2020-09-25.

[9] 游淳, 李元, 刘珊. 一种葡萄糖二酸的制备方法. CN: CN110964757A, 2020-04-07.

[10] 游淳, 孟冬冬. 一种纤维素完全磷酸解产肌醇的方法. CN: CN110857443A, 2020-03-03.

[11] 游淳, 李元, 刘珊. 一种鲨肌醇的制备方法. CN: CN110857444A, 2020-03-03.

[12] 游淳, 孙尚尚. 一种淀粉转化制备昆布二糖的方法. CN: CN110819667A, 2020-02-21.

[13] 游淳, 孟冬冬. 氨基葡萄糖的酶法制备. CN: CN110714042A, 2020-01-21.

[14] 马延和, 孙媛霞, 杨建刚, 李运杰, 游淳, 曾艳. 一种甘露糖6-磷酸磷酸酶及甘露糖生物制备方法. CN: CN109750011A, 2019-05-14.

[15] 游淳, 魏欣蕾. 一种用于ATP再生的底盘系统与应用. 中国: CN107815444A, 2018.03.20.

[16] 张以恒, 钟超, 游淳. 一种以蔗糖为原料的肌醇制备方法. 中国: CN108085344A, 2018-05-29.

出版信息

发表论文
[1] Liu, Meixia, Han, Pingping, Zhang, Lingling, Zhong, Chao, You, Chun. Biofilm-Mediated Immobilization of a Multienzyme Complex for Accelerating Inositol Production from Starch. BIOCONJUGATE CHEMISTRY[J]. 2021, 32(9): 2032-2042, [2] Sun, Shangshang, Wei, Xinlei, Zhou, Xigui, You, Chun. Construction of an Artificial In Vitro Synthetic Enzymatic Platform for Upgrading Low-Cost Starch to Value-Added Disaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY[J]. 2021, 69(1): 302-314, https://www.webofscience.com/wos/woscc/full-record/WOS:000611076800029.
[3] Liu, Yao, Cong, Yalong, Zhang, Chuanxi, Fang, Bohuan, Pan, Yue, Li, Qiangzi, You, Chun, Gao, Bei, Zhang, John Z H, Zhu, Tong, Zhang, Lujia. Engineering the biomimetic cofactors of NMNH for cytochrome P450 BM3 based on binding conformation refinement. RSC ADVANCES[J]. 2021, 11(20): 12036-12042, http://dx.doi.org/10.1039/d1ra00352f.
[4] Wei, Xinlei, Li, Qiangzi, Hu, Congcong, You, Chun. An ATP-free in vitro synthetic enzymatic biosystem facilitating one-pot stoichiometric conversion of starch to mannitol. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY[J]. 2021, 105(5): 1913-1924, https://www.webofscience.com/wos/woscc/full-record/WOS:000615120500001.
[5] Sun, Shangshang, You, Chun. Disaccharide phosphorylases: Structure, catalytic mechanisms and directed evolution. SYNTHETIC AND SYSTEMS BIOTECHNOLOGY[J]. 2021, 6(1): 23-31, https://www.webofscience.com/wos/woscc/full-record/WOS:000624903200004.
[6] Li, Yunjie, Han, Pingping, Wang, Juan, Shi, Ting, You, Chun. Production of myo-inositol: Recent advance and prospective. BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY. 2021, http://dx.doi.org/10.1002/bab.2181.
[7] Li, Yunjie, Shi, Ting, Han, Pingping, You, Chun. Thermodynamics-Driven Production of Value-Added D-Allulose from Inexpensive Starch by an In Vitro Enzymatic Synthetic Biosystem. ACS CATALYSIS[J]. 2021, 11(9): 5088-5099, http://dx.doi.org/10.1021/acscatal.0c05718.
[8] 白雪, 李运杰, 孟冬冬, 魏欣蕾, 路福平, 游淳. 解纤维素热酸菌来源的耐热磷酸酶的酶学性质与应用. 生物加工过程. 2021, 19(2): 123-129, http://lib.cqvip.com/Qikan/Article/Detail?id=7104320006.
[9] Li, Qiangzi, Ma, Zhongsheng, Meng, Dongdong, Sui, Xiaofeng, You, Chun. Facile biosynthesis of synthetic crystalline cellulose nanoribbon from maltodextrin through a minimized two-enzyme phosphorylase cascade and its application in emulsion. JOURNAL OF BIOTECHNOLOGY[J]. 2021, 332: 54-60, http://dx.doi.org/10.1016/j.jbiotec.2021.03.018.
[10] 李国玮, 游淳. 二糖磷酸化酶及其在体外合成生物学中的应用. 食品与发酵工业[J]. 2020, 46(21): 284-291, http://lib.cqvip.com/Qikan/Article/Detail?id=7103228341.
[11] Li, Yuan, Liu, Shan, You, Chun. Permeabilized Escherichia coli Whole Cells Containing Co-Expressed Two Thermophilic Enzymes Facilitate the Synthesis of scyllo-Inositol from myo-Inositol. BIOTECHNOLOGY JOURNAL[J]. 2020, 15(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000486784900001.
[12] Meng, Dongdong, Wang, Juan, You, Chun. The properties of the linker in a mini-scaffoldin influence the catalytic efficiency of scaffoldin-mediated enzyme complexes. ENZYME AND MICROBIAL TECHNOLOGY[J]. 2020, 133: http://dx.doi.org/10.1016/j.enzmictec.2019.109460.
[13] Tian, Chaoyu, Yang, Jiangang, Li, Yunjie, Zhang, Tong, Li, Jiao, Ren, Chenxi, Men, Yan, Chen, Peng, You, Chun, Sun, Yuanxia, Ma, Yanhe. Artificially designed routes for the conversion of starch to value-added mannosyl compounds through coupling in vitro and in vivo metabolic engineering strategies. METABOLIC ENGINEERING[J]. 2020, 61: 215-224, http://dx.doi.org/10.1016/j.ymben.2020.06.008.
[14] Meng, Dongdong, Wei, Xinlei, Bai, Xue, Zhou, Wei, You, Chun. Artificial in Vitro Synthetic Enzymatic Biosystem for the One-Pot Sustainable Biomanufacturing of Glucosamine from Starch and Inorganic Ammonia. ACS CATALYSIS[J]. 2020, 10(23): 13809-13819, https://www.webofscience.com/wos/woscc/full-record/WOS:000598140200005.
[15] Han, Pingping, Zhou, Xigui, You, Chun. Efficient Multi-Enzymes Immobilized on Porous Microspheres for Producing Inositol From Starch. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY[J]. 2020, 8: https://doaj.org/article/b7fadaff931f441a97360c46b4188ad9.
[16] Wei, Xinlei, Han, Pingping, You, Chun. Facilitation of cascade biocatalysis by artificial multi-enzyme complexes - A review. CHINESE JOURNAL OF CHEMICAL ENGINEERINGnull. 2020, 28(11): 2799-2809, http://lib.cqvip.com/Qikan/Article/Detail?id=7103616467.
[17] Ma, Chunling, Liu, Meixia, You, Chun, Zhu, Zhiguang. Engineering a diaphorase via directed evolution for enzymatic biofuel cell application. BIORESOURCES AND BIOPROCESSING[J]. 2020, 7(1): http://dx.doi.org/10.1186/s40643-020-00311-z.
[18] Wang, Wei, Yang, Jiangang, Sun, Yuanxia, Li, Zhimin, You, Chun. Artificial ATP-Free in Vitro Synthetic Enzymatic Biosystems Facilitate Aldolase-Mediated C-C Bond Formation for Biomanufacturing. ACS CATALYSIS[J]. 2020, 10(2): 1264-1271, https://www.webofscience.com/wos/woscc/full-record/WOS:000508466700030.
[19] Yuan, Mengwei, Abdellaoui, Sofiene, Chen, Hui, Kummer, Matthew J, Malapit, Christian A, You, Chun, Minteer, Shelley D. Selective Electroenzymatic Oxyfunctionalization by Alkane Monooxygenase in a Biofuel Cell. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2020, 59(23): 8969-8973, http://dx.doi.org/10.1002/anie.202003032.
[20] 刘美霞, 李强子, 孟冬冬, 魏欣蕾, 游淳. 烟酰胺类辅酶依赖型氧化还原酶的辅酶偏好性改造及其在合成生物学中的应用. 合成生物学. 2020, 1(5): 13-, http://lib.cqvip.com/Qikan/Article/Detail?id=7103376249.
[21] Meng, Dongdong, Liang, Ailing, Wei, Xinlei, You, Chun. Enzymatic characterization of a thermostable phosphatase from Thermomicrobium roseum and its application for biosynthesis of fructose from maltodextrin. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY[J]. 2019, 103(15): 6129-6139, http://dx.doi.org/10.1007/s00253-019-09917-6.
[22] Song, Haiyan, Ma, Chunling, Liu, Pi, You, Chun, Lin, Jianping, Zhu, Zhiguang. A hybrid CO2 electroreduction system mediated by enzyme-cofactor conjugates coupled with Cu nanoparticle-catalyzed cofactor regeneration. JOURNAL OF CO2 UTILIZATION[J]. 2019, 34: 568-575, http://dx.doi.org/10.1016/j.jcou.2019.08.007.
[23] Song, Yunhong, Liu, Meixia, Xie, Leipeng, You, Chun, Sun, Junsong, Zhang, YiHeng P Job. A Recombinant 12-His Tagged Pyrococcus furiosus Soluble NiFe-Hydrogenase I Overexpressed in Thermococcus kodakarensis KOD1 Facilitates Hydrogen-Powered in vitro NADH Regeneration. BIOTECHNOLOGY JOURNAL[J]. 2019, 14(4): [24] Bai, Xue, Meng, Dongdong, Wei, Xinlei, Zhou, Xigui, Lu, Fuping, You, Chun. Facile synthesis of (-)-vibo-quercitol from maltodextrin via an in vitro synthetic enzymatic biosystem. BIOTECHNOLOGY AND BIOENGINEERING[J]. 2019, 116(10): 2710-2719, [25] Ma, Chunling, Wu, Ranran, Huang, Rui, Jiang, Wenxia, You, Chun, Zhu, Leilei, Zhu, Zhiguang. Directed evolution of a 6-phosphogluconate dehydrogenase for operating an enzymatic fuel cell at lowered anodic pHs. JOURNAL OF ELECTROANALYTICAL CHEMISTRY[J]. 2019, 851: [26] Tian, Chaoyu, Yang, Jiangang, Zeng, Yan, Zhang, Tong, Zhou, Yingbiao, Men, Yan, You, Chun, Zhu, Yueming, Sun, Yuanxia. Biosynthesis of Raffinose and Stachyose from Sucrose via an In Vitro Multienzyme System. APPLIED AND ENVIRONMENTAL MICROBIOLOGY[J]. 2019, 85(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000455226800024.
[27] Sun, Shangshang, Wei, Xinlei, You, Chun. The Construction of an In Vitro Synthetic Enzymatic Biosystem that Facilitates Laminaribiose Biosynthesis from Maltodextrin and Glucose. BIOTECHNOLOGY JOURNAL[J]. 2019, 14(4): [28] Wang, Wei, Meng, Dongdong, Li, Qiangzi, Li, Zhimin, You, Chun. Characterization of a hyperthermophilic phosphatase from Archaeoglobus fulgidus and its application in in vitro synthetic enzymatic biosystem. BIORESOURCES AND BIOPROCESSING[J]. 2019, 6(1): https://doaj.org/article/c7e5c725e6204704a7ba8c97d01173c3.
[29] Meng, Dongdong, Wu, Ranran, Wang, Juan, Zhu, Zhiguang, You, Chun. Acceleration of cellodextrin phosphorolysis for bioelectricity generation from cellulosic biomass by integrating a synthetic two-enzyme complex into an in vitro synthetic enzymatic biosystem. BIOTECHNOLOGY FOR BIOFUELS[J]. 2019, 12(1): [30] Zhang, Shaohua, Shi, Jiafu, Sun, Yiying, Wu, Yizhou, Zhang, Yishan, Cai, Ziyi, Chen, Yixuan, You, Chun, Han, Pingping, Jiang, Zhongyi. Artificial Thylakoid for the Coordinated Photoenzymatic Reduction of Carbon Dioxide. ACS CATALYSIS[J]. 2019, 9(5): 3913-3925, [31] 魏欣蕾, 游淳. 体外多酶分子机器的现状和最新进展. 生物工程学报[J]. 2019, 35(10): 1870-1888, http://lib.cqvip.com/Qikan/Article/Detail?id=7100162089.
[32] Shi, Ting, Han, Pingping, You, Chun, Zhang, YiHeng P Job. An in vitro synthetic biology platform for emerging industrial biomanufacturing: Bottom-up pathway design. SYNTHETIC AND SYSTEMS BIOTECHNOLOGYnull. 2018, 3(3): 186-195, http://lib.cqvip.com/Qikan/Article/Detail?id=7103844761.
[33] Wei, Xinlei, Xie, Leipeng, Zhang, YiHeng P Job, You, Chun. Stoichiometric Regeneration of ATP by A NAD(P)/CoA-free and Phosphate-balanced In Vitro Synthetic Enzymatic Biosystem. CHEMCATCHEM[J]. 2018, 10(24): 5597-5601, https://www.webofscience.com/wos/woscc/full-record/WOS:000455585000005.
[34] Zhu, Zhiguang, You, Chun, Ma, Yanhe, Zhang, YiHeng P Job. In In vitro synthetic enzymatic biosystems at the interface of the food-energy water nexus: A conceptual framework and recent advances. PROCESS BIOCHEMISTRYnull. 2018, 74: 43-49, https://www.webofscience.com/wos/woscc/full-record/WOS:000447577800006.
[35] Meng, Dongdong, Wei, Xinlei, Zhang, YiHeng P Job, Zhu, Zhiguang, You, Chun, Ma, Yanhe. Stoichiometric Conversion of Cellulosic Biomass by in Vitro Synthetic Enzymatic Biosystems for Biomanufacturing. ACS CATALYSIS[J]. 2018, 8(10): 9550-9559, https://www.webofscience.com/wos/woscc/full-record/WOS:000447224100064.
[36] Xie, Leipeng, Wei, Xinlei, Zhou, Xigui, Meng, Dongdong, Zhou, Ruimin, Zhang, YiHeng P Job, Xu, Shuxia, You, Chun. Conversion of D-glucose to L-lactate via pyruvate by an optimized cell-free enzymatic biosystem containing minimized reactions. SYNTHETIC AND SYSTEMS BIOTECHNOLOGY[J]. 2018, 3(3): 204-210, http://lib.cqvip.com/Qikan/Article/Detail?id=7103844763.
[37] Song, Haiyan, Ma, Chunling, Zhou, Wei, You, Chun, Zhang, YiHeng P Job, Zhu, Zhiguang. Construction of Enzyme-Cofactor/Mediator Conjugates for Enhanced in Vitro Bioelectricity Generation. BIOCONJUGATE CHEMISTRY[J]. 2018, 29(12): 3993-3998, https://www.webofscience.com/wos/woscc/full-record/WOS:000454384000005.
[38] Zhiguang Zhu, Chun You, Yanhe Ma, YiHeng P Job Zhang. In vitro synthetic enzymatic biosystems at the interface of the food-energy-water nexus: A conceptual framework and recent advances. Process Biochemistry. 2018, 74: 43-49, http://dx.doi.org/10.1016/j.procbio.2018.07.002.
[39] You, Chun, Huang, Rui, Wei, Xinlei, Zhu, Zhiguang, Zhang, YiHeng Percival. Protein engineering of oxidoreductases utilizing nicotinamide-based coenzymes, with applications in synthetic biology. SYNTHETIC AND SYSTEMS BIOTECHNOLOGYnull. 2017, 2(3): 208-218, http://lib.cqvip.com/Qikan/Article/Detail?id=7103845338.
[40] You, Chun, Shi, Ting, Li, Yunjie, Han, Pingping, Zhou, Xigui, Zhang, YiHeng Percival. An in vitro synthetic biology platform for the industrial biomanufacturing of myo-inositol from starch. BIOTECHNOLOGY AND BIOENGINEERING[J]. 2017, 114(8): 1855-1864, https://www.webofscience.com/wos/woscc/full-record/WOS:000404130200022.
[41] Zhong, Chao, You, Chun, Wei, Ping, Zhang, YiHeng Percival. Thermal Cycling Cascade Biocatalysis of myo-Inositol Synthesis from Sucrose. ACS CATALYSIS[J]. 2017, 7(9): 5992-5999, https://www.webofscience.com/wos/woscc/full-record/WOS:000410005700048.
[42] Wang, Wei, Liu, Meixia, You, Chun, Li, Zhimin, Zhang, YiHeng Percival. ATP-free biosynthesis of a high-energy phosphate metabolite fructose 1,6-diphosphate by in vitro metabolic engineering. METABOLIC ENGINEERING[J]. 2017, 42: 168-174, http://dx.doi.org/10.1016/j.ymben.2017.06.006.
[43] You, Chun, Zhang, Y H Percival. Biomanufacturing by in vitro biosystems containing complex enzyme mixtures. PROCESS BIOCHEMISTRYnull. 2017, 52: 106-114, http://dx.doi.org/10.1016/j.procbio.2016.09.025.
[44] Kim, JaeEung, Huang, Rui, Chen, Hui, You, Chun, Zhang, Y H Percival. Facile Construction of Random Gene Mutagenesis Library for Directed Evolution Without the Use of Restriction Enzyme in Escherichia coli. BIOTECHNOLOGY JOURNAL[J]. 2016, 11(9): 1142-1150, https://www.webofscience.com/wos/woscc/full-record/WOS:000383675200004.
[45] Zhou, Wei, You, Chun, Ma, Hongwu, Ma, Yanhe, Zhang, Y H Percival. One-Pot Biosynthesis of High-Concentration alpha-Glucose 1-Phosphate from Starch by Sequential Addition of Three Hyperthermophilic Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY[J]. 2016, 64(8): 1777-1783, http://124.16.173.210/handle/834782/1527.
[46] 游淳. Simple Cloning and DNA Assembly in Escherichia coli by Prolonged Overlap Extension PCR. DNA Cloning and Assembly Methods. 2014, [47] 张以恒. Annexation of a high-activity rate-limiting enzyme in a synthetic three-enzyme complex greatly decreases the degree of substrate channeling. ACS Synthetic Biology. 2014, [48] Zhu, Zhiguang, Tam, Tsz Kin, Sun, Fangfang, You, Chun, Zhang, Y H Percival. A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. NATURE COMMUNICATIONS[J]. 2014, 5: https://www.webofscience.com/wos/woscc/full-record/WOS:000331083800009.
[49] Martin del Campo, Julia S, Rollin, Joseph, Myung, Suwan, Chun, You, Chandrayan, Sanjeev, Patino, Rodrigo, Adams, Michael W W, Zhang, Y H Percival. High-Yield Production of Dihydrogen from Xylose by Using a Synthetic Enzyme Cascade in a Cell-Free System. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2013, 52(17): 4587-4590, https://www.webofscience.com/wos/woscc/full-record/WOS:000318043600013.
[50] You, Chun, Zhang, Y H Percival. Self-Assembly of Synthetic Metabolons through Synthetic Protein Scaffolds: One-Step Purification, Co-immobilization, and Substrate Channeling. ACS SYNTHETIC BIOLOGY[J]. 2013, 2(2): 102-110, https://www.webofscience.com/wos/woscc/full-record/WOS:000315255000005.
[51] You, Chun, Chen, Hongge, Myung, Suwan, Sathitsuksanoh, Noppadon, Ma, Hui, Zhang, XiaoZhou, Li, Jianyong, Zhang, Y H Percival. Enzymatic transformation of nonfood biomass to starch. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA[J]. 2013, 110(18): 7182-7187, https://www.webofscience.com/wos/woscc/full-record/WOS:000318682300027.
[52] You, Chun, Zhang, XiaoZhou, Zhang, Y H Percival. Simple Cloning via Direct Transformation of PCR Product (DNA Multimer) to Escherichia coli and Bacillus subtilis. APPLIED AND ENVIRONMENTAL MICROBIOLOGY[J]. 2012, 78(5): 1593-1595, [53] You, Chun, Zhang, Y H Percival. Easy preparation of a large-size random gene mutagenesis library in Escherichia coli. ANALYTICAL BIOCHEMISTRY[J]. 2012, 428(1): 7-12, http://dx.doi.org/10.1016/j.ab.2012.05.022.
[54] Xue, Huping, Zhou, Jungang, You, Chun, Huang, Qiang, Lu, Hong. Amino acid substitutions in the N-terminus, cord and alpha-helix domains improved the thermostability of a family 11 xylanase XynR8. JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY[J]. 2012, 39(9): 1279-1288, https://www.webofscience.com/wos/woscc/full-record/WOS:000307772500004.
[55] You, Chun, Zhang, XiaoZhou, Zhang, YH Percival. Mini-scaffoldin enhanced mini-cellulosome hydrolysis performance on low-accessibility cellulose (Avicel) more than on high-accessibility amorphous cellulose. BIOCHEMICAL ENGINEERING JOURNAL[J]. 2012, 63: 57-65, http://dx.doi.org/10.1016/j.bej.2012.01.011.
[56] You, Chun, Zhang, XiaoZhou, Sathitsuksanoh, Noppadon, Lynd, Lee R, Zhang, Y H Percival. Enhanced Microbial Utilization of Recalcitrant Cellulose by an Ex Vivo Cellulosome-Microbe Complex. APPLIED AND ENVIRONMENTAL MICROBIOLOGY[J]. 2012, 78(5): 1437-1444, https://www.webofscience.com/wos/woscc/full-record/WOS:000300537400014.
[57] You, Chun, Myung, Suwan, Zhang, Y H Percival. Facilitated Substrate Channeling in a Self-Assembled Trifunctional Enzyme Complex. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2012, 51(35): 8787-8790, https://www.webofscience.com/wos/woscc/full-record/WOS:000307785700021.
[58] You, Chun, Huang, Qiang, Xue, Huping, Xu, Yang, Lu, Hong. Potential Hydrophobic Interaction Between Two Cysteines in Interior Hydrophobic Region Improves Thermostability of a Family 11 Xylanase From Neocallimastix Patriciarum. BIOTECHNOLOGY AND BIOENGINEERING[J]. 2010, 105(5): 861-870, https://www.webofscience.com/wos/woscc/full-record/WOS:000275832200001.
[59] You, Chun, Yuan, Hanying, Huang, Qiang, Lu, Hong. Substrate molecule enhances the thermostability of a mutant of a family 11 xylanase from Neocallimastix patriciarum. AFRICAN JOURNAL OF BIOTECHNOLOGY[J]. 2010, 9(9): 1288-1294, https://www.webofscience.com/wos/woscc/full-record/WOS:000275890600002.
[60] 谷福, 游淳, 刘建平, 程鏖, 余垚, 王翔, 万大方, 顾建人, 袁汉英, 李育阳, 吕红. 人类组织特异性DNA聚合酶POLλ2基因的克隆、表达纯化和鉴定. 中国科学:C辑[J]. 2007, 37(1): 6-14, http://lib.cqvip.com/Qikan/Article/Detail?id=24085517.
[61] GU Fu, YOU Chun, LIU JianPing, CHEN Ao, YU Yao, L Hong, WANG Xiang, WAN DaFang, GU JianRen, YUAN HanYing, LI YuYang. Cloning, expression and characterization of human tissue-specific DNA polymerase λ2. Science in China. Series C: Life science[J]. 2007, 50(4): 457-465, [62] 谷福, 游淳, 刘建平, 程鏖, 余垚, 王翔, 万大方, 顾建人, 袁汉英, 李育阳, 吕红, 推荐. 人类组织特异性DNA聚合酶POLλ2基因的克隆、表达纯化和鉴定. 中国科学:C辑. 2007, 37(1): 6-14, http://lib.cqvip.com/Qikan/Article/Detail?id=24085517.
[63] Zhongsheng Ma, Qiangzi Li, Bijia Wang, Xueling Feng, Hong Xu, Zhiping Mao, Chun You, Xiaofeng Sui. Synthetic Semicrystalline Cellulose Oligomers as Efficient Pickering Emulsion Stabilizer. Carbohydrate Polymers. http://dx.doi.org/10.1016/j.carbpol.2020.117445.
发表著作
(1) Surpassing photosynthesis: high-efficiency and scalable CO2 utilization through artificial photosynthesis., ACS Symposium Series, 2012-05, 第 2 作者
(2) Cell-Free Biosystems for Biomanufacturing, Springer Berlin Heidelberg, 2013-01, 第 1 作者
(3) Compartmentalization and Metabolic Channeling for Multienzymatic Biosynthesis: Practical Strategies and Modeling Approaches, Springer Berlin Heidelberg, 2013-01, 第 2 作者
(4) Ex Vivo Enzymatic Conversion of Non-food Cellulose Biomass to Starch, Springer Berlin Heidelberg, 2016-12, 第 1 作者

科研活动

   
科研项目
( 1 ) 氢能驱动CO2生物转化, 主持, 部委级, 2016-01--2019-07
( 2 ) 葡萄糖6磷酸脱氢酶和6磷酸葡萄糖酸脱氢酶对人工辅酶的 偏好性改造研究, 主持, 国家级, 2018-01--2021-12
( 3 ) 体外合成生物学, 主持, 国家级, 2021-01--2023-12

指导学生

已指导学生

孙尚尚  博士研究生  071010-生物化学与分子生物学  

现指导学生

刘美霞  博士研究生  081703-生物化工  

李强子  博士研究生  081703-生物化工  

覃艳梅  硕士研究生  081703-生物化工  

樊霖  硕士研究生  0710J5-食品安全与健康