李忠海 男 教授 博导
电子邮件: li.zhonghai(at)ucas.ac.cn
通信地址: 北京市玉泉路19号(甲)
邮政编码: 100049
个人简历
2001-2005:同济大学,海洋地质系,本科
2005-2010:南京大学,地球科学系,博士
2007-2009:瑞士苏黎世理工学院(ETH),地球物理系,联合培养博士
2010-2012:法国国家科研中心(CNRS),流体力学实验室(FAST),博士后
2012-2015:中国地质科学院,地质研究所,助理研究员 / 副研究员(2014)
2015- 至今:中国科学院大学,地球与行星科学学院,研究员 / 长聘教授(2020) / 特聘教授(2023)
研究领域
计算地球动力学:主攻地球动力学数值模拟方向,以理论计算和方法程序开发为基础,以多尺度数值模拟为主要手段,以板块俯冲碰撞、地球圈层耦合及行星演化的动力学过程为研究对象。
关键词:
(1) 数值方法与技术:数值模拟、流变性质、有限差分算法、有限元算法、边界元算法
(2) 大洋俯冲动力学:俯冲起始、俯冲模式、流体-熔体活动、岩浆作用、地幔流动、地震波各向异性、西太平洋俯冲带
(3) 大陆碰撞动力学:大陆深俯冲、碰撞造山、超高压变质与折返、岩石圈拆沉、物质侧向逃逸、青藏高原、特提斯系统
(4) 圈层耦合动力学:深部过程、物质循环、能量交换、深部水循环、碳循坏、地表响应、环境演变
(5) 行星演化动力学:大陆形成、岩石圈演化、非板块构造、早期地球、行星演化
教授课程
《地球内部流变学》 [专业课]
主要科研项目
2023-2027:基金委 - 国家杰出青年科学基金 (42225403,主持)
2022-2027:科技部 - (地球系统)重点研发计划课题(2022YFF0801001,主持)
2022-2025:国科大 - 优秀青年创新团队 (E2ET0410X2,主持)
2020-2024:中科院 - (印太)先导专项子课题 (XDB42020202,主持)
2019-2022:基金委 - (特提斯)重大研究计划重点项目 (91855208,主持)
2018-2021:基金委 - 面上项目 (41774108,主持)
2017-2019:基金委 - 优秀青年科学基金 (41622404,主持)
2017-2018:中石油 - (前陆)科技专项外协课题 (2016B-0501,主持)
2016-2021:中科院 - (深地)先导专项子课题 (XDB18020104,主持)
2014-2016:基金委 - 青年科学基金 (41304071,主持)
代表性论著
( * Corresponding author )
--------------------(2025-2021)->>>>>>>>>>
[61] Wang R.R.*, Li Z.H.*, Cui Q.H., Xu Z.Q., (2025). Did along-strike changes in continental subduction styles occur in the Dabie-Sulu orogenic belt?. Journal of Structural Geology, 191, 105321. <https://doi.org/10.1016/j.jsg.2024.105321>
[60] Wang Y., Li Z.H.*, (2025). Subductability of continental lithosphere. Geological Society of America Bulletin, B37883. <https://doi.org/10.1130/B37883.1>
[59] Cui Q.H., Li Z.H.*, (2024). Trench-parallel mid-ocean ridge subduction driven by along-strike transmission of slab pull. Geology, 52(12), 943-947. <https://doi.org/10.1130/G52355.1>
[58] Cui F.Y., Li Z.H.*, Fu H.Y., (2024). Quantitative evaluation of mantle flow traction on overlying tectonic plate: Linear versus power-law mantle rheology. Geophysical Journal International, 239, 1063-1079. <https://doi.org/10.1093/gji/ggae320>
[57] Zhong X.Y., Li Z.H.*, Wang Y., (2024). Evaluation of plume-induced continental crust growth rate in early Earth: Insight from integrated petrological-thermo-mechanical modeling. Precambrian Research, 410, 107506. <https://doi.org/10.1016/j.precamres.2024.107506>
[56] Cui F.Y., Li Z.H.*, (2024). Terrane collision-induced subduction initiation: Mode selection and implications for western Pacific subduction system. Geochemistry Geophysics Geosystems, 25, e2023GC011155. <https://doi.org/10.1029/2023GC011155>
[55] Li Z.H.*, (2024). Hot versus cold subduction initiation. National Science Review, 11, nwae012. <https://doi.org/10.1093/nsr/nwae012>
[54] Fu H.Y., Li Z.H.*, (2024). Roles of continental mid-lithosphere discontinuity in the craton instability under variable tectonic regimes. Journal of Geophysical Research: Solid Earth, 129, e2023JB028022. <https://doi.org/10.1029/2023JB028022>
[53] Chen Y.Y.*, Li Z.H.*, Tang K., Shi Y.L., (2024). Mechanism of metamorphic fluid expulsion from ductile contact aureole: Insights from numerical modeling of a growing mid-crustal magma chamber. Earth and Planetary Science Letters, 626, 118545. <https://doi.org/10.1016/j.epsl.2023.118545>
[52] Li Q., Li Z.H.*, Huangfu P.P., (2024). Numerical constraints on the one-stage and two-stage Greater India collision models. Terra Nova, 36, 126-137. <https://doi.org/10.1111/ter.12671>
[51] Wang Y., Li Z.H.*, Huangfu P.P.,
(2023). Continental Deep Subduction Versus Subduction Cessation: The Fate of Collisional Orogens. Tectonics, 42, e2022TC007695. <https://doi.org/10.1029/2022TC007695>
[50] Li Z.H.*, Cui F.Y., Yang S.T., Zhong X.Y., (2023). Key geodynamic processes and driving forces of Tethyan evolution. Science China Earth Sciences, 66, 2666-2685. <https://doi.org/10.1007/s11430-022-1083-5>
[50] 李忠海*, 崔峰源, 杨舒婷, 钟辛易, (2023). 特提斯演化的关键动力学过程与驱动力. 中国科学:地球科学, 53, 2701-2722. <https://doi.org/10.1360/SSTe-2022-0334>
[49] Zhong X.Y., Li Z.H.*, (2023). Compression at strike-slip fault is a favorable condition for subduction initiation. Geophysical Research Letters, 50, e2022GL102171. <https://doi.org/10.1029/2022GL102171>
[48] Fu H.Y., Li Z.H.*, Chen L., (2022). Continental mid-lithosphere discontinuity: a water collector during craton evolution. Geophysical Research Letters, 49, e2022GL101569. <https://doi.org/10.1029/2022GL101569>
[47] Li Z.H.*, Liao J., Liu L.J., Faccenda M., (2022). Editorial: Subduction and Collision Dynamics of Tectonic Plates. Frontiers in Earth Science, 10, 1023604. <https://doi.org/10.3389/feart.2022.1023604>
[46] Wang Y., Zhang L.F.*, Li Z.H.*, (2022). Metamorphic densification can account for the missing felsic crust of the Greater Indian continent. Communications Earth & Environment, 3, 166. <https://doi.org/10.1038/s43247-022-00493-8>
[45] Li Q., Li Z.H.*, Zhong X.Y., (2022). Overriding lithospheric strength affects continental collisional mode selection and subduction transference: Implications for Greater India-Asia convergent system. Frontiers in Earth Science, 10, 919174. <https://doi.org/10.3389/feart.2022.919174>
[44] Cui Q.H., Li Z.H.*, (2022). Along-strike variation of convergence rate and pre-existing weakness contribute to Indian slab tearing beneath Tibetan Plateau. Geophysical Research Letters, 49, e2022GL098019. <https://doi.org/10.1029/2022GL098019>
[43] Zhong X.Y., Li Z.H.*, (2022). Wedge-shaped southern Indian continental margin without proper weakness hinders subduction initiation. Geochemistry Geophysics Geosystems, 23, e2021GC009998. <https://doi.org/10.1029/2021GC009998>
[42] Zhong X.Y., Li Z.H.*, (2022). Formation of metamorphic soles underlying ophiolites during subduction initiation: A systematic numerical study. Journal of Geophysical Research: Solid Earth, 127, e2021JB023431. <https://doi.org/10.1029/2021JB023431>
[41] Zhang Q.C.*, Li Z.H.*, Wu Z.H., Chen X.H., Zhang J.E., Yang Y., (2022). Subduction initiation of the western Proto-Tethys Ocean: New evidence from the Cambrian intra-oceanic forearc ophiolitic mélange in the western Kunlun Orogen, NW Tibetan Plateau. Geological Society of America Bulletin, 134, 145-159. <https://doi.org/10.1130/B35922.1>
[40] Li Z.H.*, (2022). Integrated thermodynamic and thermomechanical numerical modeling: A useful method for studying deep Earth water and carbon cycling. Geosystems and Geoenvironment, 1, 100002. <https://doi.org/10.1016/j.geogeo.2021.09.002>
[39] Cui Q.H., Li Z.H.*, Liu M., (2021). Crustal thickening versus lateral extrusion during India-Asia continental collision: 3-D thermo-mechanical modeling. Tectonophysics, 818, 229081. <https://doi.org/10.1016/j.tecto.2021.229081>
[38] Shi Y.N., Li Z.H.*, Chen L., Morgan J.*, (2021). Connection between a subcontinental plume and the mid-lithospheric discontinuity leads to fast and intense craton lithospheric thinning. Tectonics, 40, e2021TC006711. <https://doi.org/10.1029/2021TC006711>
[37] Zhong X.Y., Li Z.H.*, (2021). Subduction initiation at passive continental margins: A review based on numerical studies. Solid Earth Sciences, 6, 249-267. <https://doi.org/10.1016/j.sesci.2021.06.001>
[36] Pei X., Li Z.H.*, Shi Y.L.*, (2021). Formation mechanism of arcuate tectonic structures around northeast Tibetan plateau: Insight from 3‐D numerical modeling. Terra Nova, 33, 345-355. <https://doi.org/10.1111/ter.12519>
[35] Huangfu P.P., Li Z.H.*,
Zhang K.J., Fan W.M., Zhao J.M., Shi Y.L., (2021). India-Tarim
lithospheric mantle collision beneath western Tibet controls the
Cenozoic building of Tian Shan. Geophysical Research Letters, 48, e2021GL094561. <https://doi.org/10.1029/2021GL094561>
[34] Yang S.T., Li Z.H.*, Wan B., Chen L., Kaus B., (2021). Subduction‐induced back‐arc extension versus far‐field stretching: Contrasting modes for continental marginal break‐up. Geochemistry Geophysics Geosystems, 22, e2020GC009416. <https://doi.org/10.1029/2020GC009416>
[33] 李忠海*, 崔起华, 钟辛易, 刘明启, 王杨, 皇甫鹏鹏, (2021). 大陆动力学数值模拟:问题、进展与展望. 地质学报, 95, 238-258. <https://doi.org/10.19762/j.cnki.dizhixuebao.2020276>
--------------------(2020-2016)->>>>>>>>>>
[32] Li Z.H.*, (2020). Flat subduction versus big mantle wedge: contrasting modes for deep hydration and overriding craton modification. Journal of Geophysical Research: Solid Earth, 125, e2020JB020018. <https://doi.org/10.1029/2020JB020018>
[31] Zhong X.Y., Li Z.H.*, (2020). Subduction initiation during collision-induced subduction transference: Numerical modeling and implications for the Tethyan evolution. Journal of Geophysical Research: Solid Earth, 125, e2019JB019288. <https://doi.org/10.1029/2019JB019288>
[30] Zhou X., Li Z.H.*, Gerya T., Stern R., (2020). Lateral propagation-induced subduction initiation at passive continental margins controlled by pre-existing lithospheric weakness. Science Advances, 6, eaaz1048. <https://doi.org/10.1126/sciadv.aaz1048>
[29] Shi Y.N., Niu F.L., Li Z.H.*, Huangfu P.P., (2020). Craton destruction links to the interaction between subduction and mid-lithospheric discontinuity: Implications for the eastern North China Craton. Gondwana Research, 83, 49-62. <https://doi.org/10.1016/j.gr.2020.01.016>
[28] 李忠海*, 杨舒婷, 刘明启, 皇甫鹏鹏, (2019). 板块俯冲带水流体活动及其效应的定量化数值模拟. 地球科学, 44, 3984-3992. <https://doi.org/10.3799/dqkx.2019.232>
[27] Zhong X.Y., Li Z.H.*, (2019). Forced subduction initiation at passive continental margins: velocity‐driven versus stress‐driven. Geophysical Research Letters, 46, 11054-11064. <https://doi.org/10.1029/2019GL084022>
[26] Lei T., Li Z.H.*, Liu M.*, (2019). Removing mantle lithosphere under orogens: delamination versus convective thinning. Geophysical Journal International, 219, 877-896. <https://doi.org/10.1093/gji/ggz329>
[25] 周信, 许志琴, 李忠海*, 皇甫鹏鹏, 张进江, (2019). 上地幔俯冲板块的动力学过程数值模拟. 地球物理学报, 62, 2455-2465. <https://doi.org/10.6038/cjg2019M0152>
[24] Li Z.H.*, Gerya T., Connolly J., (2019). Variability of subducting slab morphologies in the mantle transition zone: Insight from petrological-thermomechanical modeling. Earth-Science Reviews, 196, 102874. <https://doi.org/10.1016/j.earscirev.2019.05.018>
[23] Huangfu P.P., Li Z.H.*, Fan W.M., Zhang K.J., Shi Y.L., (2019). Continental lithospheric-scale subduction versus crustal-scale underthrusting in the collision zone: Numerical modeling. Tectonophysics, 757, 68-87. <https://doi.org/10.1016/j.tecto.2019.03.007>
[22] 杨少华, 李忠海*, (2018). 一种基于有限元的岩石圈长期变形数值计算方法. 地质力学学报, 24, 768-775. <https://doi.org/10.12090/j.issn.1006-6616.2018.24.06.079>
[21] Huangfu P.P., Li Z.H.*, Gerya T., Fan W.M., Zhang K.J., Zhang H., Shi Y.L., (2018). Multi-terrane structure controls the contrasting lithospheric evolution beneath the western and central-eastern Tibetan plateau. Nature Communications, 9, 3780. <https://doi.org/10.1038/s41467-018-06233-x>
[20] Liu M.Q., Li Z.H.*, (2018). Dynamics of thinning and destruction of the continental cratonic lithosphere: Numerical modeling. Science China: Earth Sciences, 61, 823-852. <https://doi.org/10.1007/s11430-017-9184-x>
[20] 刘明启, 李忠海*, (2018). 克拉通岩石圈减薄与破坏机制的动力学数值模拟. 中国科学:地球科学, 48, 844-877. <https://doi.org/10.1360/N072017-00218>
[19] Zhou X., Li Z.H.*, Gerya T., Stern R., Xu Z.Q., Zhang J.J., (2018). Subduction initiation dynamics along a transform fault control trench curvature and ophiolite ages. Geology, 46, 607-610. <https://doi.org/10.1130/G40154.1>
[18] Shi Y.N., Wei D.P.*, Li Z.H.*, Liu M.Q., Liu M.X., (2018). Subduction mode selection during slab and mantle transition zone interaction: Numerical modeling. Pure and Applied Geophysics, 175, 529-548. <https://doi.org/10.1007/s00024-017-1762-0>
[17] Yang S.H., Li Z.H.*, Gerya T., Xu Z.Q., Shi Y.L., (2018). Dynamics of terrane accretion during seaward continental drifting and oceanic subduction: Numerical modeling and implications for the Jurassic crustal growth of the Lhasa Terrane, Tibet. Tectonophysics, 746, 212-228. <https://doi.org/10.1016/j.tecto.2017.07.018>
[16] Liu M.Q., Li Z.H.*, Yang S.H.*, (2017). Diapir versus along-channel ascent of crustal material during plate convergence: Constrained by the thermal structure of subduction zones. Journal of Asian Earth Sciences, 145, 16-36. <https://doi.org/10.1016/j.jseaes.2017.02.036>
[15] 杨少华, 许志琴, 李忠海*, 石耀霖, (2017). 欧罗巴星陨石坑对冰层厚度的制约. 地球物理学报, 60, 935-940. <https://doi.org/10.6038/cjg20170308>
[14] Li Z.H.*, Liu M., Gerya T., (2016). Lithosphere delamination in continental collisional orogens: A systematic numerical study. Journal of Geophysical Research: Solid Earth, 121, 5186-5211. <https://doi.org/10.1002/2016JB013106>
[13] 李忠海*, 石耀霖, (2016). 三维板块几何形态对大陆深俯冲动力学的制约. 地球物理学报, 59, 2806-2817. <https://doi.org/10.6038/cjg20160808>
[12] 李忠海*, (2016). 边界元算法在计算地球动力学中的应用. 中国科学院大学学报, 33, 89-96. <http://html.rhhz.net/ZGKXYDXXB/20160114.htm>
[11] Peng M., Jiang M., Li Z.H.*, Xu Z.Q., Zhu L.P., Chan W., Chen Y.L., Wang Y.X., Yu C.Q., Lei J.S., Zhang L.S., Li Q.Q., Xu L.H., (2016). Complex Indian subduction style with slab fragmentation beneath the eastern Himalayan Syntaxis revealed by teleseismic P-wave tomography. Tectonophysics, 667, 77-86. <https://doi.org/10.1016/j.tecto.2015.11.012>
--------------------(2015-2009)->>>>>>>>>>
[10] 李忠海*, 许志琴, (2015). 大洋俯冲和大陆碰撞沿走向的转换动力学及流体-熔体活动的作用. 岩石学报, 31, 3524-3530. <http://html.rhhz.net/ysxb/20151202.htm>
[9] Li Z.H.*, Liu M.Q., Gerya T., (2015). Material transportation and fluid-melt activity in the subduction channel: numerical modeling. Science China: Earth Sciences, 58, 1251-1268. <https://doi.org/10.1007/s11430-015-5123-5>
[9] 李忠海*, 刘明启, Gerya T., (2015). 俯冲隧道中物质运移和流体-熔体活动的动力学数值模拟. 中国科学:地球科学, 45, 881-899. <https://doi.org/10.1360/zd-2015-45-7-881>
[8] Li Z.H.*, Di Leo J., Ribe N., (2014). Subduction-induced mantle flow, finite strain and seismic anisotropy: Numerical modeling. Journal of Geophysical Research: Solid Earth, 119, 5052-5076. <https://doi.org/10.1002/2014JB010996>
[7] Li Z.H.*, (2014). A review on the numerical geodynamic modeling of continental subduction, collision and exhumation. Science China: Earth Sciences, 57, 47-69. <https://doi.org/10.1007/s11430-013-4696-0>
[7] 李忠海*, (2014). 大陆俯冲-碰撞-折返的动力学数值模拟研究综述. 中国科学:地球科学, 44, 817-841. <https://doi.org/10.1360/zd-2014-44-5-817>
[6] Li Z.H.*, Xu Z.Q., Gerya T., Burg J.P., (2013). Collision of continental corner from 3-D numerical modeling. Earth and Planetary Science Letters, 380, 98-111. <https://doi.org/10.1016/j.epsl.2013.08.034>
[5] Li Z.H.*, Ribe N., (2012). Dynamics of free subduction from 3-D Boundary-Element modeling. Journal of Geophysical Research: Solid Earth, 117, B06408. <https://doi.org/10.1029/2012JB009165>
[4] Li Z.H.*, Xu Z.Q., Gerya T., (2012). Numerical geodynamic modeling of continental convergent margins. In: Earth Sciences, Ed. Imran Ahmad Dar, Pub. InTech, pp. 273-296. <https://doi.org/10.5772/26510>
[3] Li Z.H.*, Xu Z.Q., Gerya T., (2011). Flat versus steep subduction: contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth and Planetary Science Letters, 301, 65-77. <https://doi.org/10.1016/j.epsl.2010.10.014>
[2] Li Z.H.*, Gerya T., Burg J.P., (2010). Influence of tectonic overpressure on P-T paths of HP-UHP rocks in continental collision zones: Thermomechanical modeling. Journal of Metamorphic Geology, 28, 227-247. <https://doi.org/10.1111/j.1525-1314.2009.00864.x>
[1] Li Z.H.*, Gerya T., (2009). Polyphase formation and exhumation of high- to ultrahigh-pressure rocks in continental subduction zone: Numerical modeling and application to the Sulu ultrahigh-pressure terrane in eastern China. Journal of Geophysical Research: Solid Earth, 114, B09406. <https://doi.org/10.1029/2008JB005935>
招生与培养
(1) 研究生招生
欢迎地质学、地球物理学、计算数学等专业的学生联系、保送或报考硕士、博士研究生。
(2) 博士后招聘
欢迎计算地球动力学相关研究方向的博士毕业生联系、商谈博士后工作;国科大的博士后职位包含三个层次:常规博士后、国科大特别研究助理、中科院特别研究助理;相关要求和待遇情况可单独咨询。