基本信息
王中阳  男  博导  中国科学院上海高等研究院
电子邮件: wangzy@sari.ac.cn
通信地址: 上海市张江高科技园区海科路99号
邮政编码: 201210

研究领域

超分辨显微成像, 超分辨光刻和光存储,超快光谱

招生信息

博士生,硕士生

招生专业
080903-微电子学与固体电子学
070207-光学
0703J1-纳米科学与技术
招生方向
超分辨成像
超分辨光刻与光存储
超快光谱

教育背景

1994-09--1997-07   中科院上海光学精密机械研究所   博士学位
1991-09--1994-07   浙江大学(原杭州大学)物理系   硕士学位
1987-09--1991-07   浙江大学(原杭州大学)物理系   本科学位
学历

博士

学位

博士

工作经历

   
工作简历
2011-09--今 上海中科高等研究院 研究员
2009-10--2011-08 英国南安普敦大学混合光电子实验室 研究人员
2008-01--2009-09 英国Surrey大学高等技术研究所 研究人员
2005-05--2008-01 英国牛津大学Clarendon实验室 研究人员
2002-05--2005-04 德国伯林Max-Born研究所 研究人员
2001-12--2002-04 中科院上海光学精密机械研究所 研究员
1999-08--2001-11 中科院上海光学精密机械研究所 副研究员
1997-08--1999-07 中科院上海光学精密机械研究所 助理研究员
社会兼职
2013-07-01-今,上海科技大学物质学院, 教授

教授课程

量子科学前沿与应用
固体物理

专利与奖励

   
专利成果
[1] 王中阳, 张力. 基于纳米光刻的荧光光盘信息读取方法及装置. CN: CN113851154A, 2021-12-28.
[2] 王中阳, 张力, 李文文, 肖康, 葛畅, 孙静. 光盘的二维信息编码写入与快速读取方法及快速读取装置. CN: CN113838485A, 2021-12-24.
[3] 王中阳, 张力, 葛畅, 王虎, 孙静. 纳米刻写光盘的编码信息写入与干涉测量读取方法及装置. CN: CN113838486A, 2021-12-24.
[4] 王中阳, 张力. 基于纳米光刻的荧光光盘信息读写方法及装置. CN: CN111462780B, 2021-11-30.
[5] 王中阳, 张力, 孙静, 高琪. 基于纳米光刻的光盘读取方法、读取装置及光盘读写装置. CN: CN113380278A, 2021-09-10.
[6] 王中阳, 张力, 孙静, 高琪. 基于纳米光刻的光盘读写方法及刻写控制信息编解码方法. CN: CN111199753B, 2021-09-07.
[7] 王中阳, 李文文, 肖康, 高琪, 孙静. 一种高效的核酸检测和基因测序方法及其装置. CN: CN111926065B, 2021-01-29.
[8] 王中阳, 唐俊, 高琪. 一种双光束辅助增强的激光探测方法和装置. CN: CN111708041A, 2020-09-25.
[9] 王中阳, 张力. 基于纳米光刻光盘及其物理存储介质结构和写入读出方法. CN: CN111508533A, 2020-08-07.
[10] 王中阳, 张力. 基于纳米光刻光盘的偏振平衡测量读取方法及装置. CN: CN111508534A, 2020-08-07.
[11] 王中阳, 张力. 基于纳米光刻的荧光暗态光盘信息读写方法及装置. CN: CN111462780A, 2020-07-28.
[12] 王中阳, 孔心怡, 高琪. 剪切连续可调的双折射分束器. CN: CN110646956A, 2020-01-03.
[13] 原续鹏, 阮昊, 王中阳, 文静. 基于双光束超分辨的多层光盘存储装置及方法. CN: CN109524029A, 2019-03-26.
[14] 王中阳, 孙静, 肖康, 李文文. 超分辨拉曼光谱成像系统及方法. CN: CN109164084A, 2019-01-08.
[15] 王中阳, 李文文. 基于MEMS微振镜的微型光谱仪、气体传感器. CN: CN207163900U, 2018-03-30.
[16] 王中阳, 李文文. 基于MEMS微振镜的微型光谱仪、气体传感器及光谱检测方法. CN: CN107238570A, 2017-10-10.
[17] 王中阳, 周燕飞, 张小伟, 沈灏. 一种基于随机采样的分块压缩感知成像方法及系统. CN: CN105741336A, 2016-07-06.
[18] 王中阳, 赵建伟, 沈灏. 一种单通道光学超分辨成像仪器. CN: CN105300934A, 2016-02-03.
[19] 王中阳, 韩申生, 沈灏, 刘红林, 张小伟, 沈夏. 基于稀疏约束的快速随机光学重构成像系统及方法. CN: CN105044897A, 2015-11-11.
[20] 秦立国, 王中阳, 吴士超. 基于量子干涉的任意波形电光调制器. CN: CN104991393A, 2015-10-21.
[21] 王中阳, 沈灏, 刘书朋. 针孔装置及针孔调节方法. CN: CN104849212A, 2015-08-19.
[22] 王中阳, 秦立国. 一种实现量子相干的光电混合系统. CN: CN104503077A, 2015-04-08.

出版信息

   
发表论文
[1] Li, Wenwen, Wang, Zhongyang. Breaking the diffraction limit using fluorescence quantum coherence. OPTICS EXPRESS[J]. 2022, 30(8): 12684-12694, http://dx.doi.org/10.1364/OE.451114.
[2] Zhou, YaFei, Qin, LiGuo, Huang, JieHui, Wang, LiLi, Tian, LiJun, Wang, ZhongYang, Gong, ShangQing. Electrically controlled optical nonlinear effects in the hybrid opto-electromechanical system with the cross-Kerr effect. JOURNAL OF APPLIED PHYSICS[J]. 2022, 131(19): http://dx.doi.org/10.1063/5.0091211.
[3] Qin, LiGuo, Wang, ZhongYang, Huang, JieHui, Tian, LiJun, Gong, ShangQing. Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system*. CHINESE PHYSICS B[J]. 2021, 30(6): 691-697, [4] 李文文, 王中阳. 基于量子关联的超分辨荧光显微技术研究进展. 2021, 58(10): [5] Wu, ShiChao, Zhang, Li, Lu, Jian, Qin, LiGuo, Wang, ZhongYang. Surface-acoustic-wave-controlled optomechanically induced transparency in a hybrid piezo-optomechanical planar distributed Bragg-reflector-cavity system. PHYSICAL REVIEW A[J]. 2021, 103(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000608617400015.
[6] 李文文, 刘书朋, 王中阳. 压缩感知实现快速超分辨荧光显微成像. 激光技术[J]. 2020, 44(2): 196-201, http://lib.cqvip.com/Qikan/Article/Detail?id=7101020552.
[7] Xia, Huijuan, Wu, Yanqing, Zhang, Lei, Sun, Yuanhe, Wang, Zhongyang, Tai, Renzhong. Great enhancement of image details with high fidelity in a scintillator imager using an optical coding method. PHOTONICS RESEARCH[J]. 2020, 8(7): 1079-1085, http://lib.cqvip.com/Qikan/Article/Detail?id=7102618625.
[8] Li, Wenwen, Tong, Zhishen, Xiao, Kang, Liu, Zhentao, Gao, Qi, Sun, Jing, Liu, Shupeng, Han, Shensheng, Wang, Zhongyang. Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints. OPTICA[J]. 2019, 6(12): 1515-1523, https://www.webofscience.com/wos/woscc/full-record/WOS:000504926700012.
[9] 吴士超, 秦立国, 鹿建, 王中阳. Phase-dependent double optomechanically induced transparency in a hybrid optomechanical cavity system with coherently mechanical driving. 中国物理B:英文版[J]. 2019, 28(7): 233-242, http://lib.cqvip.com/Qikan/Article/Detail?id=7002529535.
[10] Wu, ShiChao, Qin, LiGuo, Lu, Jian, Wang, ZhongYang. Phase-dependent double optomechanically induced transparency in a hybrid optomechanical cavity system with coherently mechanical driving. CHINESE PHYSICS B[J]. 2019, 28(7): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000476830600004.
[11] Shang, Yunfei, Han, Qi, Hao, Shuwei, Chen, Tong, Zhu, Yuyan, Wang, Zhongyang, Yang, Chunhui. Dual-Mode Upconversion Nanoprobe Enables Broad-Range Thermometry from Cryogenic to Room Temperature. ACS APPLIED MATERIALS & INTERFACES[J]. 2019, 11(45): 42455-42461, http://dx.doi.org/10.1021/acsami.9b11751.
[12] 刘钊杰, 肖康, 李文文, 田立君, 王中阳. 超分辨拉曼散射成像的偏振调控理论分析. 激光与光电子学进展[J]. 2019, 56(20): 157-166, http://lib.cqvip.com/Qikan/Article/Detail?id=7100294392.
[13] Liu Zhaojie, Xiao Kang, Li Wenwen, Tian Lijun, Wang Zhongyang. Theoretical Analysis of Polarization Regulation in Super-Resolution Raman Scattering Imaging. LASER & OPTOELECTRONICS PROGRESS[J]. 2019, 56(20): [14] 张力, 刘铁诚, 陈旭, 余彬彬, 张金仓, 王中阳. 多光束超分辨显微成像系统的设计与光束重合度优化. 上海理工大学学报[J]. 2019, 41(6): 563-569, http://lib.cqvip.com/Qikan/Article/Detail?id=7100748371.
[15] Wu, ShiChao, Qin, LiGuo, Jing, Jun, Yan, TianMin, Lu, Jian, Wang, ZhongYang. Microwave-controlled optical double optomechanically induced transparency in a hybrid piezo-optomechanical cavity system. PHYSICAL REVIEW A[J]. 2018, 98(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000437667400013.
[16] 刘铁诚, 张力, 孙静, 钟羽武, 王中阳, 郭新军, 阮昊. 二芳基乙烯的光学性质及其在超分辨光存储中的应用. 中国激光[J]. 2018, 45(9): 0903001-1, http://lib.cqvip.com/Qikan/Article/Detail?id=676417838.
[17] Wu, Yongxiao, Wang, Zhongyang, Chen, Sanbin, Shirakwa, Akira, Ueda, Kenichi, Li, Jianlang. Cascade conical refraction for annular pumping of a vortex Nd:YAG laser and selective excitation of low- and high-order Laguerre-Gaussian modes. LASER PHYSICS LETTERS[J]. 2018, 15(5): https://www.webofscience.com/wos/woscc/full-record/WOS:000428504400001.
[18] Qin, LiGuo, Wang, ZhongYang, Wu, ShiChao, Gong, ShangQing, Ma, HongYang, Jing, Jun. Vacuum-induced quantum memory in an opto-electromechanical system. OPTICS COMMUNICATIONS[J]. 2018, 410: 102-107, http://dx.doi.org/10.1016/j.optcom.2017.10.006.
[19] Qin Liguo, Wang Zhongyang, Ma Hongyang, Wang Shumei, Gong Shangqing. Electrically controlled optical switch in the hybrid opto-electromechanical system. 中国物理B:英文版[J]. 2017, 26(12): 128502-1, http://lib.cqvip.com/Qikan/Article/Detail?id=673835627.
[20] Zhao, Jingyun, Qin, Liguo, Cai, Xunming, Lin, Qiang, Wang, Zhongyang. Parity chain and parity chain breaking in the two-level cavity quantum electrodynamics system. CHINESE OPTICS LETTERS[J]. 2017, 15(5): https://www.webofscience.com/wos/woscc/full-record/WOS:000401075400002.
[21] Xiong, Yunjie, Ren, Mingjun, Li, Dongdong, Lin, Bolin, Zou, Liangliang, Wang, Yanshan, Zheng, Haifeng, Zou, Zhiqing, Zhou, Yi, Ding, Yihong, Wang, Zhongyang, Dai, Liming, Yang, Hui. Boosting electrocatalytic activities of plasmonic metallic nanostructures by tuning the kinetic pre-exponential factor. JOURNAL OF CATALYSIS[J]. 2017, 354: 160-168, http://dx.doi.org/10.1016/j.jcat.2017.08.024.
[22] Wang Zhongyang. Fabrication of centimeter-scale light-emitting diode with improved performance based on graphene quntum dots. Applied Physics Express. 2017, [23] 王中阳, 周燕飞, 张小伟, 沈灏, 李恩荣, 韩申生, 宓现强, 田立君, 彭玉峰. 基于随机采样的超高分辨率成像中快速压缩感知分析. 红外与激光工程[J]. 2017, 46(2): 0201002-1, http://lib.cqvip.com/Qikan/Article/Detail?id=671288961.
[24] Xu, Chang, Yang, Siwei, Tian, Linfan, Guo, Tianqi, Ding, Guqiao, Zhao, Jianwei, Sun, Jing, Lu, Jian, Wang, Zhongyang. Fabrication of centimeter-scale light-emitting diode with improved performance based on graphene quantum dots. APPLIED PHYSICS EXPRESS[J]. 2017, 10(3): http://www.corc.org.cn/handle/1471x/2190573.
[25] Qin, LiGuo, Wang, ZhongYang, Gong, ShangQing, Ma, HongYang. Electro-optic waveform interconnect based on quantum interference. PHOTONICS RESEARCH[J]. 2017, 5(5): 481-487, http://lib.cqvip.com/Qikan/Article/Detail?id=71908874504849554853484953.
[26] Li, Guiyun, Xia, Kegui, Wang, Zhongyang, Shen, Hao, Shirakawa, Akira, Ueda, Ken-ichi, Li, Jianlang. Conical refraction, for annular pumping of an efficient vortex Nd:YAG laser. LASER PHYS. LETT.[J]. 2017, 14(7): http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000406795500001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[27] Li, Guiyun, Xia, Kegui, Wang, Zhongyang, Shen, Hao, Shirakawa, Akira, Ueda, Kenichi, Li, Jianlang. Conical refraction, for annular pumping of an efficient vortex Nd:YAG laser. LASER PHYSICS LETTERS[J]. 2017, 14(7): https://www.webofscience.com/wos/woscc/full-record/WOS:000406795500001.
[28] Tian, Linfan, Yang, Siwei, Yang, Yucheng, Li, Jipeng, Deng, Yuan, Tian, Suyun, He, Peng, Ding, Guqiao, Xie, Xiaoming, Wang, Zhongyang. Green, simple and large scale synthesis of N-doped graphene quantum dots with uniform edge groups by electrochemical bottom-up synthesis. RSC ADVANCES[J]. 2016, 6(86): 82648-82653, https://www.webofscience.com/wos/woscc/full-record/WOS:000384155100021.
[29] Wu, ShiChao, Qin, LiGuo, Jing, Jun, Yang, GuoHong, Wang, ZhongYang. Triple optomechanical induced transparency in a two-cavity system. CHINESE PHYSICS B[J]. 2016, 25(5): http://www.corc.org.cn/handle/1471x/2233188.
[30] Qin, LiGuo, Wang, ZhongYang, Lin, GongWei, Zhao, JingYun, Gong, ShangQing. Electrically Controlled Quantum Memories With a Cavity and Electro-Mechanical System. IEEE JOURNAL OF QUANTUM ELECTRONICS[J]. 2016, 52(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000389709400001.
[31] Zhao, Jianwei, Lu, Jian, Wang, Liang, Tian, Linfan, Deng, Xingxia, Tian, Lijun, Pan, Dengyu, Wang, Zhongyang. Ultrafast spontaneous emission modulation of graphene quantum dots interacting with Ag nanoparticles in solution. APPLIED PHYSICS LETTERS[J]. 2016, 109(2): http://www.corc.org.cn/handle/1471x/2233604.
[32] Shen, H F, Zhang, Yizhu, Yan, T M, Wang, Z Y, Jiang, Y H. Moderately strong pump-induced ultrafast dynamics in solution. CHEMICAL PHYSICS[J]. 2016, 476: 17-22, http://dx.doi.org/10.1016/j.chemphys.2016.07.013.
[33] Yang, Siwei, Sun, Jing, He, Peng, Deng, Xinxia, Wang, Zhongyang, Hu, Chenyao, Ding, Guqiao, Xie, Xiaoming. Selenium Doped Graphene Quantum Dots as an Ultrasensitive Redox Fluorescent Switch. CHEMISTRY OF MATERIALS[J]. 2015, 27(6): 2004-2011, [34] Yang, Yanmei, Kong, Weiqian, Li, Hao, Liu, Juan, Yang, Manman, Huang, Hui, Liu, Yang, Wang, Zhongyang, Wang, Zhiqiang, Sham, TsunKong, Zhong, Jun, Wang, Chao, Liu, Zhuang, Lee, ShuitTong, Kang, Zhenhui. Fluorescent N-Doped Carbon Dots as in Vitro and in Vivo Nanothermometer. ACS APPLIED MATERIALS & INTERFACES[J]. 2015, 7(49): 27324-27330, https://www.webofscience.com/wos/woscc/full-record/WOS:000366873900035.
[35] Sun, Jing, Yang, Siwei, Wang, Zhongyang, Shen, Hao, Xu, Tao, Sun, Litao, Li, Hao, Chen, Wenwen, Jiang, Xingyu, Ding, Guqiao, Kang, Zhenhui, Xie, Xiaoming, Jiang, Mianheng. Ultra-High Quantum Yield of Graphene Quantum Dots: Aromatic-Nitrogen Doping and Photoluminescence Mechanism. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION[J]. 2015, 32(4): 434-440, https://www.webofscience.com/wos/woscc/full-record/WOS:000353051900004.
[36] Deng, Xingxia, Sun, Jing, Yang, Siwei, Shen, Hao, Zhou, Wei, Lu, Jian, Ding, Guqiao, Wang, Zhongyang. The emission wavelength dependent photoluminescence lifetime of the N-doped graphene quantum dots. APPLIED PHYSICS LETTERS[J]. 2015, 107(24): https://www.webofscience.com/wos/woscc/full-record/WOS:000367318600021.
[37] Yang, Siwei, Sun, Jing, Li, Xiubing, Zhou, Wei, Wang, Zhongyang, He, Pen, Ding, Guqiao, Xie, Xiaoming, Kang, Zhenhui, Jiang, Mianheng. Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2014, 2(23): 8660-8667, https://www.webofscience.com/wos/woscc/full-record/WOS:000336848600013.
[38] Wang Zhongyang. Large-scale Fabrication of Heavy Doped Carbon Quantum Dots with Tunable-photoluminescence and Sensitive Fluorescent Detection. Jounal of Materials Chemistry A. 2014, [39] Allam, J, Sajjad, M T, Sutton, R, Litvinenko, K, Wang, Z, Siddique, S, Yang, Q H, Loh, W H, Brown, T. Measurement of a Reaction-Diffusion Crossover in Exciton-Exciton Recombination inside Carbon Nanotubes Using Femtosecond Optical Absorption. PHYSICAL REVIEW LETTERS[J]. 2013, 111(19): http://dx.doi.org/10.1103/PhysRevLett.111.197401.
[40] Wang Zhongyang. Reaction, Diffusion and Dissociation of Excitons on Carbon Nanotubes. Quantum Electronics and Laser Science Conference. 2010, [41] Wang Zhongyang. Annihilation and anomalous trapping of excitons in carbon nanotubes. Conference of Condensed Matter and Materials Physics (CMMP 2009). 2009, [42] Wang Zhongyang. Optical response of Carbon nanotubes: exciton and plasmon contributions. Conference of Condensed Matter and Materials Physics (CMMP 2009). 2009, [43] F.C. Waldermann, P. Olivero, J. Nunn, K. Surmacz, Z.Y. Wang, D. Jaksch, R.A. Taylor, I.A. Walmsley, M. Draganski, P. Reichart, A.D. Greentree, D.N. Jamieson, S. Prawer. Creating diamond color centers for quantum optical applications. DIAMOND & RELATED MATERIALS. 2007, 1887-1895, http://dx.doi.org/10.1016/j.diamond.2007.09.009.
[44] Waldermann, F C, Olivero, P, Nunn, J, Surmacz, K, Wang, Z Y, Jaksch, D, Taylor, R A, Walmsley, I A, Draganski, M, Reichart, P, Greentree, A D, Jamieson, D N, Prawer, S. Creating diamond color centers for quantum optical applications. DIAMONDANDRELATEDMATERIALS[J]. 2007, 16(11): 1887-1895, http://dx.doi.org/10.1016/j.diamond.2007.09.009.
[45] Wang, Z, Reimann, K, Woerner, M, Elsaesser, T, Hofstetter, D, Baumann, E, Giorgetta, F R, Wu, H, Schaff, W J, Eastman, L F. Ultrafast hole burning in intersubband absorption lines of GaN/AlN superlattices. APPLIED PHYSICS LETTERS[J]. 2006, 89(15): https://www.webofscience.com/wos/woscc/full-record/WOS:000241247900003.
[46] Surmacz, K, Nunn, J, Waldermann, F C, Wang, Z, Walmsley, I A, Jaksch, D. Entanglement fidelity of quantum memories. PHYSICAL REVIEW A[J]. 2006, 74(5): https://www.webofscience.com/wos/woscc/full-record/WOS:000242408900003.
[47] Wang Zhongyang. Optical photon sidebands of electronic intersubband absorption in strongly polar semiconductor heterostructures. Phys. Rev. Lett. 94, 037403.. 2005, [48] Wang, ZY, Lin, Q, Wang, ZY. Single-cycle electromagnetic pulses produced by oscillating electric dipoles. PHYS. REV. E[J]. 2003, 67(1): 16503-, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000181018000075&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[49] 肖健, 王中阳, 徐至展. Carrier shock and frequency conversion of a few-cycle pulse laser propagating in a non-resonant two-level atom medium. CHIN. PHYS.[J]. 2002, 11(12): 1276-, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000180295600011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[50] Wang Zhongyang. Area evolution of few-cycle pulse laser in a two-level atom medium. Phys. Rev. A (Rapid communication) 65, 031402. 2002, [51] Feng, XL, Wang, ZY, Xu, ZZ. Mutual catalysis of entanglement transformations for pure entangled states. PHYS. REV. A[J]. 2002, 65(2): 22307-, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000173879500036&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[52] Wang Zhongyang. Atomic-state teleportation by Quantum Switches,. Phys. Rev. A 63(6),062308. 2001, [53] Wang, ZY, Xu, ZZ, Zhang, ZQ. A new theory for the treatment of a pulsed beam propagating through a grating pair. IEEE J. QUANTUM ELECTRON.[J]. 2001, 37(1): 1-, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000166316300001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[54] 王中阳, 徐至展. 有限束宽下光栅对压缩的化研究. 光学学报[J]. 2000, 20(2): 151-159, http://lib.cqvip.com/Qikan/Article/Detail?id=4562930.
[55] Wang ZY, 徐至展, Zhang ZQ. Diffraction integral formulas of the pulsed wave field in the temporal domain. OPT. LETT.[J]. 1997, 22(6): 354-, http://ir.siom.ac.cn/handle/181231/146.
[56] Nunn, J., Walmsley, I. A., Raymer, M. G., Surmacz, K., Waldermann, F. C., Wang, Z., Jaksch, D.. Mapping broadband single-photon wavepackets into an atomic memory. http://arxiv.org/abs/quant-ph/0702041.
[57] Wu, Shi-Chao, Qin, Li-Guo, Jing, Jun, Yan, Tian-Min, Lu, Jian, Wang, Zhong-Yang. Microwave-controlled optical double optomechanically induced transparency in a hybrid piezo-optomechanical cavity system. http://arxiv.org/abs/1706.09277.
[58] Lin, G. W., Niu, Y. P., Huang, T., Lin, X. M., Wang, Z. Y., Gong, S. Q.. Quantum Nondemolition Measurement and Heralded Preparation of Fock States with Electromagnetically Induced Transparency in an Optical Cavity. http://arxiv.org/abs/1203.0199.
[59] Zhao, Jing-Yun, Qin, Li-Guo, Cai, Xun-Ming, Lin, Qiang, Wang, Zhong-Yang. The effect of permanent dipole moment on the polar molecule cavity quantum electrodynamics. http://arxiv.org/abs/1511.00399.
[60] Qin, Li-Guo, Wang, Zhong-Yang, Lin, Gong-Wei, Zhao, Jing-Yun, Gong, Shang-Qing. Quantum memories with electrically controlled storage and retrieval in an opto- and electro-mechanical cavity. http://arxiv.org/abs/1309.3023.

科研活动

   
科研项目
( 1 ) 中科院“****”, 主持, 部委级, 2011-09--2014-09
( 2 ) 核心量子通信器件研究, 主持, 部委级, 2012-09--2017-08
( 3 ) 甲醇一步催化氧化制甲酸甲酯工艺技术, 参与, 省级, 2014-07--2016-09
( 4 ) 基于随机采样的RS-STORM的样机实现, 主持, 国家级, 2016-07--2018-12
( 5 ) 掺杂石墨烯量子点的发光机理和超快过程研究, 主持, 国家级, 2017-01--2019-12
( 6 ) 双光束超分辨光存储材料光谱及存储性能研究, 主持, 院级, 2016-10--2017-12
( 7 ) 有机超分辨光存储研发平台, 主持, 省级, 2018-07--2019-12
( 8 ) 水下光场增强传输机理及实现技术, 主持, 国家级, 2019-01--2019-12
( 9 ) XX超分辨光刻技术研究, 主持, 省级, 2021-01--2022-12
参与会议
(1)基于量子关联成像的高速超分辨荧光显微成像技术研究   光电子与微电子国际工程科技战略高端论坛   王中阳   2021-05-22
(2)基于稀疏约束鬼成像的快速超分辨荧光显微技术研究   第一届显微仪器技术国际高层论坛   2019-09-06
(3)基于稀疏约束鬼成像的超分辨荧光成像技术研究   第十届全国量子成像学术会议   2019-07-26
(4) Coherent fluorescence imaging technology and its application in nano quantum coherent control and biomedicine   国际前沿光学成像技术与应用学术研讨会   王中阳   2013-10-20
(5)荧光纳米成像技术与量子相干控制   第三届量子成像会议   王中阳   2013-05-17
(6)Quantum nondemolition measurement and preparation of fock states with electromagnetically induced transparency in an optical cavity   3. Zhongyang Wang, G. W. Lin, Y. P. Niu and S. Q. Gong   2012-12-17
(7)纳米碳管中激子非平衡态的临界跃变和普适性   2012全国强场激光物理会议   王中阳, M. T. Sajjad, K. Litvinenko, S. Siddique, J. Allam,Q. H. Yang,T. Brown,W. Loh   2012-10-26
(8)Optical response of Carbon nanotubes: exciton and plasmon contributions   Zhongyang Wang, M. T. Sajjad, S. Siddique, R. Sutton, D. Mersch, A. A. K. King, A. B. Dalton and J. Allam,   2009-12-15
(9)Annihilation and anomalous trapping of excitons in carbon nanotubes   [3]. M. T. Sajjad, Zhongyang Wang, S. Siddique, R. Sutton, D. Mersch, A. A. K. King, A. B. Dalton and J. Allam,   2009-12-15
(10)Excited electron state lifetime engineering in InGaAs-InGaP-InAlP/(001)GaAs quantum wells,   [11]. M. P. Semtsiv, Zhongyang Wang, M. Woerner, and W. T. Masselink,   2003-09-01
(11)Femtosecond intersubband dynamics of electrons in AlGaN/GaN-based high-electron-mobility transistors   [10]. Zhongyang Wang, K. Reimann,M. Woerner, T. Elsaesser, D. Hofstetter, J. Hwang, W. J. Schaff and L. F. Eastmann,   2003-07-28
(12)invariant propagation of ultrashort pulsed sources and its changes by truncation,   Zhongyang Wang, Jian Deng, Zhizhan Xu,   2001-07-29

指导学生

已指导学生

邓兴霞  硕士研究生  080903-微电子学与固体电子学  

田林凡  硕士研究生  080903-微电子学与固体电子学  

徐畅  硕士研究生  080903-微电子学与固体电子学  

现指导学生

吴士超  博士研究生  080903-微电子学与固体电子学  

王吉尔  硕士研究生  070304-物理化学  

韩琦  硕士研究生  080903-微电子学与固体电子学  

唐俊  硕士研究生  080903-微电子学与固体电子学  

赵晓辉  硕士研究生  070304-物理化学  

陈昕昕  硕士研究生  070304-物理化学