基本信息
吴晓春  女  博导  中国科学院国家纳米科学中心
电子邮件: wuxc@nanoctr.cn
通信地址: 中关村北一条11号
邮政编码: 100190

研究领域

主要研究方向:(1)具有光学活性贵金属纳米结构的设计、可控制备和性质研究;相关纳米结构在生物医学领域应用的探索研究;(2)发展具有光学活性/类酶催化活性有机/无机杂化纳米结构的高灵敏度和高选择性测量方法并用于生化检测;(3)纳米尺度功能特性类标准物质/样品研制,纳米结构表征和性质测量的国家标准/国际标准制定。以上研究在Adv. Mater.J.Am.Chem.Soc.Nano Lett., Biomaterials, Chem. Commun. Chem. Mater. SCI杂志上发表论文80,申请中国发明专利10项(其中5项授权)。自2006年以来主持和参与各类项目10余项。2006年作为首席科学家承担了科技部重大研究计划《纳米标准物质和检测用纳米标准样品的可控合成、量产及微纳加工方法标准化研究》(2006CB932600),发布纳米金颗粒标准样品/物质12个,编制相关国家标准10余项

招生信息

   
招生专业
070304-物理化学(含:化学物理)
070205-凝聚态物理
招生方向
纳米材料的可控设计,光学催化性质,纳米传感
非传统纳米加工技术

教育背景

   
学历

博士

学位

博士

教育经历
1992/09 - 1995/06, 南开大学,现代光学研究所,博士,导师: 陈文驹 1989/09 –1992/06, 吉林大学,环境科学系,硕士,导师: 魏庆珣 1985/09 - 1989/06, 四川大学,化学系,学士

工作经历

   
工作简历
2003-08~2004-12,德国明斯特大学, 博士后研究
2000-08~2003-08,德国马普固体物理研究所, 博士后研究
1999-01~2000-09,德国慕尼黑工业大学, 洪堡奖学金
1995-07~1997-07,中国科学院物理研究所, 博士后研究

教授课程

纳米科技进展

专利与奖励

   
奖励信息
(1) 河南省科学技术进步奖, 二等奖, 省级, 2015
专利成果
[1] 孟德静, 吴晓春. 一种手性组装体及其制备方法. CN: CN111299569B, 2022-02-22.

[2] 陈佳琪, 吴晓春. 一种手性贵金属纳米颗粒及其制备方法和用途. CN: CN111112596B, 2021-12-28.

[3] 陈佳琪, 孟德静, 吴晓春. 一种圆偏振发光物质及其制备方法和应用. CN: CN112300778A, 2021-02-02.

[4] 吴晓春, 阿迪蒂亚·萨兰, 张会, 纪英露, 李海芸. 一种全等离激元酶联免疫吸附试剂盒及其应用. CN: CN108008123B, 2020-06-30.

[5] 蔡瑞, 吴晓春. 一种半胱氨酸修饰的金纳米棒作为类过氧化物酶的应用. CN: CN110102344A, 2019-08-09.

[6] 樊慧真, 吴晓春. 一种催化氧化多巴胺为多巴色素的方法. CN: CN109293553A, 2019-02-01.

[7] 孟德静, 吴晓春. 一种增强诱导等离激元圆二色性的方法. CN: CN108680554A, 2018-10-19.

[8] 张会, 吴晓春. 一种纳米尺度热源反应器及其应用. CN: CN108324944A, 2018-07-27.

[9] 吴晓春, 阿迪蒂亚·萨兰, 张会, 纪英露, 李海芸. 一种新型全等离激元酶联免疫吸附试剂盒及其应用. CN: CN108008123A, 2018-05-08.

[10] 李海芸, 吴晓春, 颜姣, 王黎明, 陈春英. 一种具有一氧化氮合酶活性的贵金属纳米材料及其应用. CN: CN107598159A, 2018-01-19.

[11] 陈远东, 孟德静, 吴晓春. 一种银包金纳米棒肩并肩手性寡聚体及其制备方法和用途. CN: CN107552778A, 2018-01-09.

[12] 樊慧真, 吴晓春. 一种增强ICG单线态氧产量的方法及ICG包覆的纳米金颗粒及其制备方法. CN: CN107213462A, 2017-09-29.

[13] 颜姣, 侯帅, 吴晓春. 一种离散贵金属纳米颗粒及其制备方法. CN: CN106238728A, 2016-12-21.

[14] 张会, 吴晓春. 激子‑等离激元耦合体系、其构建方法及利用该耦合体系增强光敏剂单线态氧产生的方法. CN: CN106139145A, 2016-11-23.

[15] 陈佳琪, 侯帅, 吴晓春. 一种促进银在金纳米球表面再生长的方法及其应用. CN: CN105499560A, 2016-04-20.

[16] 葛广路, 王瑞敏, 陈岚, 纪英露, 吴晓春. 一种棒状纳米颗粒几何形状的测定方法. CN: CN105300857A, 2016-02-03.

[17] 侯帅, 吴晓春. 一种测定硫醇分子在金表面上的吸附常数的方法. CN: CN104865193A, 2015-08-26.

[18] 颜姣, 侯帅, 吴晓春. 一种放大金纳米棒组装体等离激元圆二色响应的方法. CN: CN104713833A, 2015-06-17.

[19] 温涛, 刘文奇. 一种金纳米棒及其制备方法. CN: CN103132143B, 2015-04-08.

[20] 纪英露, 吴晓春. 一种类球形金颗粒及其逐级快速合成方法. CN: CN104308175A, 2015-01-28.

[21] 刘文奇, 吴晓春. 一种贵金属纳米颗粒的处理方法. CN: CN104174840A, 2014-12-03.

[22] 温涛, 吴晓春. 一种纳米棒的处理方法. CN: CN103962545A, 2014-08-06.

[23] 温涛, 侯帅, 张会, 颜娇, 吴晓春. 一种金纳米棒手性结构构建方法及一种铜离子的检测方法. CN: CN103940746A, 2014-07-23.

[24] 时晓伟, 吴晓春. 金核氧化亚铜壳复合纳米结构的制备方法及复合纳米结构. CN: CN103934466A, 2014-07-23.

[25] 胡晓娜, 吴晓春. 一种纳米棒及其制备方法与应用. CN: CN103894618A, 2014-07-02.

[26] 陈春英, 仉振江, 王静, 王黎明, 吴晓春. 药物载体及其制备方法和药物组合物及其应用. CN: CN103893764A, 2014-07-02.

[27] 谢勇, 梁宇佳, 刘前, 吴晓春. 四方超晶格的核壳贵金属纳米棒及其自组装方法. CN: CN103862032A, 2014-06-18.

[28] 侯帅, 吴晓春. 一种测定纳米颗粒表面上一端为巯基的双官能团小分子酸碱解离常数的方法. CN: CN103728255A, 2014-04-16.

[29] 吴晓春, 阿迪蒂亚萨兰, 胡晓娜, 张会. 一种铂基合金结构的纳米棒模拟酶溶液及在ELISA中的应用. CN: CN103645315A, 2014-03-19.

[30] 温涛, 刘文奇, 吴晓春. 一种金纳米棒及其制备方法. CN: CN103132143A, 2013-06-05.

[31] 刘建波, 吴晓春. 金核/铂壳纳米棒模拟酶溶液的用途及检测过氧化氢、葡萄糖和胆固醇的方法. CN: CN102998413A, 2013-03-27.

[32] 张珂, 吴晓春, 韩东. 一种将生物样品制备成扫描电镜样品的方法. CN: CN102680289A, 2012-09-19.

[33] 陈春英, 许利耕, 吴晓春. 金纳米棒的修饰方法及金纳米棒-功能分子复合体. CN: CN102397557A, 2012-04-04.

[34] 张珂, 吴晓春. 铂诱导的金核/钯铂岛状合金壳结构纳米棒溶液及制法. CN: CN102039124A, 2011-05-04.

[35] 何伟伟, 吴晓春. 一种金核/铂壳纳米棒模拟酶溶液及其制备方法. CN: CN102019179A, 2011-04-20.

[36] 何伟伟, 吴晓春. 金核/银铂合金壳结构的岛状多孔三金属纳米棒及其制法. CN: CN101623762A, 2010-01-13.

[37] 冯莉莉, 吴晓春. 一种树枝状金核/铂壳结构的双金属纳米棒及制备方法. CN: CN101450380A, 2009-06-10.

[38] 吴晓春, 向彦娟, 解思深. 一种长方形金核/钯壳双金属纳米棒及其制备方法. CN: CN101130883A, 2008-02-27.

出版信息

 

发表论文
[1] Gao, Xinshuang, Zheng, Qiang, Li, Hanbo, Zhang, Chenqi, Cai, Rui, Ji, Yinglu, Hu, Zhijian, Wu, Xiaochun. Modulation of plasmonic chiral shell growth on gold nanorods via nonchiral surfactants. NANOSCALE[J]. 2023, 15(25): 10651-10660, http://dx.doi.org/10.1039/d3nr01371e.
[2] Cai, Rui, Shoukat, Chaudhary Ammar, Zhang, Chenqi, Gao, Xinshuang, Li, Hanbo, Chen, Jiaqi, Ji, Yinglu, Wu, Xiaochun. A colorimetric chemosensor for sensitive and selective detection of copper(ii) ions based on catalytic oxidation of 1-naphthylamine. ANALYST[J]. 2023, 148(14): 3306-3311, http://dx.doi.org/10.1039/d3an00536d.
[3] Zhang, Chenqi, Gao, Xinshuang, Li, Hanbo, Ji, Yinglu, Cai, Rui, Hu, Zhijian, Wu, Xiaochun. Regulation of Chirality Transfer and Amplification from Chiral Cysteine to Gold Nanorod Assemblies using Nonchiral Surface Ligands. ADVANCED OPTICAL MATERIALS. 2023, http://dx.doi.org/10.1002/adom.202202804.
[4] Zhao, Tonghan, Meng, Dejing, Hu, Zhijian, Sun, Wenjing, Ji, Yinglu, Han, Jianlei, Jin, Xue, Wu, Xiaochun, Duan, Pengfei. Enhanced chiroptic properties of nanocomposites of achiral plasmonic nanoparticles decorated with chiral dye-loaded micelles. NATURE COMMUNICATIONS[J]. 2023, 14(1): http://dx.doi.org/10.1038/s41467-022-35699-z.
[5] Wang, YiFeng, Zhang, Qingrong, Tian, Falin, Wang, Hongda, Wang, Yufei, Ma, Xiaowei, Huang, Qianqian, Cai, Mingjun, Ji, Yinglu, Wu, Xiaochun, Gan, Yaling, Yan, Yan, Dawson, Kenneth A, Guo, Shutao, Zhang, Jinchao, Shi, Xinghua, Shan, Yuping, Liang, XingJie. Spatiotemporal Tracing of the Cellular Internalization Process of Rod-Shaped Nanostructures. ACS NANO[J]. 2022, 16(3): 4059-4071, http://dx.doi.org/10.1021/acsnano.1c09684.
[6] 吴晓春. gold nanoparticles-based chiral plasmonic nanostructures and their biomedical applications. Biosensors[J]. 2022, [7] Xiaochun Wu. Improving peroxidase activity of gold nanorod nanozymes by dragging substrates to the catalysis sites via cysteine modification. Nanotechnology. 2021, [8] Chen, Jiaqi, Gao, Xinshuang, Zheng, Qiang, Liu, Jianbo, Meng, Dejing, Li, Haiyun, Cai, Rui, Fan, Huizhen, Ji, Yinglu, Wu, Xiaochun. Bottom-Up Synthesis of Helical Plasmonic Nanorods and Their Application in Generating Circularly Polarized Luminescence. ACS NANO[J]. 2021, 15(9): 15114-15122, http://dx.doi.org/10.1021/acsnano.1c05489.
[9] Xiaochun Wu. Temperature Effect of Plasmonic Circular Dichroism in Dynamic Oligomers of Au@Ag Nanorods Driven by Cysteine:The Role of Surface Atom Migration. Adv. Opt. Mater. 2021, [10] 蔡瑞, 刘建波, 吴晓春. 贵金属基纳米酶的研究进展. 高等学校化学学报[J]. 2021, 42(4): 1188-1201, https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2021&filename=GDXH202104016&v=Mjg2NTRxVHJXTTFGckNVUjd1ZlllZG1GaURtVXI3SUlpblRackc0SE5ETXE0OUVZb1I4ZVgxTHV4WVM3RGgxVDM=.
[11] Meng, Dejing, Chen, Yuandong, Ji, Yinglu, Shi, Xinghua, Wang, Hui, Wu, Xiaochun. Temperature Effect of Plasmonic Circular Dichroism in Dynamic Oligomers of AuNR@Ag Nanorods Driven by Cysteine: The Role of Surface Atom Migration. ADVANCED OPTICAL MATERIALS[J]. 2021, 9(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000588678700001.
[12] Cai Rui, Liu Jianbo, Wu Xiaochun. Research Progress of Noble Metal-based Nanozymes. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESEnull. 2021, 42(4): 1188-1201, http://dx.doi.org/10.7503/cjcu20200591.
[13] Meng, Dejing, Li, Xu, Gao, Xinshuang, Zhang, Chenqi, Ji, Yinglu, Hu, Zhijian, Ren, Lingling, Wu, Xiaochun. Constructing chiral gold nanorod oligomers using a spatially separated sergeants-and-soldiers effect. NANOSCALE[J]. 2021, 13(21): 9678-9685, http://dx.doi.org/10.1039/d1nr01458g.
[14] Li, Haiyun, Yan, Jiao, Meng, Dejing, Cai, Rui, Gao, Xinshuang, Ji, Yinglu, Wang, Liming, Chen, Chunying, Wu, Xiaochun. Gold Nanorod-Based Nanoplatform Catalyzes Constant NO Generation and Protects from Cardiovascular Injury. ACS NANO[J]. 2020, 14(10): 12854-12865, http://dx.doi.org/10.1021/acsnano.0c03629.
[15] Li, Haiyun, Wen, Tao, Wang, Tao, Ji, Yinglu, Shen, Yaoyi, Chen, Jiaqi, Xu, Haiyan, Wu, Xiaochun. In Vivo Metabolic Response upon Exposure to Gold Nanorod Core/Silver Shell Nanostructures: Modulation of Inflammation and Upregulation of Dopamine. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES[J]. 2020, 21(2): https://doaj.org/article/a8784470084043d49ababc0c6d1f2b96.
[16] Fan, Huizhen, Fan, Yu, Du, Wenna, Cai, Rui, Gao, Xinshuang, Liu, Xinfeng, Wang, Hao, Wang, Lei, Wu, Xiaochun. Enhanced type I photoreaction of indocyanine green via electrostatic-force-driven aggregation. NANOSCALE[J]. 2020, 12(17): 9517-9523, http://dx.doi.org/10.1039/d0nr01208d.
[17] Cai, Rong, Ren, Jiayu, Ji, Yinglu, Wang, Yaling, Liu, Ying, Chen, Zhigiang, Sabet, Zeinab Farhadi, Wu, Xiaochun, Lynch, Iseult, Chen, Chunying. Corona of Thorns: The Surface Chemistry-Mediated Protein Corona Perturbs the Recognition and Immune Response of Macrophages. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(2): 1997-2008, https://www.webofscience.com/wos/woscc/full-record/WOS:000508464500004.
[18] Long, Lin, Cai, Rui, Liu, Jianbo, Wu, Xiaochun. A Novel Nanoprobe Based on Core-Shell Au@Pt@Mesoporous SiO(2)Nanozyme With Enhanced Activity and Stability for Mumps Virus Diagnosis. FRONTIERS IN CHEMISTRY[J]. 2020, 8: https://doaj.org/article/9746033253e54152a1a4d8eb34e1ab61.
[19] Li, Haiyun, Chen, Jiaqi, Fan, Huizhen, Cai, Rui, Gao, Xinshuang, Meng, Dejing, Ji, Yinglu, Chen, Chunying, Wang, Liming, Wu, Xiaochun. Initiation of protective autophagy in hepatocytes by gold nanorod core/silver shell nanostructures. NANOSCALE[J]. 2020, 12(11): 6429-6437, https://www.webofscience.com/wos/woscc/full-record/WOS:000522124800019.
[20] Hu Nan, Shi Xiaoli, Zhang Qiang, Liu Wentao, Zhu Yuting, Wang Yuqing, Hou Yi, Ji Yinglu, Cao Yupeng, Zeng Qian, Ao Zhuo, Sun Quanmei, Zhou Xiaohan, Wu Xiaochun, Han Dong. Special interstitial route can transport nanoparticles to the brain bypassing the blood-brain barrier. NANO RESEARCH[J]. 2019, 12(11): 2760-2765, http://lib.cqvip.com/Qikan/Article/Detail?id=7101888822.
[21] Chen, Jiaqi, Meng, Dejing, Wang, Hui, Li, Haiyun, Ji, Yinglu, Shi, Xinghua, Wu, Xiaochun. Aromatic thiol-modulated Ag overgrowth on gold nanoparticles: tracking the thiol's position in the core-shell nanoparticles. NANOSCALE[J]. 2019, 11(37): 17471-17477, https://www.webofscience.com/wos/woscc/full-record/WOS:000487944000032.
[22] Hu, Zhijian, Mi, Yang, Ji, Yinglu, Wang, Rui, Zhou, Weiya, Qiu, Xiaohui, Liu, Xinfeng, Fang, Zheyu, Wu, Xiaochun. Multiplasmon modes for enhancing the photocatalytic activity of Au/Ag/Cu2O core-shell nanorods. NANOSCALE[J]. 2019, 11(35): 16445-16454, http://dx.doi.org/10.1039/c9nr03943k.
[23] Wang, Liming, Quan, Peiyu, Chen, Serena H, Bu, Wei, Li, YuFeng, Wu, Xiaochun, Wu, Junguang, Zhang, Leili, Zhao, Yuliang, Jiang, Xiaoming, Lin, Binhua, Zhou, Ruhong, Chen, Chunying. Stability of Ligands on Nanoparticles Regulating the Integrity of Biological Membranes at the Nano-Lipid Interface. ACS NANO[J]. 2019, 13(8): 8680-8693, http://dx.doi.org/10.1021/acsnano.9b00114.
[24] Fan, Huizhen, Li, Yiye, Liu, Jianbo, Cai, Rui, Gao, Xinshuang, Zhang, Hui, Ji, Yinglu, Nie, Guangjun, Wu, Xiaochun. Plasmon-Enhanced Oxidase-Like Activity and Cellular Effect of Pd-Coated Gold Nanorods. ACS APPLIED MATERIALS & INTERFACES[J]. 2019, 11(49): 45416-45426, https://www.webofscience.com/wos/woscc/full-record/WOS:000502689000006.
[25] Hu, Zhijian, Meng, Dejing, Lin, Feng, Zhu, Xing, Fang, Zheyu, Wu, Xiaochun. Plasmonic Circular Dichroism of Gold Nanoparticle Based Nanostructures. ADVANCED OPTICAL MATERIALSnull. 2019, 7(10): https://www.webofscience.com/wos/woscc/full-record/WOS:000471340100004.
[26] Si, Yuelei, Cao, Shuang, Wu, Zhijiao, Ji, Yinglu, Mi, Yang, Wu, Xiaochun, Liu, Xinfeng, Piao, Lingyu. What is the predominant electron transfer process for Au NRs/TiO2 nanodumbbell heterostructure under sunlight irradiation?. APPLIED CATALYSIS B-ENVIRONMENTAL[J]. 2018, 220: 471-476, http://dx.doi.org/10.1016/j.apcatb.2017.08.024.
[27] Sun, Quanmei, Shi, Xiaoli, Feng, Jiantao, Zhang, Qiang, Ao, Zhuo, Ji, Yinglu, Wu, Xiaochun, Liu, Dongsheng, Han, Dong. Cytotoxicity and Cellular Responses of Gold Nanorods to Smooth Muscle Cells Dependent on Surface Chemistry Coupled Action. SMALL[J]. 2018, 14(52): https://www.webofscience.com/wos/woscc/full-record/WOS:000456505700011.
[28] Long, Lin, Liu, Jianbo, Lu, Kaishun, Zhang, Tao, Xie, Yunqing, Ji, Yinglu, Wu, Xiaochun. Highly sensitive and robust peroxidase-like activity of Au-Pt core/shell nanorod-antigen conjugates for measles virus diagnosis. JOURNAL OF NANOBIOTECHNOLOGY[J]. 2018, 16(1): https://doaj.org/article/21f500f80ad5418aa823aba6e5b8b1aa.
[29] Wang, Peng, Zhang, Lingmin, Zheng, Wenfu, Cong, Liman, Guo, Zhaorong, Xie, Yangzhouyun, Wang, Le, Tang, Rongbing, Feng, Qiang, Hamada, Yoh, Gonda, Kohsuke, Hu, Zhijian, Wu, Xiaochun, Jiang, Xingyu. Thermo-triggered Release of CRISPR-Cas9 System by Lipid-Encapsulated Gold Nanoparticles for Tumor Therapy. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2018, 57(6): 1491-1496, http://www.corc.org.cn/handle/1471x/2177932.
[30] Ma, Yang, Qiao, ShengLin, Wang, Yi, Lin, YaoXin, An, HongWei, Wu, XiaoChun, Wang, Lei, Wang, Hao. Nanoantagonists with nanophase-segregated surfaces for improved cancer immunotherapy. BIOMATERIALS[J]. 2018, 156: 248-257, http://www.corc.org.cn/handle/1471x/2177868.
[31] Unique role of non-mercapto groups in thiol-pinning- mediated Ag growth on Au nanoparticles. 纳米研究:英文版[J]. 2018, 11(2): 614-624, http://lib.cqvip.com/Qikan/Article/Detail?id=674733659.
[32] Zhang T, Tian F, Long L, Liu JB, Wu XC. Diagnosis of rubella virus using antigen-conjugated Au@Pt nanorods as nanozyme probe. INTERNATIONAL JOURNAL OF NANOMEDICINE[J]. 2018, 13: 4795-4805, https://doaj.org/article/d90e1c163b6d4b4ba6707933ae08a63d.
[33] Xiaochun Wu. Differentiating gold nanorod samples using particle size and shape distribution from transmission electron microscope images. METROLOGIA. 2018, [34] Zhang, Hui, Li, Haiyun, Fan, Huizhen, Yan, Jiao, Meng, Dejing, Hou, Shuai, Ji, Yinglu, Wu, Xiaochun. Formation of plasmon quenching dips greatly enhances O-1(2) generation in a chlorin e6-gold nanorod coupled system. NANO RESEARCH[J]. 2018, 11(3): 1456-1469, http://dx.doi.org/10.1007/s12274-017-1762-5.
[35] Xiaochun Wu. Formation of plasmon quenching dip greatly enhancing 1O2 generation in chlorin e6-gold nanorod coupling system. Nano Research. 2018, [36] Chen, Jiaqi, Yan, Jiao, Chen, Yuandong, Hou, Shuai, Ji, Yinglu, Wu, Xiaochun. Unique role of non-mercapto groups in thiol-pinning-mediated Ag growth on Au nanoparticles. NANO RESEARCH[J]. 2018, 11(2): 614-624, http://lib.cqvip.com/Qikan/Article/Detail?id=674733659.
[37] Zhang, Hui, Jiang, Xiumei, Cao, Gaojuan, Zhang, Xiaowei, Croley, Timothy R, Wu, Xiaochun, Yin, JunJie. Effects of noble metal nanoparticles on the hydroxyl radical scavenging ability of dietary antioxidants. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART C-ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWSnull. 2018, 36(2): 84-97, https://www.webofscience.com/wos/woscc/full-record/WOS:000430421500002.
[38] Zhao, Wenjing, Wang, RongYao, Wei, Hong, Li, Jingliang, Ji, Yinglu, Jiang, Xinxin, Wu, Xiaochun, Zhang, Xiangdong. Recognition of chiral zwitterionic interactions at nanoscale interfaces by chiroplasmonic nanosensors. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2017, 19(32): 21401-21406, http://dx.doi.org/10.1039/c7cp03004e.
[39] Yang, Feng, Ji, Yinglu, Zhang, Xiao, Fan, Qingxia, Zhang, Nan, Gu, Xiaogang, Xiao, Zhuojian, Zhang, Qiang, Wang, Yanchun, Wu, Xiaochun, Li, Junjie, Zhou, Weiya. Detection of invisible phonon modes in individual defect-free carbon nanotubes by gradient-field Raman scattering. CHINESE PHYSICS B[J]. 2017, 26(7): https://www.webofscience.com/wos/woscc/full-record/WOS:000405134000001.
[40] Liu, Wenqi, Wu, Xiaochun, Li, Xiaojin. Gold nanorods on three-dimensional nickel foam: a non-enzymatic glucose sensor with enhanced electro-catalytic performance. RSC ADVANCES[J]. 2017, 7(58): 36744-36749, http://www.irgrid.ac.cn/handle/1471x/1755636.
[41] Liang, Yujia, Xie, Yong, Chen, Dongxue, Guo, Chuanfei, Hou, Shuai, Wen, Tao, Yang, Fengyou, Deng, Ke, Wu, Xiaochun, Smalyukh, Ivan I, Liu, Qian. Symmetry control of nanorod superlattice driven by a governing force. NATURE COMMUNICATIONS[J]. 2017, 8(1): http://dx.doi.org/10.1038/s41467-017-01111-4.
[42] Si, Yuelei, Cao, Shuang, Wu, Zhijiao, Ji, Yinglu, Mi, Yang, Wu, Xiaochun, Liu, Xinfeng, Piao, Lingyu. The effect of directed photogenerated carrier separation on photocatalytic hydrogen production. NANO ENERGY[J]. 2017, 41: 488-493, http://dx.doi.org/10.1016/j.nanoen.2017.10.008.
[43] Xiaochun Wu. Interference of steroidogenesis by gold nanorod core/silver shell nanostructures: implications for peproductive toxicity of silver nanomaterilas. Small. 2017, [44] Yan, Jiao, Chen, Yuandong, Hou, Shuai, Chen, Jiaqi, Meng, Dejing, Zhang, Hui, Fan, Huizhen, Ji, Yinglu, Wu, Xiaochun. Fabricating chiroptical starfruit-like Au nanoparticles via interface modulation of chiral thiols. NANOSCALE[J]. 2017, 9(31): 11093-11102, https://www.webofscience.com/wos/woscc/full-record/WOS:000407336600015.
[45] Liu, Wenqi, Hou, Shuai, Yan, Jiao, Zhang, Hui, Ji, Yinglu, Wu, Xiaochun. Quantification of proteins using enhanced etching of Ag coated Au nanorods by the Cu2+/bicinchoninic acid pair with improved sensitivity. NANOSCALE[J]. 2016, 8(2): 780-784, https://www.webofscience.com/wos/woscc/full-record/WOS:000367258500013.
[46] Hou, Shuai, Yan, Jiao, Hu, Zhijian, Wu, Xiaochun. Enhancing the plasmonic circular dichroism by entrapping chiral molecules at the core-shell interface of rod-shaped Au@Ag nanocrystals. CHEMICAL COMMUNICATIONS[J]. 2016, 52(10): 2059-2062, http://dx.doi.org/10.1039/c5cc08505e.
[47] Wen, Tao, Wamer, Wayne G, Subczynski, Witold K, Hou, Shuai, Wu, Xiaochun, Yin, JunJie. Enhancement of Paramagnetic Relaxation by Photoexcited Gold Nanorods. SCIENTIFIC REPORTS[J]. 2016, 6: https://www.webofscience.com/wos/woscc/full-record/WOS:000373964400001.
[48] Yan, Jiao, Hou, Shuai, Ji, Yinglu, Wu, Xiaochun. Heat-enhanced symmetry breaking in dynamic gold nanorod oligomers: the importance of interface control. NANOSCALE[J]. 2016, 8(19): 10030-10034, https://www.webofscience.com/wos/woscc/full-record/WOS:000376047200014.
[49] Wen, Tao, Zhang, Hui, Chong, Yu, Wamer, Wayne G, Yin, JunJie, Wu, Xiaochun. Probing hydroxyl radical generation from H2O2 upon plasmon excitation of gold nanorods using electron spin resonance: Molecular oxygen-mediated activation. NANO RESEARCH[J]. 2016, 9(6): 1663-1673, https://www.webofscience.com/wos/woscc/full-record/WOS:000376652300011.
[50] Liu, Zhigang, Wang, Liming, Zhang, Limin, Wu, Xiaochun, Nie, Guangjun, Chen, Chunying, Tang, Huiru, Wang, Yulan. Metabolic Characteristics of 16HBE and A549 Cells Exposed to Different Surface Modified Gold Nanorods. ADVANCED HEALTHCARE MATERIALS[J]. 2016, 5(18): 2363-2375, https://www.webofscience.com/wos/woscc/full-record/WOS:000384554300008.
[51] Xiaochun Wu. Mechanism of oxidase and SOD-like activities of gold, silver, platinum, and palladium and their alloys: a general way to the activation of molecular oxygen. J. Am. Chem. Soc. 2015, [52] Li, Junnan, Liu, Wenqi, Wu, Xiaochun, Gao, Xingfa. Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. BIOMATERIALS[J]. 2015, 48: 37-44, http://dx.doi.org/10.1016/j.biomaterials.2015.01.012.
[53] Wen, Tao, He, Weiwei, Chong, Yu, Liu, Yi, Yin, JunJie, Wu, Xiaochun. Exploring environment-dependent effects of Pd nanostructures on reactive oxygen species (ROS) using electron spin resonance (ESR) technique: implications for biomedical applications. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2015, 17(38): 24937-24943, http://dx.doi.org/10.1039/c5cp04046a.
[54] Xiaochun Wu. Ferroxidase-like activity of Au nanorods@pt nanodots structures and implication for cellular oxidative stress. Nano Research. 2015, [55] Hou, Shuai, Zhang, Hui, Yan, Jiao, Ji, Yinglu, Wen, Tao, Liu, Wenqi, Hu, Zhijian, Wu, Xiaochun. Plasmonic circular dichroism in side-by-side oligomers of gold nanorods: the influence of chiral molecule location and interparticle distance. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2015, 17(12): 8187-8193, https://www.webofscience.com/wos/woscc/full-record/WOS:000351437500067.
[56] Zhai, Dawei, Wang, Peng, Wang, RongYao, Tian, Xiaorui, Ji, Yinglu, Zhao, Wenjing, Wang, Luming, Wei, Hong, Wu, Xiaochun, Zhang, Xiangdong. Plasmonic polymers with strong chiroptical response for sensing molecular chirality. NANOSCALE[J]. 2015, 7(24): 10690-10698, http://dx.doi.org/10.1039/c5nr01966d.
[57] Yang, Nan, Liu, Yanyong, Ji, Yinglu, Ren, Zhili, Meng, Jie, Ji, Chao, Liu, Jian, Zheng, Ji, Wu, Xiaochun, Zuo, Pingping, Xu, Haiyan. Motor coordination dysfunction induced by gold nanorods core/silver shell nanostructures in mice: disruption in mitochondrial transport and neurotransmitter release. RSC ADVANCES[J]. 2014, 4(103): 59472-59480, https://www.webofscience.com/wos/woscc/full-record/WOS:000345652300071.
[58] 赵宇亮. Localized Electric Field of Plasmonic Nanoplatform Enhanced Photodynamic Tumor Therapy. ACS NANO[J]. 2014, 8(11): 11529-11542, http://dx.doi.org/10.1021/nn5047647.
[59] Wen, Tao, Hou, Shuai, Yan, Jiao, Zhang, Hui, Liu, Wenqi, Ji, Yinglu, Wu, Xiaochun. L-Cysteine-induced chiroptical activity in assemblies of gold nanorods and its use in ultrasensitive detection of copper ions. RSC ADVANCES[J]. 2014, 4(85): 45159-45162, https://www.webofscience.com/wos/woscc/full-record/WOS:000342993500040.
[60] Hu, Xiaona, Saran, Aditya, Hou, Shuai, Wen, Tao, Ji, Yinglu, Liu, Wenqi, Zhang, Hui, Wu, Xiaochun. Rod-shaped Au@PtCu nanostructures with enhanced peroxidase-like activity and their ELISA application. CHINESE SCIENCE BULLETIN[J]. 2014, 59(21): 2588-2596, https://www.webofscience.com/wos/woscc/full-record/WOS:000338127100013.
[61] Liang, Yujia, Xie, Yong, Zhu, Zhening, Ji, Yinglu, Wu, Xiaochun, Liu, Qian. SELF-ASSEMBLY OF GOLD NANORODS ON WRINKLED TEMPLATE. NANO[J]. 2014, 9(7): https://www.webofscience.com/wos/woscc/full-record/WOS:000344463700006.
[62] Wang, Liming, Lin Xiaoying, Wu, Xiaochun, Chen, Chunying. Novel insights into combating cancer chemotherapy resistance using a plasmonic nanocarrier: enhancing drug sensitiveness and accumulation simultaneously with localized mild photothermal stimulus of femtosecond pulsed laser. ADVANCED FUNCTIONAL MATERIALS[J]. 2014, 24(27): 4229-4239, http://ir.ihep.ac.cn/handle/311005/224802.
[63] Tang, Jinglong, Jiang, Xiumei, Wang, Liming, Zhang, Hui, Hu, Zhijian, Liu, Ying, Wu, Xiaochun, Chen, Chunying. Au@Pt nanostructures: a novel photothermal conversion agent for cancer therapy. NANOSCALE[J]. 2014, 6(7): 3670-3678, http://dx.doi.org/10.1039/c3nr06841b.
[64] Liu, Wenqi, Zhang, Hui, Wen, Tao, Yan, Jiao, Hou, Shuai, Shi, Xiaowei, Hu, Zhijian, Ji, Yinglu, Wu, Xiaochun. Activation of Oxygen-Mediating Pathway Using Copper Ions: Fine-Tuning of Growth Kinetics in Gold Nanorod Overgrowth. LANGMUIR[J]. 2014, 30(41): 12376-12383, https://www.webofscience.com/wos/woscc/full-record/WOS:000343638800034.
[65] Hou, Shuai, Wen, Tao, Zhang, Hui, Liu, Wenqi, Hu, Xiaona, Wang, Rongyao, Hu, Zhijian, Wu, Xiaochun. Fabrication of chiral plasmonic oligomers using cysteine-modified gold nanorods as monomers. NANO RESEARCH[J]. 2014, 7(11): 1699-1705, https://www.webofscience.com/wos/woscc/full-record/WOS:000345342800014.
[66] Xu, Yingying, Wang, Jing, Li, Xiaofan, Liu, Ying, Dai, Luru, Wu, Xiaochun, Chen, Chunying. Selective inhibition of breast cancer stem cells by gold nanorods mediated plasmonic hyperthermia. BIOMATERIALS[J]. 2014, 35(16): 4667-4677, http://dx.doi.org/10.1016/j.biomaterials.2014.02.035.
[67] Meng, Jie, Ji, Yinglu, Liu, Jian, Cheng, Xuelian, Guo, Hua, Zhang, Weiqi, Wu, Xiaochun, Xu, Haiyan. Using gold nanorods core/silver shell nanostructures as model material to probe biodistribution and toxic effects of silver nanoparticles in mice. NANOTOXICOLOGY[J]. 2014, 8(6): 686-696, https://www.webofscience.com/wos/woscc/full-record/WOS:000328127600008.
[68] Hu, Xiaona, Saran, Aditya, Hou, Shuai, Wen, Tao, Ji, Yinglu, Liu, Wenqi, Zhang, Hui, He, Weiwei, Yin, JunJie, Wu, Xiaochun. Au@PtAg core/shell nanorods: tailoring enzyme-like activities via alloying. RSC ADVANCES[J]. 2013, 3(17): 6095-6105, https://www.webofscience.com/wos/woscc/full-record/WOS:000316965800049.
[69] Cheng, Xuelian, Zhang, Weiqi, Ji, Yinglu, Meng, Jie, Guo, Hua, Liu, Jian, Wu, Xiaochun, Xu, Haiyan. Revealing silver cytotoxicity using Au nanorods/Ag shell nanostructures: disrupting cell membrane and causing apoptosis through oxidative damage. RSC ADVANCES[J]. 2013, 3(7): 2296-2305, https://www.webofscience.com/wos/woscc/full-record/WOS:000313812400029.
[70] Shuai Hou, Xiaona Hu, Tao Wen, Wenqi Liu, Xiaochun Wu. Core-Shell Noble Metal Nanostructures Templated by Gold Nanorods. ADVANCED MATERIALS[J]. 2013, 25(28): 3857-3862, https://www.webofscience.com/wos/woscc/full-record/WOS:000327749400007.
[71] Wang, Peng, Chen, Li, Wang, Rongyao, Ji, Yinglu, Zhai, Dawei, Wu, Xiaochun, Liu, Yu, Chen, Keqiu, Xu, Hongxing. Giant optical activity from the radiative electromagnetic interactions in plasmonic nanoantennas. NANOSCALE[J]. 2013, 5(9): 3889-3894, http://ir.iphy.ac.cn/handle/311004/57045.
[72] Jin, Shubin, Ma, Xiaowei, Ma, Huili, Zheng, Kaiyuan, Liu, Juan, Hou, Shuai, Meng, Jie, Wang, Paul C, Wu, Xiaochun, Liang, XingJie. Surface chemistry-mediated penetration and gold nanorod thermotherapy in multicellular tumor spheroids. NANOSCALE[J]. 2013, 5(1): 143-146, https://www.webofscience.com/wos/woscc/full-record/WOS:000313347200014.
[73] 赵宇亮. Selective metabolic effects of gold nanorods on normal and cancer cells and their application in anticancer drug screening. BIOMATERIALS[J]. 2013, 34(29): 7117-7126, http://dx.doi.org/10.1016/j.biomaterials.2013.05.043.
[74] Hu, Xiaona, Zhao, Yuyun, Hu, Zhijian, Saran, Aditya, Hou, Shuai, Wen, Tao, Liu, Wenqi, Ji, Yinglu, Jiang, Xingyu, Wu, Xiaochun. Gold nanorods core/AgPt alloy nanodots shell: A novel potent antibacterial nanostructure. NANO RESEARCH[J]. 2013, 6(11): 822-835, http://lib.cqvip.com/Qikan/Article/Detail?id=47757386.
[75] Wen, Tao, Zhang, Hui, Tang, Xiaoping, Chu, Weiguo, Liu, Wenqi, Ji, Yinglu, Hu, Zhijian, Hou, Shuai, Hu, Xiaona, Wu, Xiaochun. Copper Ion Assisted Reshaping and Etching of Gold Nanorods: Mechanism Studies and Applications. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2013, 117(48): 25769-25777, https://www.webofscience.com/wos/woscc/full-record/WOS:000328101200065.
[76] Xiaona Hu, Yuyun Zhao, Zhijian Hu, Aditya Saran, Shuai Hou, Tao Wen, Wenqi Liu, Yinglu Ji, Xingyu Jiang, Xiaochun Wu. Gold nanorods core/AgPt alloy nanodots shell: A novel potent antibacterial nanostructure. 纳米研究:英文版[J]. 2013, 6(11): 822-835, http://lib.cqvip.com/Qikan/Article/Detail?id=47757386.
[77] Wen, Tao, Hu, Zhijian, Liu, Wenqi, Zhang, Hui, Hou, Shuai, Hu, Xiaona, Wu, Xiaochun. Copper-Ion-Assisted Growth of Gold Nanorods in Seed-Mediated Growth: Significant Narrowing of Size Distribution via Tailoring Reactivity of Seeds. LANGMUIR[J]. 2012, 28(50): 17517-17523, [78] Xiaochun Wu. Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-I treatment. Nano Letters. 2012, [79] Xie, Yong, Jia, Yongfei, Liang, Yujia, Guo, Shengming, Ji, Yinglu, Wu, Xiaochun, Chen, Ziyu, Liu, Qian. Real-time observations on crystallization of gold nanorods into spiral or lamellar superlattices. CHEMICAL COMMUNICATIONS[J]. 2012, 48(15): 2128-2130, http://dx.doi.org/10.1039/c2cc15989a.
[80] Zhang, Weiqi, Ji, Yinglu, Meng, Jie, Wu, Xiaochun, Xu, Haiyan. Probing the Behaviors of Gold Nanorods in Metastatic Breast Cancer Cells Based on UV-vis-NIR Absorption Spectroscopy. PLOS ONE[J]. 2012, 7(2): http://dx.doi.org/10.1371/journal.pone.0031957.
[81] Xiaochun Wu. Copper-ions-assisted growth of gold nanorods in seed-mediated growth: significant narrowing of size distribution via tailoring reactivity of seeds. Langmuir. 2012, [82] Jianbo Liu, Xiaona Hu, Shuai Hou, Tao Wen, Wenqi Liu, Xing Zhu, Jun-Jie Yin, Xiaochun Wu. Au@Pt core/shell nanorods with peroxidase- and ascorbate oxidase-like activities for improved detection of glucose. SENSORS & ACTUATORS: B. CHEMICAL. 2012, 166-167: 708-714, http://dx.doi.org/10.1016/j.snb.2012.03.045.
[83] Zhang, Zhenjiang, Wang, Liming, Wang, Jing, Jiang, Xiumei, Li, Xiaohui, Hu, Zhijian, Ji, Yinglu, Wu, Xiaochun, Chen, Chunying. Mesoporous Silica-Coated Gold Nanorods as a Light-Mediated Multifunctional Theranostic Platform for Cancer Treatment. ADVANCED MATERIALS[J]. 2012, 24(11): 1418-1423, http://ir.ihep.ac.cn/handle/311005/224136.
[84] Cupane Carolina. Στήλη τῆς ἀστειότητος«. FRÜHMITTELALTERLICHE STUDIEN[J]. 2011, [85] Wang, Liming, Liu, Ying, Li, Wei, Jiang, Xiumei, Ji, Yinglu, Wu, Xiaochun, Xu, Ligeng, Qiu, Yang, Zhao, Kai, Wei, Taotao, Li, Yufeng, Zhao, Yuliang, Chen, Chunying. Selective Targeting of Gold Nanorods at the Mitochondria of Cancer Cells: Implications for Cancer Therapy. NANO LETTERS[J]. 2011, 11(2): 772-780, [86] HU XiaoNa, LIU JianBo, HOU Shuai, WEN Tao, LIU WenQi, ZHANG Ke, HE WeiWei, JI YingLu, REN HongXuan, WANG Qi, WU XiaoChun. Research progress of nanoparticles as enzyme mimetics. 中国科学:物理学、力学、天文学英文版[J]. 2011, 54(10): 1749-1756, http://lib.cqvip.com/Qikan/Article/Detail?id=39210543.
[87] Xiaochun Wu. Direct evidence for catalase and peroxidase activities of ferritine-platinum nanoparticles. Biomaterials. 2011, [88] Liu, Jianbo, Hu, Xiaona, Hou, Shuai, Wen, Tao, Liu, Wenqi, Zhu, Xing, Wu, Xiaochun. Screening of inhibitors for oxidase mimics of Au@Pt nanorods by catalytic oxidation of OPD. CHEMICAL COMMUNICATIONS[J]. 2011, 47(39): 10981-10983, https://www.webofscience.com/wos/woscc/full-record/WOS:000295275200026.
[89] Xie, Yong, Guo, Shengming, Ji, Yinglu, Guo, Chuanfei, Liu, Xinfeng, Chen, Ziyu, Wu, Xiaochun, Liu, Qian. Self-Assembly of Gold Nanorods into Symmetric Superlattices Directed by OH-Terminated Hexa(ethylene glycol) Alkanethiol. LANGMUIR[J]. 2011, 27(18): 11394-11400, http://dx.doi.org/10.1021/la202320k.
[90] Xiaochun Wu. Formation of PdPtr alloy nanodots on gold nanorods: tuning oxidase-like activities via composition. Langmuir. 2011, [91] Wang, RongYao, Wang, Honglei, Wu, XiaoChun, Ji, Yinglu, Wang, Peng, Qu, Yuan, Chung, TaiShung. Chiral assembly of gold nanorods with collective plasmonic circular dichroism response. SOFT MATTER[J]. 2011, 7(18): 8370-8375, https://www.webofscience.com/wos/woscc/full-record/WOS:000294447600064.
[92] 张珂, 刘建波, 胡晓娜, 向彦娟, 冯莉莉, 何伟伟, 侯帅, 郭玉婷, 纪英露, 周维亚, 解思深, 吴晓春. 金纳米棒核/贵金属壳杂化纳米结构的可控制备和性质调控. 物理[J]. 2011, 40(9): 601-607, http://lib.cqvip.com/Qikan/Article/Detail?id=39274528.
[93] He, Weiwei, Hou, Shuai, Mao, Xiaobo, Wu, Xiaochun, Ji, Yinglu, Liu, Jianbo, Hu, Xiaona, Zhang, Ke, Wang, Chenxuan, Yang, Yanlian, Wang, Qi. Peptide-tailored assembling of Au nanorods. CHEMICAL COMMUNICATIONS[J]. 2011, 47(19): 5482-5484, http://www.corc.org.cn/handle/1471x/2176203.
[94] He, Weiwei, Liu, Ying, Yuan, Jinshan, Yin, JunJie, Wu, Xiaochun, Hu, Xiaona, Zhang, Ke, Liu, Jianbo, Chen, Chunying, Ji, Yinglu, Guo, Yuting. Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. BIOMATERIALS[J]. 2011, 32(4): 1139-1147, http://www.corc.org.cn/handle/1471x/2176143.
[95] Zhang, Ke, Hu, Xiaona, Liu, Jianbo, Yin, JunJie, Hou, Shuai, Wen, Tao, He, Weiwei, Ji, Yinglu, Guo, Yuting, Wang, Qi, Wu, Xiaochun. Formation of PdPt Alloy Nanodots on Gold Nanorods: Tuning Oxidase-like Activities via Composition. LANGMUIR[J]. 2011, 27(6): 2796-2803, https://www.webofscience.com/wos/woscc/full-record/WOS:000288039500096.
[96] He, Weiwei, Wu, Xiaochun, Liu, Jianbo, Zhang, Ke, Chu, Weiguo, Feng, Lili, Hu, Xiaona, Zhou, Weiya, Xie, Sishen. Formation of AgPt Alloy Nanoislands via Chemical Etching with Tunable Optical and Catalytic Properties. LANGMUIR[J]. 2010, 26(6): 4443-4448, http://ir.iphy.ac.cn/handle/311004/38382.
[97] Liu, Ji, He, Weiwei, Hu, Lijun, Liu, Zheng, Zhou, Haiqing, Wu, Xiaochun, Sun, Lianfeng. Visible light detection using single-walled carbon nanotube film and gold nanoparticles or nanorods. JOURNAL OF APPLIED PHYSICS[J]. 2010, 107(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000277834300525.
[98] Wang, Liming, Li, YuFeng, Zhou, Liangjun, Liu, Ying, Meng, Li, Zhang, Ke, Wu, Xiaochun, Zhang, Lili, Li, Bai, Chen, Chunying. Characterization of gold nanorods in vivo by integrated analytical techniques: their uptake, retention, and chemical forms. ANALYTICAL AND BIOANALYTICAL CHEMISTRY[J]. 2010, 396(3): 1105-1114, http://ir.ihep.ac.cn/handle/311005/239051.
[99] 赵宇亮. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. BIOMATERIALS[J]. 2010, 31(30): 7606-7619, http://dx.doi.org/10.1016/j.biomaterials.2010.06.051.
[100] He, Weiwei, Wu, Xiaochun, Liu, Jianbo, Hu, Xiaona, Zhang, Ke, Hou, Shuai, Zhou, Weiya, Xie, Sishen. Design of AgM Bimetallic Alloy Nanostructures (M = Au, Pd, Pt) with Tunable Morphology and Peroxidase-Like Activity. CHEMISTRY OF MATERIALS[J]. 2010, 22(9): 2988-2994, http://ir.iphy.ac.cn/handle/311004/35779.
[101] Xiaochun Wu. Pt-guided formation of Pt-Ag alloy nanoislands on Au NRs and improved methanol electro-oxidation. J. Phys. Chem. C. 2009, [102] He, Weiwei, Wu, Xiaochun, Liu, Jianbo, Zhang, Ke, Chu, Weiguo, Feng, Lili, Hu, Xiaona, Zbou, Weiya, Me, Sishen. Pt-Guided Formation of Pt-Ag Alloy Nanoislands on Au Nanorods and Improved Methanol Electro-Oxidation. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2009, 113(24): 10505-10510, http://ir.iphy.ac.cn/handle/311004/51587.
[103] Zhang, Ke, Xiang, Yanjuan, Wu, Xiaochun, Feng, Lili, He, Weiwei, Liu, Jianbo, Zhou, Weiya, Xie, Sishen. Enhanced Optical Responses of Au@Pd Core/Shell Nanobars. LANGMUIR[J]. 2009, 25(2): 1162-1168, http://ir.iphy.ac.cn/handle/311004/37372.
[104] Feng, Lili, Wu, Xiaochun, Ren, Lirong, Xiang, Yanjuan, He, Weiwei, Zhang, Ke, Zhou, Weiya, Xie, Sishen. Well-Controlled Synthesis of Au@Pt Nanostructures by Gold-Nanorod-Seeded Growth. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2008, 14(31): 9764-9771, http://www.corc.org.cn/handle/1471x/2373656.
[105] Xiang, Yaniuan, Wu, Xiaochun, Liu, Dongfang, Li, Zhiyuan, Chu, Weiguo, Feng, Lili, Zhang, Ke, Zhou, Weiya, Xie, Sishen. Gold nanorod-seeded growth of silver nanostructures: From homogeneous coating to anisotropic coating. LANGMUIR[J]. 2008, 24(7): 3465-3470, http://ir.iphy.ac.cn/handle/311004/38792.
[106] Xiang, Yanjuan, Wu, Xiaochun, Liu, Dongfang, Feng, Lili, Zhang, Ke, Chu, Weiguo, Zhou, Weiya, Xie, Sishen. Tuning the morphology of gold nanocrystals by switching the growth of {110} facets from restriction to preference. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2008, 112(9): 3203-3208, http://ir.iphy.ac.cn/handle/311004/46196.
[107] Xiang YanJuan, Wu XiaoChun, Liu DongFang, Zhang ZengXing, Song Li, Zhao XiaoWei, Liu LiFeng, Luo ShuDong, Ma WenJun, Shen Jun, Zhou WeiYa, Zhou JianJun, Wang ChaoYing, Wang Gang. Seed-mediated growth of gold nanoparticles using self-assembled monolayer of polystyrene microspheres as nanotemplate arrays. CHINESE PHYSICS[J]. 2006, 15(9): 2080-2086, http://ir.iphy.ac.cn/handle/311004/52373.
[108] 汤国庆, 朱从善, 张桂兰, 卜宏建, 陈文驹, 干福熹, 余保龙, 吴晓春. In2O3纳米微粒非线性光学特性. 物理学报[J]. 1999, 48(2): 320-, http://lib.cqvip.com/Qikan/Article/Detail?id=3418052.
[109] 余保龙, 张桂兰, 陈文驹, 杨斌洲, 吴晓春, 汤国庆. Fe2O3纳米微粒溶胶非线性光学特性的Z—扫描研究. 物理学报[J]. 1997, 46(3): 579-, http://lib.cqvip.com/Qikan/Article/Detail?id=2555488.
[110] 余保龙, 陈文驹, 吴晓春, 汤国庆, 邹炳锁, 张桂兰. 不同制备条件对纳米Bi2O3发光的影响. 化学学报[J]. 1996, 54(2): 146-, http://lib.cqvip.com/Qikan/Article/Detail?id=2140873.
[111] 吴晓春, 陈文驹. 半导体纳米材料非线性光学性质的研究进展. 物理[J]. 1996, 25(4): 212-, http://lib.cqvip.com/Qikan/Article/Detail?id=2042435.
[112] 汤国庆, 邹炳锁, 余保龙, 吴晓春, 陈文驹, 张桂兰. 亚甲兰对纳米CdS有机溶胶体系光谱性质的影响. 科学通报[J]. 1996, 41(1): 95-, http://lib.cqvip.com/Qikan/Article/Detail?id=2063138.
[113] 张桂兰, 汤国庆, 陈文驹, 余保龙, 吴晓春. 纳米材料SnO2表面声子模的红外光谱研究. 物理学报[J]. 1996, 45(6): 1003-, http://lib.cqvip.com/Qikan/Article/Detail?id=2208717.
[114] 陈文驹, 余保龙, 吴晓春, 赵立. 表面包覆纳米In2O3的Z—SCAN测量. 科学通报[J]. 1996, 41(8): 767-, http://lib.cqvip.com/Qikan/Article/Detail?id=2062244.
[115] 陈文驹, 吴晓春, 张桂兰, 汤国庆, 邹炳锁, 余保龙. 热处理对表面保覆纳米In↓2O↓3的有机溶胶光学性质的影响. 科学通报[J]. 1996, 41(1): 14-, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=347818&detailType=1.
[116] 张桂兰, 余保龙, 吴晓春, 汤国庆, 刘月亭, 郭虎森, 邹炳锁, 陈文驹. 表面包覆硬脂酸的纳米SnO2的XRD,ESR,FTIR光谱特征. 半导体学报[J]. 1996, 17(6): 416-, http://lib.cqvip.com/Qikan/Article/Detail?id=2263316.
[117] 吴晓春, 陈文驹, 余保龙, 汤国庆, 张桂兰. 氧化锌钠米微晶的顺磁共振特性. 物理化学学报[J]. 1995, 11(7): 587-, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=282540&detailType=1.
[118] 陈文驹, 吴晓春. 半导体量子点电子结构理论研究的进展. 物理[J]. 1995, 24(4): 218-, http://lib.cqvip.com/Qikan/Article/Detail?id=1914892.
[119] 余保龙, 吴晓春, 张桂兰, 汤国庆, 陈文驹, 邹炳锁. 表面包覆的SnO2纳米微粒的红外振动特征. 光学学报[J]. 1995, 15(10): 1355-, http://lib.cqvip.com/Qikan/Article/Detail?id=1743631.
[120] 吴晓春, 邹炳锁, 陈文驹. 半导体纳米光功能材料的合成方法. 功能材料[J]. 1995, 26(3): 193-197, http://lib.cqvip.com/Qikan/Article/Detail?id=7455071.
[121] 吴晓春, 余保龙, 汤国庆, 张桂兰, 邹炳锁, 陈文驹. 半导体SnO2纳米微粒的光学特性. 物理学报[J]. 1995, 44(4): 660-, http://lib.cqvip.com/Qikan/Article/Detail?id=1915470.
[122] 吴晓春, 汤国庆, 邹炳锁. 热处理对表面包覆纳米In2O3有机溶胶光谱性质的影响. 化学通报[J]. 1995, 46-, http://lib.cqvip.com/Qikan/Article/Detail?id=1786981.
[123] 余保龙, 吴晓春, 邹炳锁, 汤国庆, 白令君, 张桂兰, 陈文驹. Preparation of ZnO nanometer powder and their ESR properties. 半导体学报[J]. 1995, 16(7): 558-, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=262110&detailType=1.
[124] 邹炳锁, 陈文驹, 余保龙, 汤国庆, 吴晓春, 张桂兰. 介电限域效应对SnO_2纳米微粒光学特性的影响. 物理化学学报[J]. 1994, 第2期(2): 103-107, http://www.corc.org.cn/handle/1471x/1911800.
[125] 王斌, 汤国庆, 陈文驹, 邹炳锁, 张桂兰, 吴晓春. TCNQ分子在反向胶束中的光谱. 科学通报[J]. 1994, 39(22): 2042-, http://lib.cqvip.com/Qikan/Article/Detail?id=1417190.
[126] 余保龙, 陈文驹, 邹炳锁, 吴晓春. 氧化铜纳米微粒中的RVB态的电子自旋共振证据. 科学通报[J]. 1994, 39(16): 1535-, http://lib.cqvip.com/Qikan/Article/Detail?id=1417013.
[127] 汤国庆, 邹炳锁, 张桂兰, 陈文驹, 吴晓春, 余保龙. Fe2O3纳米微粒的异常红外振动特征. 物理学报[J]. 1994, 43(4): 604-, http://lib.cqvip.com/Qikan/Article/Detail?id=1511472.
发表著作
( 1 ) 金纳米棒的制备、性质及应用, 科学出版社, 2014-03, 第 1 作者

科研活动

   
科研项目
( 1 ) 金属纳米颗粒形状可控的生长和SPR性质调控, 主持, 国家级, 2008-01--2010-12
( 2 ) 纳米标准物质和检测用纳米标准样品的可控合成、量产及微纳加工方法标准化研究, 主持, 国家级, 2006-12--2010-12
( 3 ) 纳米技术标准化的基础研究, 参与, 国家级, 2011-05--2015-05
( 4 ) 铂及其二元金属纳米结构:模拟酶性质调控及生物检测应用, 主持, 国家级, 2012-01--2015-12
( 5 ) 金纳米棒/有机分子线性自组装结构的构建及在生物识别中的应用, 主持, 国家级, 2012-01--2014-12
( 6 ) 基于肿瘤微环境调控的抗肿瘤纳米材料设计和机制研究, 参与, 国家级, 2012-01--2016-12
( 7 ) 纳米产业技术标准的共性关键科学问题研究, 主持, 国家级, 2016-07--2021-06

指导学生

已指导学生

冯莉莉  01  19124  

何伟伟  01  19124  

张珂  01  19124  

刘建波  01  19124  

胡晓娜  01  20652  

侯帅  01  20652  

温涛  01  20652  

刘文奇  01  20652  

现指导学生

颜姣  01  20652  

陈佳琪  02  19124  

张会  01  20652  

陈远东  02  20652  

樊慧真  01  20652  

李海芸  01  67921  

孟德静  02  67921