基本信息
唐荣林  男  博导  中国科学院地理科学与资源研究所
电子邮件: trl_wd@163.com
通信地址: 北京市朝阳区大屯路甲11号
邮政编码: 100101

招生信息

   
招生专业
070503-地图学与地理信息系统
招生方向
热红外遥感、水文遥感、全球变化遥感、遥感大数据分析

教育背景

2007-09--2011-06   中国科学院地理科学与资源研究所   博士
2005-09--2007-06   武汉大学   硕士
2001-09--2005-06   武汉大学   学士

教授课程

遥感科学-A
热红外遥感
遥感地学分析-1
遥感地学分析-2

专利与奖励

   
国家及省部级科技奖励
(1) 多源数据农业干旱预警关键技术及应用, 二等奖, 省级, 2020
(2) 地表水热关键参数热红外遥感反演理论与方法, 二等奖, 国家级, 2019
(3) 地表蒸散发遥感反演方法研究, 二等奖, 省级, 2019
(4) 京津冀地区生态环境用水遥感监测关键技术创新与应用, 二等奖, 省级, 2018
(5) 地表水热关键参数定量遥感反演方法研究, 二等奖, 部委级, 2017
(6) 科技部国家遥感中心“遥感青年科技人才创新资助计划”, 部委级, 2015
(7) 陆地表面温度热红外遥感反演机理与方法研究, 三等奖, 省级, 2015
(8) 基于多源时空信息的农情定量遥感监测关键技术创新与应用, 一等奖, 部委级, 2014
(9) 中国科学院优秀博士学位论文, , 院级, 2012
(10) 中国科学院院长优秀奖, , 院级, 2011
国家发明专利
[1] 唐荣林, 彭中, 刘萌, 姜亚珍, 李召良. 粗糙度长度、零平面位移高度和冠层高度耦合估算方法. CN: CN116644678A, 2023-08-25.
[2] 唐荣林, 黄凌霄, 李召良, 刘萌, 姜亚珍. 一种考虑不同天气情况的阴、阳叶分离方法. CN: CN116644554A, 2023-08-25.
[3] 刘萌, 唐荣林, 李召良, 段四波, 姚娜, 黄凌霄. 全球通量站点蒸散发观测缺失的动态插补方法与系统. CN: CN116502050A, 2023-07-28.
[4] 唐荣林, 刘萌, 李召良, 姜亚珍, 王桐, 邸苏闯. 基于参考像元信息的区域地表蒸散发遥感估算方法. CN: CN109188465B, 2023-07-07.
[5] 姜亚珍, 唐荣林. 一种有云天的日尺度蒸散发估算方法及系统. CN: CN113792252A, 2021-12-14.
[6] 唐荣林, 刘萌, 李召良, 姜亚珍, 王桐, 邸苏闯. 利用ALPHA不变法插补地面缺失的涡动通量观测数据的方法. CN: CN108984792B, 2021-12-14.
[7] 唐荣林, 姜亚珍. 一种天顶观测方向地表温度估算方法. CN: CN113588093A, 2021-11-02.
[8] 唐荣林, 王晟力, 姜亚珍, 李召良. 一种地表蒸散发的遥感反演方法及系统. CN: CN112014323B, 2021-07-20.
[9] 唐荣林, 彭中, 姜亚珍. 一种全球高分辨率每日地表动量粗糙度长度估算方法. CN: CN112733906A, 2021-04-30.
[10] 唐荣林, 姜亚珍, 李召良. 蒸散发估算的方法、装置和计算机存储介质. CN: CN110334381B, 2021-02-12.
[11] 唐荣林, 姜亚珍, 李召良, 刘萌, 王桐, 邸苏闯. 完全晴天的自动判断方法和装置. CN: CN109031473B, 2020-10-02.
[12] 唐荣林, 姜亚珍, 李召良, 刘萌, 王桐. 涡动通量观测能量不平衡校正方法、装置及电子设备. CN: CN108983328B, 2020-08-07.
[13] 唐荣林, 姜亚珍, 李召良. 蒸散发估算的方法、装置和计算机介质. CN: CN110334381A, 2019-10-15.
[14] 唐荣林, 姜亚珍, 李召良. 土壤水分估算的方法、装置、电子设备和计算机介质. CN: CN110321784A, 2019-10-11.
[15] 唐荣林, 王桐, 李召良. 一种地表蒸散发降尺度方法及装置. CN: CN110210004A, 2019-09-06.
[16] 唐荣林, 黄凌霄, 李召良, 刘萌, 姜亚珍. 一种总初级生产力确定方法、装置及电子设备. CN: CN110069877A, 2019-07-30.
[17] 唐荣林, 王桐, 李召良, 刘萌, 姜亚珍, 霍星. 考虑土壤水分的蒸散发时空特征融合方法及装置. CN: CN109919250A, 2019-06-21.
[18] 唐伯惠, 张子阳, 纪梦豪, 李召良, 唐荣林, 吴骅. 一种适用于不同冠层高度的日光诱导植被荧光测量系统. CN: CN109580558A, 2019-04-05.
[19] 唐荣林, 姜亚珍, 李召良, 黄凌霄, 邸苏闯. 高空间分辨率遥感地表温度数据计算方法与装置. CN: CN109271605A, 2019-01-25.
[20] 唐荣林, 姜亚珍, 李召良. 基于反射率-植被覆盖度二维空间的蒸散发遥感反演方法和应用. CN: CN109187360A, 2019-01-11.
[21] 唐荣林, 刘萌, 李召良, 姜亚珍, 王桐, 邸苏闯. 基于参考像元信息的区域地表蒸散发遥感估算方法. CN: CN109188465A, 2019-01-11.
[22] 唐荣林, 王桐, 李召良, 刘萌, 姜亚珍, 邸苏闯. 根区与表层相对土壤水分同时估算的遥感反演方法. CN: CN109142674A, 2019-01-04.
[23] 唐荣林, 姜亚珍, 李召良, 刘萌, 王桐, 邸苏闯. 地表温度日内变化过程的遥感估算方法和装置. CN: CN108829975A, 2018-11-16.
[24] 唐荣林, 李召良, 姜亚珍, 唐伯惠, 吴骅, 邸苏闯, 刘萌, 王桐. 一种有效的MODIS地表温度角度校正方法. CN: CN106918394A, 2017-07-04.
[25] 唐荣林, 李召良, 姜亚珍, 唐伯惠, 吴骅, 刘萌, 王桐. 一种基于端元信息模型估算土壤和植被蒸散发的方法. CN: CN106771073A, 2017-05-31.
[26] 唐荣林, 李召良, 刘萌, 姜亚珍, 唐伯惠, 吴骅, 王桐. 一种遥感反演瞬时蒸散发日尺度扩展的新方法. CN: CN106709268A, 2017-05-24.
[27] 周芳成, 吴骅, 李召良, 段四波, 唐伯惠, 唐荣林. 一种从被动微波数据估算瞬时地表发射率的方法. CN: CN105930664A, 2016-09-07.
[28] 吴骅, 李召良. 一种基于查找表的热红外大气校正参数化方法. CN: CN105928620A, 2016-09-07.
[29] 唐荣林, 李召良, 姜亚珍, 唐伯惠, 吴骅. 一种自动确定全天无云和部分有云天气情况的方法. CN: CN105911613A, 2016-08-31.
[30] 吴骅, 张雨泽, 倪丽, 李召良, 唐伯惠, 唐荣林, 房世峰. 一种轻便高光谱地表发射率无损测定装置. CN: CN205246215U, 2016-05-18.
[31] 韩晓静, 唐荣林, 段四波, 唐伯惠, 吴骅, 冷佩, 李召良. 一种FY-3C被动微波数据估算土壤湿度的方法. CN: CN105466957A, 2016-04-06.
[32] 吴骅, 张雨泽, 倪丽, 李召良, 唐伯惠, 唐荣林, 房世峰. 一种轻便高光谱地表发射率无损测定装置及优化测定方法. CN: CN105424196A, 2016-03-23.
[33] 吴骅, 李召良, 房世峰, 倪丽, 唐伯惠, 唐荣林. 一种校正尺度效应的中低分辨率遥感产品真值获取方法. CN: CN105389466A, 2016-03-09.
[34] 吴骅, 张雨泽, 房世峰, 李召良, 姜小光, 唐伯惠, 唐荣林. 一种野外便携式高光谱地表发射率辅助测量装置. CN: CN204027699U, 2014-12-17.
[35] 唐伯惠, 彭硕, 李召良, 吴骅, 唐荣林, 王界. 一种多角度全自动地表精细发射率谱采集系统装置. CN: CN104155007A, 2014-11-19.
[36] 吴骅, 张雨泽, 房世峰, 李召良, 姜小光, 唐伯惠, 唐荣林. 一种野外便携式高光谱地表发射率辅助测量装置及方法. CN: CN104075804A, 2014-10-01.
[37] 吴骅, 李召良, 唐伯惠, 唐荣林, 倪丽. 星载多光谱红外传感器交叉辐射定标方法. CN: CN103728609A, 2014-04-16.
[38] 唐伯惠, 刘伟伟, 李召良, 吴骅, 唐荣林, 彭硕. 一种热红外载荷便携式野外定标及水面温度验证系统装置. CN: CN103616078A, 2014-03-05.
[39] 唐伯惠, 吴骅, 唐荣林. 一种同时确定地表窄波段和宽波段比辐射率的方法及装置. CN: CN102901563A, 2013-01-30.

出版信息

   
发表论文
[1] Wang, Junrui, Tang, Ronglin, Jiang, Yazhen, Liu, Meng, Li, ZhaoLiang. A practical method for angular normalization of global MODIS land surface temperature over vegetated surfaces. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING[J]. 2023, 199: 289-304, http://dx.doi.org/10.1016/j.isprsjprs.2023.04.015.
[2] Li, Yitao, Li, ZhaoLiang, Wu, Hua, Zhou, Chenghu, Liu, Xiangyang, Leng, Pei, Yang, Peng, Wu, Wenbin, Tang, Ronglin, Shang, GuoFei, Ma, Lingling. Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming. NATURE COMMUNICATIONS[J]. 2023, 14(1): http://dx.doi.org/10.1038/s41467-023-35799-4.
[3] Zhong Peng, Ronglin Tang, Meng Liu, Yazhen Jiang, ZhaoLiang Li. Coupled estimation of global 500m daily aerodynamic roughness length, zero-plane displacement height and canopy height. AGRICULTURAL AND FOREST METEOROLOGY. 2023, 342: http://dx.doi.org/10.1016/j.agrformet.2023.109754.
[4] Zhou, Jianhong, Yang, Kun, Dong, Jianzhi, Zhao, Long, Feng, Huihui, Zou, Mijun, Lu, Hui, Tang, Ronglin, Jiang, Yaozhi, Crow, Wade T. Potential of remote sensing surface temperature- and evapotranspiration-based land-atmosphere coupling metrics for land surface model calibration. REMOTE SENSING OF ENVIRONMENT[J]. 2023, 291: http://dx.doi.org/10.1016/j.rse.2023.113557.
[5] 刘萌, 彭中, 黄凌霄, 李召良, 段四波, 唐荣林. 基于涡动相关通量观测的农田蒸散发产品精度验证. 遥感学报[J]. 2023, 27(5): 1238-1253, http://lib.cqvip.com/Qikan/Article/Detail?id=7109987111.
[6] Hu, Yongxin, Tang, Ronglin, Jiang, Xiaoguang, Li, ZhaoLiang, Jiang, Yazhen, Liu, Meng, Gao, Caixia, Zhou, Xiaoming. A physical method for downscaling land surface temperatures using surface energy balance theory. REMOTE SENSING OF ENVIRONMENT[J]. 2023, 286: 20-, http://dx.doi.org/10.1016/j.rse.2022.113421.
[7] Li, Yitao, Li, ZhaoLiang, Wu, Hua, Zhou, Chenghu, Liu, Xiangyang, Leng, Pei, Yang, Peng, Wu, Wenbin, Tang, Ronglin, Shang, GuoFei, Ma, Lingling. Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming. NATURE COMMUNICATIONS[J]. 2023, 14(1): http://dx.doi.org/10.1038/s41467-023-35799-4.
[8] Tang, Ronglin, Li, ZhaoLiang, Liu, Meng, Jiang, Yazhen, Peng, Zhong. A moisture-based triangle approach for estimating surface evaporative fraction with time-series of remotely sensed data. REMOTE SENSING OF ENVIRONMENT[J]. 2022, 280: http://dx.doi.org/10.1016/j.rse.2022.113212.
[9] Jiang, Yazhen, Tang, Ronglin, Li, ZhaoLiang. A framework of correcting the angular effect of land surface temperature on evapotranspiration estimation in single-source energy balance models. REMOTE SENSING OF ENVIRONMENT[J]. 2022, 283: http://dx.doi.org/10.1016/j.rse.2022.113306.
[10] Jiang, Yazhen, Tang, Ronglin, Li, ZhaoLiang. Reconstruction of daily evapotranspiration under cloudy sky constrained by soil water budget balance. JOURNAL OF HYDROLOGY[J]. 2022, 605: http://dx.doi.org/10.1016/j.jhydrol.2021.127288.
[11] Liu, Meng, Tang, Ronglin, Li, ZhaoLiang, Duan, Sibo, Gao, Maofang, Xu, Ziwei, Song, Lisheng. Separating soil evaporation from vegetation transpiration by remotely sensed one-phase and two-phase trapezoids. AGRICULTURAL AND FOREST METEOROLOGY[J]. 2022, 327: http://dx.doi.org/10.1016/j.agrformet.2022.109215.
[12] 牛陆, 张正峰, 彭中, 姜亚珍, 刘萌, 周孝明, 唐荣林. 中国地表城市热岛驱动因素及其空间异质性. 中国环境科学[J]. 2022, 42(2): 945-953, http://lib.cqvip.com/Qikan/Article/Detail?id=7106600106.
[13] Yazhen Jiang, Ronglin Tang, ZhaoLiang Li. A physical full-factorial scheme for gap-filling of eddy covariance measurements of daytime evapotranspiration. AGRICULTURAL AND FOREST METEOROLOGY. 2022, 323: http://dx.doi.org/10.1016/j.agrformet.2022.109087.
[14] Lingxiao Huang, Xiaofeng Lin, Shouzheng Jiang, Meng Liu, Yazhen Jiang, Zhao-Liang Li, Ronglin Tang. A two-stage light-use efficiency model for improving gross primary production estimation in agroecosystems. Environmental Research Letters[J]. 2022, 104021: https://doi.org/10.1088/1748-9326/ac8b98.
[15] Peng, Zhong, Tang, Ronglin, Jiang, Yazhen, Liu, Meng, Li, ZhaoLiang. Global estimates of 500 m daily aerodynamic roughness length from MODIS data. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING[J]. 2022, 183: 336-351, http://dx.doi.org/10.1016/j.isprsjprs.2021.11.015.
[16] Liu, Yangxiaoyue, Zhou, Yuke, Lu, Ning, Tang, Ronglin, Liu, Naijing, Li, Yong, Yang, Ji, Jing, Wenlong, Zhou, Chenghu. Comprehensive assessment of Fengyun-3 satellites derived soil moisture with in-situ measurements across the globe. JOURNAL OF HYDROLOGY[J]. 2021, 594: http://dx.doi.org/10.1016/j.jhydrol.2020.125949.
[17] 刘萌, 唐荣林, 李召良, 高懋芳, 姚云军. 数据驱动的蒸散发遥感反演方法及产品研究进展. 遥感学报[J]. 2021, 25(8): 1517-1537, http://lib.cqvip.com/Qikan/Article/Detail?id=7105640456.
[18] 唐荣林, 王晟力, 姜亚珍, 李召良, 刘萌, 唐伯惠, 吴骅. 基于地表温度——植被指数三角/梯形特征空间的地表蒸散发遥感反演综述. 遥感学报[J]. 2021, 25(1): 65-82, https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2021&filename=YGXB202101006&v=MjQxNThNMUZyQ1VSN3VmWWVkbkZ5RGtWcnZCUENyVGJMRzRITkRNcm85RllvUjhlWDFMdXhZUzdEaDFUM3FUclc=.
[19] Niu, Lu, Tang, Ronglin, Jiang, Yazhen, Zhou, Xiaoming. Spatiotemporal Patterns and Drivers of the Surface Urban Heat Island in 36 Major Cities in China: A Comparison of Two Different Methods for Delineating Rural Areas. SUSTAINABILITY[J]. 2020, 12(2): https://doaj.org/article/e67856fe5e174dcc82aec66fb727c65f.
[20] Peng, Zhong, Letu, Husi, Wang, Tianxing, ChongShi, Zhao, Chuanfeng, Tana, Gegen, Zhao, Naizhuo, Dai, Tie, Tang, Ronglin, Shang, Huazhe, Shi, Jiancheng, Chen, Liangfu. Estimation of shortwave solar radiation using the artificial neural network from Himawari-8 satellite imagery over China. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER[J]. 2020, 240: http://dx.doi.org/10.1016/j.jqsrt.2019.106672.
[21] Lu, Jing, Jia, Li, Zheng, Chaolei, Tang, Ronglin, Jiang, Yazhen. A Scheme to Estimate Diurnal Cycle of Evapotranspiration from Geostationary Meteorological Satellite Observations. WATER[J]. 2020, 12(9): https://doaj.org/article/384de297ad004f419fbdb43b2690907f.
[22] Di, Suchuang, Li, ZhaoLiang, Tang, Ronglin, Pan, Xingyao, Liu, Honglu, Niu, Yong. Urban green space classification and water consumption analysis with remote-sensing technology: a case study in Beijing, China. INTERNATIONAL JOURNAL OF REMOTE SENSING[J]. 2019, 40(5-6): 1909-1929, http://ir.igsnrr.ac.cn/handle/311030/48243.
[23] Si, Menglin, Tang, BoHui, Tang, Ronglin, Wu, Hua, Li, ZhaoLiang, Shang, Guofei, IEEE. ESTIMATION OF NET SURFACE SHORTWAVE RADIATION FROM SIMULATED CHINESE GAOFEN-5 SATELLITE DATA. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019)null. 2019, 1978-1981, [24] Jiang, Yazhen, Jiang, Xiaoguang, Tang, Ronglin, Li, ZhaoLiang, Zhang, Xiaoping, Di, Suchuang, Lu, Yajing, Xue, Wanlai, IEEE. RECONSTRUCTION OF DAILY EVAPOTRANSPIRATION ON CLOUDY SKY CONDITIONS FROM FIELD AND MODIS DATA. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019)null. 2019, 1887-1890, [25] Chen, Mengshuo, Jiang, Xiaoguang, Wu, Hua, Wang, Ning, Tang, Ronglin, IEEE. AN IN-SCENE ATMOSPHERIC COMPENSATION ALGORITHM FOR ASTER THERMAL BAND. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019)null. 2019, 1876-1879, [26] Chen, Hong, Wu, Hua, Li, ZhaoLiang, Tang, Bohui, Tang, Ronglin, Yan, Guangjian. Spatial upscaling of remotely sensed leaf area index based on discrete wavelet transform. INTERNATIONAL JOURNAL OF REMOTE SENSING[J]. 2019, 40(5-6): 2343-2358, http://ir.igsnrr.ac.cn/handle/311030/48096.
[27] Liu, Meng, Tang, Ronglin, Li, ZhaoLiang, Yan, Guangjian. Integration of two semi-physical models of terrestrial evapotranspiration using the China Meteorological Forcing Dataset. INTERNATIONAL JOURNAL OF REMOTE SENSING[J]. 2019, 40(5-6): 1966-1980, http://ir.igsnrr.ac.cn/handle/311030/48099.
[28] Tang, Ronglin, Li, ZhaoLiang, Huo, Xing, Jiang, Yazhen, Tang, Bohui, Wu, Hua. A re-examination of two methods for estimating daily evapotranspiration from remotely sensed instantaneous observations. INTERNATIONAL JOURNAL OF REMOTE SENSING[J]. 2019, 40(5-6): 1981-1995, http://ir.igsnrr.ac.cn/handle/311030/48288.
[29] Jiang, Yazhen, Tang, Ronglin, Jiang, Xiaoguang, Li, ZhaoLiang, Gao, Caixia. Estimation of Soil Evaporation and Vegetation Transpiration Using Two Trapezoidal Models From MODIS Data. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES[J]. 2019, 124(14): 7647-7664, http://dx.doi.org/10.1029/2019JD030542.
[30] Liu, Xiangyang, Tang, BoHui, Wu, Hua, Tang, Ronglin, Li, ZhaoLiang, Shang, Guofei, IEEE. A METHOD FOR ANGULAR NORMALIZATION OF LAND SURFACE TEMPERATURE PRODUCTS BASED ON COMPONENT TEMPERATURES AND FRACTIONAL VEGETATION COVER. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019)null. 2019, 1849-1852, [31] Jiang, Yazhen, Tang, Ronglin, Jiang, Xiaoguang, Li, ZhaoLiang. Impact of clouds on the estimation of daily evapotranspiration from MODIS-derived instantaneous evapotranspiration using the constant global shortwave radiation ratio method. INTERNATIONAL JOURNAL OF REMOTE SENSING[J]. 2019, 40(5-6): 1930-1944, http://ir.igsnrr.ac.cn/handle/311030/48147.
[32] Tong Wang, Ronglin Tang, ZhaoLiang Li, Yazhen Jiang, Meng Liu, Lu Niu. An Improved Spatio-Temporal Adaptive Data Fusion Algorithm for Evapotranspiration Mapping. REMOTE SENSING[J]. 2019, 11(7): https://doaj.org/article/d3aac3ea2ec6423b993bf68c522b9913.
[33] 王桐, 唐荣林, 李召良, 姜亚珍, 刘萌, 唐伯惠, 吴骅. 遥感反演蒸散发的日尺度扩展方法研究进展. 遥感学报[J]. 2019, 813-, http://lib.cqvip.com/Qikan/Article/Detail?id=89718866504849574853484850.
[34] Jiang Yazhen, Tang Ronglin, Jiang Xiaoguang, Li ZhaoLiang, IEEE. EVALUATION OF TWO METHODS FOR DAILY EVAPOTRANSPIRATION ESTIMATION FROM FIELD AND MODIS DATA. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUMnull. 2018, 2635-2638, [35] Jiang, Yazhen, Jiang, Xiaoguang, Tang, Ronglin, Li, ZhaoLiang, Zhang, Yuze, Liu, Zhaoxia, Huang, Cheng. Effect of Cloud Cover on Temporal Upscaling of Instantaneous Evapotranspiration. JOURNAL OF HYDROLOGIC ENGINEERING[J]. 2018, 23(4): http://ir.igsnrr.ac.cn/handle/311030/57138.
[36] Liu Meng, Tang Ronglin, Li ZhaoLiang, Mao Huarui, Zhou Fangcheng, Yan Guangjian, IEEE. ESTIMATION OF ANNUAL AVERAGED EVAPOTRANSPIRATION BY USING PASSIVE MICROWAVE OBSERVATIONS. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUMnull. 2018, 791-794, [37] Jiang, Yazhen, Jiang, Xiaoguang, Tang, Ronglin, Li, ZhaoLiang, Zhang, Yuze, Huang, Cheng, Ru, Chen. Estimation of Daily Evapotranspiration Using Instantaneous Decoupling Coefficient From the MODIS and Field Data. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2018, 11(6): 1832-1838, https://www.webofscience.com/wos/woscc/full-record/WOS:000437795000008.
[38] Liu, Meng, Tang, Ronglin, Li, ZhaoLiang, Yao, Yunjun, Yan, Guangjian. Global Land Surface Evapotranspiration Estimation From Meteorological and Satellite Data Using the Support Vector Machine and Semiempirical Algorithm. IEEEJOURNALOFSELECTEDTOPICSINAPPLIEDEARTHOBSERVATIONSANDREMOTESENSING[J]. 2018, 11(2): 513-521, http://ir.igsnrr.ac.cn/handle/311030/56976.
[39] Wang Tong, Tang Ronglin, Li ZhaoLiang, Tang Bohui, Wu Hua, Jiang Yazhen, Liu Meng. A COMPARISON OF TWO SPATIO-TEMPORAL DATA FUSION SCHEMES TO INCREASE THE SPATIAL RESOLUTION OF MAPPING ACTUAL EVAPOTRANSPIRATION. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM[J]. 2018, 7023-7026, [40] Tang, Ronglin, Li, ZhaoLiang. An improved constant evaporative fraction method for estimating daily evapotranspiration from remotely sensed instantaneous observations. GEOPHYSICAL RESEARCH LETTERS[J]. 2017, 44(5): 2319-2326, http://dx.doi.org/10.1002/2017GL072621.
[41] Chunlei Wang, BoHui Tang, Hua Wu, Ronglin Tang, ZhaoLiang Li. Estimation of Downwelling Surface Longwave Radiation under Heavy Dust Aerosol Sky. REMOTE SENSING[J]. 2017, 9(3): https://doaj.org/article/2df69dadfa404bd4a0f9c2a941fd19e4.
[42] Tang, Ronglin, Li, ZhaoLiang. An End-Member-Based Two-Source Approach for Estimating Land Surface Evapotranspiration From Remote Sensing Data. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2017, 55(10): 5818-5832, http://dx.doi.org/10.1109/TGRS.2017.2715361.
[43] Zhou, FangCheng, Li, ZhaoLiang, Wu, Hua, Tang, BoHui, Tang, RongLin, Song, Xiaoning, Yan, Guangjian, Duan, SiBo, IEEE. AN ALGORITHM FOR RETRIEVING LAND SURFACE TEMPERATURE FROM AMSR-E DATA OVER THE DESERT REGIONS. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)null. 2017, 3976-3979, [44] Liu, Meng, Tang, RongLin, Li, ZhaoLiang, Yao, YunJun, Yan, Guangjian, IEEE. GLOBAL LAND SURFACE EVAPOTRANSPIRATION ESTIMATION FROM MERRA DATASET AND MODIS PRODUCT USING THE SUPPORT VECTOR MACHINE. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)null. 2017, 4851-4854, [45] Wang, Tong, Tang, Ronglin, Li, ZhaoLiang, Tang, Bohui, Wu, Hua, IEEE. TEMPORAL UPSCALING OF REMOTE SENSING INSTANTANEOUS EVAPOTRANSPIRATION ESTIMATED AT TWO SATELLITE OVERPASS TIMES. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)null. 2017, 1593-1595, [46] Zhang, Ziyang, Tang, BoHui, Li, ZhaoLiang, Tang, Ronglin, Zhong, Ruofei, IEEE. ESTIMATION OF LEAF WATER CONTENT USING NEW VEGETATION INDICES COMBINED BY NEAR- AND MIDDLE INFRARED SPECTRAL REFLECTANCES. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)null. 2017, 4016-4019, [47] Tang, Ronglin, Li, ZhaoLiang, Tang, Bohui, Wu, Hua, IEEE. TEMPORAL UPSCALING OF REMOTE SENSING INSTANTANEOUS EVAPOTRANSPIRATION USING AN IMPROVED CONSTANT EVAPORATIVE FRACTION METHOD. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)null. 2017, 5514-5516, [48] 李召良, 唐伯惠, 唐荣林, 吴骅, 段四波, 冷佩, 张仁华. 地表温度热红外遥感反演理论与方法. 科学观察[J]. 2017, 12(6): 57-59, http://lib.cqvip.com/Qikan/Article/Detail?id=674266915.
[49] Zhou, FangCheng, Li, ZhaoLiang, Wu, Hua, Tang, BoHui, Tang, Ronglin, Song, Xiaoning, Yan, Guangjian. Retrieving K-Band Instantaneous Microwave Land Surface Emissivity Based on Passive Microwave Brightness Temperature and Atmospheric Precipitable Water Vapor Data. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2017, 10(12): 5608-5617, https://www.webofscience.com/wos/woscc/full-record/WOS:000418871200024.
[50] Tang, BoHui, Zhan, Chuan, Li, ZhaoLiang, Wu, Hua, Tang, Ronglin. Estimation of Land Surface Temperature From MODIS Data for the Atmosphere With Air Temperature Inversion Profile. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2017, 10(6): 2976-2983, https://doaj.org/article/e13dd38db3674dfb9020c7447693aeb9.
[51] Wang, Chunlei, Tang, BoHui, Wu, Hua, Tang, Ronglin, Li, ZhaoLiang, IEEE. ESTIMATION OF DOWNWELLING SURFACE LONGWAVE RADIATION UNDER THIN CIRRUS CLOUD SKY WITH ARTIFICIAL NEURAL NETWORK METHOD. 2017IEEEINTERNATIONALGEOSCIENCEANDREMOTESENSINGSYMPOSIUMIGARSSnull. 2017, 4855-4858, [52] Tang, Ronglin, Li, ZhaoLiang, Sun, Xiaomin, Bi, Yuyun. Temporal upscaling of instantaneous evapotranspiration on clear-sky days using the constant reference evaporative fraction method with fixed or variable surface resistances at two cropland sites. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES[J]. 2017, 122(2): 784-801, http://dx.doi.org/10.1002/2016JD025975.
[53] Tang, Ronglin, Li, ZhaoLiang. Estimating Daily Evapotranspiration From Remotely Sensed Instantaneous Observations With Simplified Derivations of a Theoretical Model. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES[J]. 2017, 122(19): 10254-10267, http://dx.doi.org/10.1002/2017JD027094.
[54] Jiang, Yazhen, Jiang, Xiaoguang, Tang, Ronglin, Li, ZhaoLiang, Zhang, Yuze, Huang, Cheng, Ru, Chen, IEEE. ESTIMATION OF DAILY EVAPOTRANSPIRATION USING MODIS DATA TO CALCULATE INSTANTANEOUS DECOUPLING COEFFICIENT AND RESISTANCES. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)null. 2017, 4004-4007, [55] 李召良, 段四波, 唐伯惠, 吴骅, 任华忠, 阎广建, 唐荣林, 冷佩. 热红外地表温度遥感反演方法研究进展. 遥感学报[J]. 2016, 20(5): 899-,  https://ir.pku.edu.cn/handle/20.500.11897/478725.
[56] Liu Meng, Tang RongLin, Li ZhaoLiang, Yao YunJun, Yan Guangjian, IEEE. GLOBAL LAND SURFACE EVAPOTRANSPIRATION ESTIMATION FROM METEOROLOGICAL AND SATELLITE DATA USING THE SUPPORT VECTOR MACHINE. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)null. 2016, 218-221, [57] 彭硕, 唐伯惠, 李召良, 吴骅, 唐荣林. 热红外地表方向性辐射温度与半球辐射温度关系研究. 地球信息科学学报[J]. 2016, 18(1): 106-, http://lib.cqvip.com/Qikan/Article/Detail?id=667674910.
[58] Tang, Ronglin, Tang, Bohui, Wu, Hua, Li, ZhaoLiang. On the feasibility of temporally upscaling instantaneous evapotranspiration using weather forecast information. INTERNATIONAL JOURNAL OF REMOTE SENSING[J]. 2015, 36(19-20): 4918-4935, http://ir.igsnrr.ac.cn/handle/311030/38485.
[59] Zhang, Dianjun, Tang, Ronglin, Tang, BoHui, Wu, Hua, Li, ZhaoLiang. A Simple Method for Soil Moisture Determination From LST-VI Feature Space Using Nonlinear Interpolation Based on Thermal Infrared Remotely Sensed Data. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2015, 8(2): 638-648, http://ir.igsnrr.ac.cn/handle/311030/38525.
[60] Tang, Ronglin, Shao, Kun, Li, ZhaoLiang, Wu, Hua, Tang, BoHui, Zhou, Guoqing, Zhang, Li. Multiscale Validation of the 8-day MOD16 Evapotranspiration Product Using Flux Data Collected in China. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2015, 8(4): 1478-1486, http://ir.igsnrr.ac.cn/handle/311030/38484.
[61] Han, XiaoJing, Duan, SiBo, Tang, Ronglin, Liu, HaiQi, Li, ZhaoLiang. Evaluation of temporal variations in soil moisture based on the microwave polarization difference index using in situ data over agricultural areas in China. INTERNATIONAL JOURNAL OF REMOTE SENSING[J]. 2015, 36(19-20): 5003-5014, http://www.irgrid.ac.cn/handle/1471x/992362.
[62] Zhang, Dianjun, Li, ZhaoLiang, Tang, Ronglin, Tang, BoHui, Wu, Hua, Lu, Jing, Shao, Kun. Validation of a practical normalized soil moisture model with in situ measurements in humid and semi-arid regions. INTERNATIONAL JOURNAL OF REMOTE SENSING[J]. 2015, 36(19-20): 5015-5030, http://www.irgrid.ac.cn/handle/1471x/992446.
[63] Tang, Ronglin, Li, ZhaoLiang. Evaluation of two end-member-based models for regional land surface evapotranspiration estimation from MODIS data. AGRICULTURAL AND FOREST METEOROLOGY[J]. 2015, 202: 69-82, http://dx.doi.org/10.1016/j.agrformet.2014.12.005.
[64] Di, SuChuang, Li, ZhaoLiang, Tang, Ronglin, Wu, Hua, Tang, BoHui, Lu, Jing. Integrating two layers of soil moisture parameters into the MOD16 algorithm to improve evapotranspiration estimations. INTERNATIONAL JOURNAL OF REMOTE SENSING[J]. 2015, 36(19-20): 4953-4971, http://www.irgrid.ac.cn/handle/1471x/1047491.
[65] Tang Ronglin, Li ZhaoLiang, Tang Bohui, HuaWu, IEEE. INTERPRETATION OF SURFACE TEMPERATURE/VEGETATION INDEX SPACE FOR EVAPOTRANSPIRATION ESTIMATION FROM SVAT MODELING. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)null. 2015, 2028-2030, [66] 唐荣林. Estimating of the total atmospheric precipitable water vapor amount from the Chinese new generation polar orbit FengYun meteorological satellite (FY-3) data. IEEE International Geoscience and Remote Sensing Symposium. 2014, [67] Duan, SiBo, Li, ZhaoLiang, Tang, BoHui, Wu, Hua, Tang, Ronglin. Direct estimation of land-surface diurnal temperature cycle model parameters from MSG-SEVIRI brightness temperatures under clear sky conditions. REMOTE SENSING OF ENVIRONMENT[J]. 2014, 150: 34-43, http://dx.doi.org/10.1016/j.rse.2014.04.017.
[68] Tang Ronglin, Li ZhaoLiang, IEEE. ON THE DISCREPANCY OF SPATIAL VARIABILITY-BASED MODELS FOR REGIONAL EVAPOTRANSPIRATION ESTIMATION. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)null. 2014, [69] Lu, Jing, Tang, Ronglin, Tang, Huajun, Li, ZhaoLiang, Zhou, Guoqing, Shao, Kun, Bi, Yuyun, Labed, Jelila. Daily Evaporative Fraction Parameterization Scheme Driven by Day-Night Differences in Surface Parameters: Improvement and Validation. REMOTE SENSING[J]. 2014, 6(5): 4369-4390, http://www.irgrid.ac.cn/handle/1471x/912649.
[70] 唐荣林. Influence of thin cirrus clouds on land surface temperture retrieval using the generalized split-window algorithm from thermal infrared data. IEEE International Geoscience and Remote Sensing Symposium. 2014, [71] Wu Hua, Li ZhaoLiang, Tang BoHui, Tang RongLin, IEEE. INTER-CALIBRATION OF VIRR/FY-3B INFRARED CHANNELS WITH AIRS/AQUA CHANNELS. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)null. 2014, 1999-2002, [72] Zhang Dianjun, Li ZhaoLiang, Tang Ronglin, Tang BoHui, Wu Hua, IEEE. A REMOTE SENSING TECHNIQUE TO DETERMINE THE SOIL MOISTURE SATURATION INDEX. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)null. 2014, [73] Duan, SiBo, Li, ZhaoLiang, Tang, BoHui, Wu, Hua, Tang, Ronglin. Generation of a time-consistent land surface temperature product from MODIS data. REMOTE SENSING OF ENVIRONMENT[J]. 2014, 140: 339-349, http://dx.doi.org/10.1016/j.rse.2013.09.003.
[74] SiBo Duan, ZhaoLiang Li, BoHui Tang, Hua Wu, Ronglin Tang, Yuyun Bi, Guoqing Zhou. Estimation of Diurnal Cycle of Land Surface Temperature at High Temporal and Spatial Resolution from Clear-Sky MODIS Data. REMOTE SENSING[J]. 2014, 6(4): 3247-3262, http://www.irgrid.ac.cn/handle/1471x/912864.
[75] Dianjun Zhang, Ronglin Tang, Wei Zhao, Bohui Tang, Hua Wu, Kun Shao, ZhaoLiang Li. Surface Soil Water Content Estimation from Thermal Remote Sensing based on the Temporal Variation of Land Surface Temperature. REMOTE SENSING[J]. 2014, 6(4): 3170-3187, http://www.irgrid.ac.cn/handle/1471x/912369.
[76] Lu, Jing, Tang, Ronglin, Tang, Huajun, Li, ZhaoLiang. A new parameterization scheme for estimating surface energy fluxes with continuous surface temperature, air temperature, and surface net radiation measurements. WATER RESOURCES RESEARCH[J]. 2014, 50(2): 1245-1259, http://www.irgrid.ac.cn/handle/1471x/848017.
[77] Jiang Xiaoguang. Temporal-Spatial Variations Monitoring of Soil Moisture Using Microwave Polarization Difference Index. IGARSS 2014. 2014, [78] Wang, Kun, Tang, Ronglin, Li, ZhaoLiang. Comparison of integrating LAS/MODIS data into a land surface model for improved estimation of surface variables through data assimilation. INTERNATIONAL JOURNAL OF REMOTE SENSING[J]. 2013, 34(9-10): 3193-3207, http://www.irgrid.ac.cn/handle/1471x/913156.
[79] Lu, Jing, Li, ZhaoLiang, Tang, Ronglin, Tang, BoHui, Wu, Hua, Yang, Fengting, Labed, Jelila, Zhou, Guoqing. Evaluating the SEBS-estimated evaporative fraction from MODIS data for a complex underlying surface. HYDROLOGICAL PROCESSES[J]. 2013, 27(22): 3139-3149, http://dx.doi.org/10.1002/hyp.9440.
[80] Tang, Ronglin, Li, ZhaoLiang, Sun, Xiaomin, IEEE. TEMPORAL UPSCALING OF INSTANTANEOUS EVAPOTRANSPIRATION FROM THE REFERENCE EVAPORATIVE FRACTION METHOD WITH FIXED AND VARIABLE CANOPY RESISTANCES. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)null. 2013, 1760-1762, [81] Tang, Ronglin, Li, ZhaoLiang, Chen, KunShan, Jia, Yuanyuan, Li, Chuanrong, Sun, Xiaomin. Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data. AGRICULTURAL AND FOREST METEOROLOGY[J]. 2013, 174: 28-42, http://dx.doi.org/10.1016/j.agrformet.2013.01.008.
[82] Lu Jing, Li ZhaoLiang, Tang Ronglin, Tang Bohui, Wu Hua, Labed Jehla, IEEE. ESTIMATION OF EVAPORATIVE FRACTION FROM TEMPORAL CHANGES OF TEMPERATURE AND NET RADIATION. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)null. 2013, 1813-1816, [83] Meng, Chunlei, Zhang, Chaolin, Tang, Ronglin. Variational Estimation of Land-Atmosphere Heat Fluxes and Land Surface Parameters Using MODIS Remote Sensing Data. JOURNAL OF HYDROMETEOROLOGY[J]. 2013, 14(2): 608-621, http://www.irgrid.ac.cn/handle/1471x/913295.
[84] Lu, Jing, Tang, Ronglin, Tang, Huajun, Li, ZhaoLiang. Derivation of Daily Evaporative Fraction Based on Temporal Variations in Surface Temperature, Air Temperature, and Net Radiation. REMOTE SENSING[J]. 2013, 5(10): 5369-5396, http://www.irgrid.ac.cn/handle/1471x/920742.
[85] Tang, Ronglin, Li, ZhaoLiang, Sun, Xiaomin. Temporal upscaling of instantaneous evapotranspiration: An intercomparison of four methods using eddy covariance measurements and MODIS data. REMOTE SENSING OF ENVIRONMENT[J]. 2013, 138: 102-118, http://dx.doi.org/10.1016/j.rse.2013.07.001.
[86] Tang, Ronglin, Li, ZhaoLiang, Jia, Yuanyuan, Li, Chuanrong, Chen, KunShan, Sun, Xiaomin, Lou, Jinyong. Evaluating one- and two-source energy balance models in estimating surface evapotranspiration from Landsat-derived surface temperature and field measurements. INTERNATIONAL JOURNAL OF REMOTE SENSING[J]. 2013, 34(9-10): 3299-3313, http://dx.doi.org/10.1080/01431161.2012.716529.
[87] Tang, Ronglin, Li, ZhaoLiang, Chen, KunShan, Zhu, Yuanjun, Liu, Wenzhao. Verification of land surface evapotranspiration estimation from remote sensing spatial contextual information. HYDROLOGICAL PROCESSES[J]. 2012, 26(15): 2283-2293, http://dx.doi.org/10.1002/hyp.8341.
[88] 卢静, Li,Zhao-Liang, Wang,Huimin, Tang,Ronglin, Tang,Bohui, Labed,Jelila, Wu,Hua, Yu,Guirui. Evaluation of SEBS-estimated evapotranspiration using a large aperture scintillometer data for a complex underlying surface. INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)null. 2012, http://www.irgrid.ac.cn/handle/1471x/753235.
[89] Tang, Ronglin, Li, ZhaoLiang, Jia, Yuanyuan, Li, Chuanrong, Sun, Xiaomin, Kustas, William P, Anderson, Martha C. An intercomparison of three remote sensing-based energy balance models using Large Aperture Scintillometer measurements over a wheat-corn production region. REMOTE SENSING OF ENVIRONMENT[J]. 2011, 115(12): 3187-3202, http://dx.doi.org/10.1016/j.rse.2011.07.004.
[90] Tang, Ronglin, Li, ZhaoLiang, Chen, KunShan. Validating MODIS-derived land surface evapotranspiration with in situ measurements at two AmeriFlux sites in a semiarid region. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES[J]. 2011, 116: http://dx.doi.org/10.1029/2010JD014543.
[91] Tang Ronglin, Li Zhaoliang, Chen Kunshan. Validating MODIS-derived land surface evapotranspiration with in situ measurements at two AmeriFlux sites in a semiarid region. JOURNAL OF GEOPHYSICAL RESEARCH[J]. 2011, 116(D04106): 1-14, http://ir.igsnrr.ac.cn/handle/311030/2171.
[92] Tang, Ronglin, Li, ZhaoLiang, Tang, Bohui. An application of the T-s-VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in and and semi-arid regions: Implementation and validation. REMOTE SENSING OF ENVIRONMENT[J]. 2010, 114(3): 540-551, http://ir.igsnrr.ac.cn/handle/311030/4139.
[93] Tang R. L., Zhu Y. J., Liu W. Z., Li Z. L., Ieee. COMPARISON OF MODIS DERIVED EVAPOTRANSPIRATION WITH LAS MEASUREMENTS AT CHANGWU AGRO-ECOLOGICAL EXPERIMENTAL STATION. 2010, 1529-1532, http://www.irgrid.ac.cn/handle/1471x/452327.
[94] Tang Ronglin, Li Zhao-Liang, Tang Bohui. An application of the T s -VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. REMOTE SENSING OF ENVIRONMENT[J]. 2010, 114(3): 540-551, http://www.irgrid.ac.cn/handle/1471x/425392.
[95] Ronglin Tang, Zhao-Liang Li, Bohui Tang. An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. REMOTE SENSING OF ENVIRONMENT. 2010, 114(3): 540-551, http://dx.doi.org/10.1016/j.rse.2009.10.012.
[96] Tang Ronglin, Zhu Yuanjun, Liu Wenzhao, Li ZhaoLiang, IEEE. COMPARISON OF MODIS DERIVED EVAPOTRANSPIRATION WITH LAS MEASUREMENTS AT CHANGWU AGRO-ECOLOGICAL EXPERIMENTAL STATION. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUMnull. 2010, 1529-1532, [97] Li, ZhaoLiang, Tang, Ronglin, Wan, Zhengming, Bi, Yuyun, Zhou, Chenghu, Tang, Bohui, Yan, Guangjian, Zhang, Xiaoyu. A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data. SENSORS[J]. 2009, 9(5): 3801-3853, https://doaj.org/article/cc08fce69be1421e811a793b87328994.
[98] 赵长森, 夏军, 李召良, 刘玉, 唐伯惠, 唐荣林, 严子奇, 欧阳晓莹. 基于高时间分辨率静止卫星数据的区域耗水时空格局研究——以春旱季节淮河流域蚌埠以上农业区为例(英文). 自然资源学报[J]. 2008, 23(6): 1055-1067, http://www.irgrid.ac.cn/handle/1471x/266074.
[99] ZHAO Changsen, XIA Jun, LI Zhaoliang, LIU Yu, 唐伯惠, TANG Ronglin, YAN Ziqi, OUYANG Xiaoying. 基于高时间分辨率静止卫星数据的区域耗水时空格局研究——以春旱季节淮河流域蚌埠以上农业区为例. 自然资源学报[J]. 2008, 23(6): 1055-1067, http://lib.cqvip.com/Qikan/Article/Detail?id=28915468.
[100] 赵长森, 夏军, 李召良, 刘玉, 唐伯惠, 唐荣林, 严子奇, 欧阳晓莹. 基于高时间分辨率静止卫星数据的区域耗水时空格局研究——以春旱季节淮河流域蚌埠以上农业区为例. 自然资源学报[J]. 2008, 23(6): 1055-, http://lib.cqvip.com/Qikan/Article/Detail?id=28915468.
[101] 夏军, 唐荣林. 多支流河段径流预测方法比较研究. 人民黄河[J]. 2007, 29(3): 29-30, http://lib.cqvip.com/Qikan/Article/Detail?id=24227538.
[102] Yazhen Jiang, Ronglin Tang, ZhaoLiang Li. A framework of correcting the angular effect of land surface temperature on evapotranspiration estimation in single-source energy balance models. REMOTE SENSING OF ENVIRONMENT. http://dx.doi.org/10.1016/j.rse.2022.113306.
发表著作
(1) 热红外地表发射率遥感反演研究, Emissivity retrieval from thermal infrared remote sensing, 科学出版社, 2014-09, 第 4 作者

科研活动

   
科研项目
( 1 ) 基于静止卫星数据的蒸散发遥感反演研究, 负责人, 研究所自选, 2014-04--2017-03
( 2 ) 遥感反演瞬时地表蒸散发的日尺度扩展研究, 负责人, 国家任务, 2016-01--2019-12
( 3 ) 地表温度-植被覆盖度特征空间蒸散发遥感反演的空间尺度效应及干湿边确定方法研究, 负责人, 国家任务, 2013-01--2015-12
( 4 ) 全国土壤湿度时空变化微波遥感逐日监测模型与方法研究, 负责人, 国家任务, 2013-06--2014-12
( 5 ) 地表蒸散发遥感反演, 负责人, 国家任务, 2020-01--2022-12
( 6 ) 黑土地智能化管控与决策支持系统, 负责人, 中国科学院计划, 2021-08--2026-12
( 7 ) 空气动力学地表粗糙度长度与零平面位移高度的联合反演及其在遥感蒸散发估算中的应用, 负责人, 国家任务, 2023-01--2026-12
( 8 ) 基于长时间序列遥感数据的三角/梯形特征空间地表蒸散发反演方法研究, 负责人, 国家任务, 2021-01--2024-12
参与会议
(1)RECONSTRUCTION OF DAILY EVAPOTRANSPIRATION ON CLOUDY SKY CONDITIONS FROM FIELD AND MODIS DATA   2019-07-28
(2)Estimation of annual averaged evapotranspiration by using passive microwave observations   2018-07-22
(3)Extended methods for estimating daily evapotranspiration using remotely sensed instantaneous observations   2017-09-18
(4)Global land surface evapotranspiration estimation from meteorological and satellite data using the support vector machine   2016-07-10
(5)Interpretation of surface temperature/vegetation index space for evapotranspiration estimation from SVAT modeling   2015-07-26

指导学生

已指导学生

王桐  硕士研究生  070503-地图学与地理信息系统  

牛陆  硕士研究生  070503-地图学与地理信息系统  

王晟力  硕士研究生  070503-地图学与地理信息系统  

现指导学生

彭中  博士研究生  070503-地图学与地理信息系统  

黄凌霄  博士研究生  070503-地图学与地理信息系统  

王君蕊  博士研究生  070503-地图学与地理信息系统  

王一喆  博士研究生  070503-地图学与地理信息系统  

孙艺菲  博士研究生  070503-地图学与地理信息系统  

工作经历

2017/12--   中国科学院地理科学与资源研究所   研究员
2014/12--2017/11   中国科学院地理科学与资源研究所   副研究员

2012/09--2014/11   中国科学院地理科学与资源研究所   助理研究员