基本信息
潘宏  男  博导  中国科学院深圳先进技术研究院
电子邮件: hong.pan@siat.ac.cn
通信地址: 广东省深圳市南山区西丽大学城学苑大道1068号
邮政编码: 518055

研究领域

活细胞药物;细胞治疗;纳米医学;肿瘤纳米免疫;点击化学;微纳生物机器人


招生信息

   
0703Z1化学生物学
0703Z1-化学生物学
0703J1-纳米科学与技术
071009-细胞生物学
活细胞药物,细胞治疗, 纳米医学,肿瘤免疫,点击化学
活细胞药物,肿瘤免疫治疗,纳米免疫,点击化学,生物材料
微纳生物米机器人

教育背景

2015-09--2019-01   中国科学院大学   学生/博士学位
2008-09--2011-07   中山大学   学生/硕士学位
2004-09--2008-07   湖南科技学院   学生/学士学位
博士研究生

工作经历

工作简历
2020-01~现在, 深圳先进技术研究院, 副研究员
2011-06~2019-12,深圳先进技术研究院, 研究助理/助理研究员
社会兼职
2020-01-01-今,国自然项目评审专家, 项目评审专家
2019-11-22-今,Nano Letters、Biomaterials、ACS Biomaterials Science & Engineering、Frontier in immunology等杂志审稿人,

化学生物学

化学生物学
生物技术前沿进展

专利与奖励

奖励信息
(1) 深圳市自然科学一等奖, 一等奖, 市地级, 2020
(2) 广东省科学技术二等奖, 二等奖, 省级, 2016
专利成果
( 1 ) 一种克服肿瘤耐药的方法, 发明专利, 2021, 第 6 作者, 专利号: CN110755457B

( 2 ) 一种点击化学介导的靶向方法, 发明专利, 2020, 第 5 作者, 专利号: CN111718904A

( 3 ) 一种病毒转染增效剂和基于点击化学的病毒转染应用, 发明专利, 2020, 第 3 作者, 专利号: CN111032869A

( 4 ) 一种改善肿瘤缺氧的新方法, 发明专利, 2020, 第 6 作者, 专利号: CN110893196A

( 5 ) 人工靶向修饰的CAR-T细胞及其制备方法与应用, 发明专利, 2019, 第 2 作者, 专利号: CN110157682A

( 6 ) 一种生物正交靶向的细胞膜仿生纳米颗粒及其制备方法和用途, 发明专利, 2019, 第 2 作者, 专利号: CN110101684A

( 7 ) 非囊膜病毒的代谢修饰与原位生物正交标记方法及应用, 发明专利, 2019, 第 3 作者, 专利号: CN109897881A

( 8 ) 单糖类似物及包含其的分子探针和该分子探针的应用, 专利授权, 2019, 第 4 作者, 专利号: CN109553643A

( 9 ) 促进生物体相互作用的方法及应用, 发明专利, 2019, 第 3 作者, 专利号: CN109504652A

( 10 ) 一种用于具有细胞膜结构的生物体的荧光标记方法, 发明专利, 2015, 第 2 作者, 专利号: CN104749369A

( 11 ) 对细胞进行原位标记的方法和应用, 发明专利, 2014, 第 6 作者, 专利号: CN103983764A

出版信息

   
发表论文
[1] Zhang Baozhen, Pan Hong, Chen Ze, Yin Ting, Zheng Mingbin, Cai Lintao. Twin-bioengine self-adaptive micro/nanorobots employing enzyme actuation and macrophage relay for gastrointestinal inflammation therapy. Science Advances[J]. 2023, 9(eadc8978): [2] Xiaofan Tang, Ye Yang, Mingbin Zheng, Ting Yin, Guojun Huang, Zhengyu Lai, Baozhen Zhang, Ze Chen, Tiantian Xu, Teng Ma, Hong Pan, Lintao Cai. Magnetic–acoustic sequentially actuated CAR T cell microrobots for precision navigation and in situ antitumor immunoactivation. Advanced Materials[J]. 2023, 35(18): 2211509-, https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202211509.
[3] Wang, Yuhan, Huang, Guojun, Hou, Qi, Pan, Hong, Cai, Lintao. Cell surface-nanoengineering for cancer targeting immunoregulation and precise immunotherapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY. 2022, [4] Huang, Guojun, Liu, Lanlan, Pan, Hong, Cai, Lintao. Biomimetic Active Materials Guided Immunogenic Cell Death for Enhanced Cancer Immunotherapy. SMALL METHODS. 2022, [5] Pan, Hong, Zheng, Mingbin, Ma, Aiqing, Liu, Lanlan, Cai, Lintao. Cell/Bacteria-Based Bioactive Materials for Cancer Immune Modulation and Precision Therapy. ADVANCED MATERIALSnull. 2021, 33(50): http://dx.doi.org/10.1002/adma.202100241.
[6] Pan, Hong, Li, Wenjun, Chen, Ze, Luo, Yingmei, He, Wei, Wang, Mengmeng, Tang, Xiaofan, He, Huamei, Liu, Lanlan, Zheng, Mingbin, Jiang, Xin, Yin, Ting, Liang, Ruijing, Ma, Yifan, Cai, Lintao. Click CAR-T cell engineering for robustly boosting cell immunotherapy in blood and subcutaneous xenograft tumor. BIOACTIVE MATERIALS[J]. 2021, 6(4): 951-962, http://dx.doi.org/10.1016/j.bioactmat.2020.09.025.
[7] Xing, Jiehua, Yin, Ting, Li, Shuiming, Xu, Tiantian, Ma, Aiqing, Chen, Ze, Luo, Yingmei, Lai, Zhengyu, Lv, Yingnian, Pan, Hong, Liang, Ruijing, Wu, Xinyu, Zheng, Mingbin, Cai, Lintao. Sequential Magneto-Actuated and Optics-Triggered Biomicrorobots for Targeted Cancer Therapy. ADVANCED FUNCTIONAL MATERIALS[J]. 2021, 31(11): http://dx.doi.org/10.1002/adfm.202008262.
[8] Zhou, Haimei, He, Huamei, Liang, Ruijing, Pan, Hong, Chen, Ze, Deng, Guanjun, Zhang, Shengping, Ma, Yifan, Liu, Lanlan, Cai, Lintao. In situ poly I:C released from living cell drug nanocarriers for macrophage-mediated antitumor immunotherapy. BIOMATERIALS[J]. 2021, 269: http://dx.doi.org/10.1016/j.biomaterials.2021.120670.
[9] Chen, Ze, Pan, Hong, Luo, Yingmei, Yin, Ting, Zhang, Baozhen, Liao, Jianhong, Wang, Mengmeng, Tang, Xiaofan, Huang, Guojun, Deng, Guanjun, Zheng, Mingbin, Cai, Lintao. Nanoengineered CAR-T Biohybrids for Solid Tumor Immunotherapy with Microenvironment Photothermal-Remodeling Strategy. SMALL[J]. 2021, 17(14): https://www.webofscience.com/wos/woscc/full-record/WOS:000627916100001.
[10] Chen, Huaqing, Ma, Aiqing, Yin, Ting, Chen, Ze, Liang, Ruijing, Pan, Hong, Shen, Xin, Zheng, Mingbin, Cai, Lintao. In Situ Photocatalysis of TiO-Porphyrin-Encapsulated Nanosystem for Highly Efficient Oxidative Damage against Hypoxic Tumors. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(11): 12573-12583, http://dx.doi.org/10.1021/acsami.0c00921.
[11] Liu, Lanlan, He, Huamei, Luo, Zhenyu, Zhou, Haimei, Liang, Ruijing, Pan, Hong, Ma, Yifan, Cai, Lintao. In Situ Photocatalyzed Oxygen Generation with Photosynthetic Bacteria to Enable Robust Immunogenic Photodynamic Therapy in Triple-Negative Breast Cancer. ADVANCED FUNCTIONAL MATERIALS[J]. 2020, 30(10): [12] Han YuTong, Pan Hong, Luo YingMei, Ma AiQing, Xing JieHua, Chen Ze, Zheng MingBin, Li BaoHong, Cai LinTao. Advances in Bioorthogonal Chemistry for in vivo Labeling and Drug Delivery. PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS[J]. 2020, 47(3): 179-187, https://www.webofscience.com/wos/woscc/full-record/WOS:000550839800001.
[13] Luo, Ying, Yang, Jun, Zhang, Chi, Jin, Yan, Pan, Hong, Liu, Lanlan, Gong, Yifeng, Xia, Yu, Wang, Guobing, Zhang, Jiaosheng, Li, Chengrong, Li, Qiu. Up-regulation of miR-27a promotes monocyte-mediated inflammatory responses in Kawasaki disease by inhibiting function of B10 cells. JOURNAL OF LEUKOCYTE BIOLOGY[J]. 2020, 107(1): 133-144, https://www.webofscience.com/wos/woscc/full-record/WOS:000505244900013.
[14] He, Huamei, Liu, Lanlan, Liang, Ruijing, Zhou, Haimei, Pan, Hong, Zhang, Shengping, Cai, Lintao. Tumor-targeted nanoplatform for in situ oxygenation-boosted immunogenic phototherapy of colorectal cancer. ACTA BIOMATERIALIA[J]. 2020, 104: 188-197, http://dx.doi.org/10.1016/j.actbio.2020.01.012.
[15] 韩雨彤, 潘宏, 罗英梅, 马爱青, 邢婕华, 陈泽, 郑明彬, 李宝红, 蔡林涛. 生物正交化学在活体标记及药物传递中的研究进展. 生物化学与生物物理进展[J]. 2020, 47(3): 179-187, http://lib.cqvip.com/Qikan/Article/Detail?id=7101307854.
[16] Wang, Fangfang, Pan, Hong, Yao, Xiangjie, He, Huamei, Liu, Lanlan, Luo, Yingmei, Zhou, Haimei, Zheng, Mingbin, Zhang, Renli, Ma, Yifan, Cai, Lintao. Bioorthogonal Metabolic Labeling Utilizing Protein Biosynthesis for Dynamic Visualization of Nonenveloped Enterovirus 71 Infection. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(3): 3363-3370, https://www.webofscience.com/wos/woscc/full-record/WOS:000509428300006.
[17] Li, Ping, Yang, Xinyu, Yang, Yang, He, Huamei, Chou, ChonKit, Chen, Fengyang, Pan, Hong, Liu, Lanlan, Cai, Lintao, Ma, Yifan, Chen, Xin. Synergistic effect of all-trans-retinal and triptolide encapsulated in an inflammation-targeted nanoparticle on collagen-induced arthritis in mice. JOURNALOFCONTROLLEDRELEASE[J]. 2020, 319: 87-103, http://dx.doi.org/10.1016/j.jconrel.2019.12.025.
[18] He, Huamei, Liu, Lanlan, Zhang, Shengping, Zheng, Mingbin, Ma, Aiqing, Chen, Ze, Pan, Hong, Zhou, Haimei, Liang, Ruijing, Cai, Lintao. Smart gold nanocages for mild heat -triggered drug release and breaking chemoresistance. JOURNAL OF CONTROLLED RELEASE[J]. 2020, 323: 387-397, http://dx.doi.org/10.1016/j.jconrel.2020.04.029.
[19] Han, Yutong, Pan, Hong, Li, Wenjun, Chen, Ze, Ma, Aiqing, Yin, Ting, Liang, Ruijing, Chen, Fuming, Ma, Nan, Jin, Yan, Zheng, Mingbin, Li, Baohong, Cai, Lintao. T Cell Membrane Mimicking Nanoparticles with Bioorthogonal Targeting and Immune Recognition for Enhanced Photothermal Therapy. ADVANCED SCIENCE[J]. 2019, 6(15): https://doaj.org/article/7cb0059b4e0e44bdb9a278463a7861cc.
[20] 王芳芳, 潘宏, 何华美, 马轶凡, 蔡林涛. 基于代谢工程与生物正交反应的病毒原位标记技术研究. 集成技术[J]. 2019, 1-9, http://lib.cqvip.com/Qikan/Article/Detail?id=74677473504849574851484849.
[21] 姚相杰, 王伟琪, 陈龙, 杨洪, 孟君, 潘宏, 张海龙, 张红宇, 张仁利, 何雅青. 2016—2017年深圳地区柯萨奇病毒A16型分子特征分析. 中华微生物学和免疫学杂志[J]. 2019, 39(9): 652-656, http://lib.cqvip.com/Qikan/Article/Detail?id=7003119077.
[22] Li, Wenjun, Pan, Hong, He, Huamei, Meng, Xiaoqing, Ren, Qian, Gong, Ping, Jiang, Xin, Liang, Zhenguo, Liu, Lanlan, Zheng, Mingbin, Shao, Ximing, Ma, Yifan, Cai, Lintao. Bio-Orthogonal T Cell Targeting Strategy for Robustly Enhancing Cytotoxicity against Tumor Cells. SMALL[J]. 2019, 15(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000456849600008.
[23] Pan, Hong, Li, Ping, Li, Guifei, Li, Wenjun, Hu, Bian, He, Huamei, Chen, Ze, Wang, Fangfang, Liu, Lanlan, Gong, Yifeng, Han, Yutong, Luo, Yingmei, Zheng, Mingbin, Ma, Yifan, Cai, Lintao, Jin, Yan. Glycometabolic Bioorthogonal Chemistry-Guided Viral Transduction for Robust Human T Cell Engineering. ADVANCED FUNCTIONAL MATERIALS[J]. 2019, 29(22): [24] Liu, Lanlan, He, Huamei, Liang, Ruijing, Yi, Huqiang, Meng, Xiaoqing, Chen, Zhikuan, Pan, Hong, Ma, Yifan, Cai, Lintao. ROS-Inducing Micelles Sensitize Tumor-Associated Macrophages to TLR3 Stimulation for Potent Immunotherapy. BIOMACROMOLECULES[J]. 2018, 19(6): 2146-2155, http://ir.siat.ac.cn:8080/handle/172644/14597.
[25] Pan, Hong, Yao, Xiangjie, Chen, Weihua, Wang, Fangfang, He, Huamei, Liu, Lanlan, He, Yaqing, Chen, Jinquan, Jiang, Puzi, Zhang, Renli, Ma, Yifan, Cai, Lintao. Dissecting complicated viral spreading of enterovirus 71 using in situ bioorthogonal fluorescent labeling. BIOMATERIALS[J]. 2018, 181: 199-209, http://ir.siat.ac.cn:8080/handle/172644/14610.
[26] Liu, Lanlan, Yi, Huqiang, He, Huamei, Pan, Hong, Cai, Lintao, Ma, Yifan. Tumor associated macrophage-targeted microRNA delivery with dual-responsive polypeptide nanovectors for anti-cancer therapy. BIOMATERIALS[J]. 2017, 134: 166-179, http://dx.doi.org/10.1016/j.biomaterials.2017.04.043.
[27] Pan, Hong, Li, Wenjun, Yao, Xiangjie, Wu, Yayun, Liu, Lanlan, He, Huamei, Zhang, Renli, Ma, Yifan, Cai, Lintao. In Situ Bioorthogonal Metabolic Labeling for Fluorescence Imaging of Virus Infection In Vivo. SMALL[J]. 2017, 13(17): https://www.webofscience.com/wos/woscc/full-record/WOS:000400452200013.
[28] Chen, Ze, Zhao, Pengfei, Luo, Zhenyu, Zheng, Mingbin, Tian, Hao, Gong, Ping, Gao, Guanhui, Pan, Hong, Liu, Lanlan, Ma, Aiqing, Cui, Haodong, Ma, Yifan, Cai, Lintao. Cancer Cell Membrane-Biomimetic Nanoparticles for Homologous-Targeting Dual-Modal Imaging and Photothermal Therapy. ACS NANO[J]. 2016, 10(11): 10049-10057, https://www.webofscience.com/wos/woscc/full-record/WOS:000388913100033.
[29] Zhang, Yijuan, Li, Ping, Pan, Hong, Liu, Lanlan, Ji, Manyi, Sheng, Nan, Wang, Ce, Cai, Lintao, Ma, Yifan. Retinal-conjugated pH-sensitive micelles induce tumor senescence for boosting breast cancer chemotherapy. BIOMATERIALS[J]. 2016, 83: 219-232, http://dx.doi.org/10.1016/j.biomaterials.2016.01.023.
[30] Liu, Shuhui, Zhang, Pengfei, Pan, Hong, Gao, Duyang, Chen, Chi, Zheng, Mingbin, Sheng, Zonghai, Gong, Ping, Gao, Guanhui, Wang, Hanzhong, Ma, Yifan, Cai, Lintao. QDs-virus bioconjugate as potential gene-drug co-delivery system for synergistic tumor therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINEnull. 2016, 12(2): 544-544, http://dx.doi.org/10.1016/j.nano.2015.12.273.
[31] Wang, Ce, Li, Ping, Liu, Lanlan, Pan, Hong, Li, Hongchang, Cai, Lintao, Ma, Yifan. Self-adjuvanted nanovaccine for cancer immunotherapy: Role of lysosomal rupture-induced ROS in MHC class I antigen presentation. BIOMATERIALS[J]. 2016, 79: 88-100, http://dx.doi.org/10.1016/j.biomaterials.2015.11.040.
[32] Zhang, Pengfei, Pan, Hong, Gao, Duyang, Chen, Chi, Li, Wenjun, Wu, Yayun, Hu, Dehong, Li, Chuansheng, Gong, Ping, Sheng, Zonghai, Gao, Guanhui, Ma, Yifan, Cai, Lintao. Bioorthogonal multifunctional nanoprobes for biomedicine and theranostic applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINEnull. 2016, 12(2): 486-486, http://dx.doi.org/10.1016/j.nano.2015.12.114.
[33] Yi, Huqiang, Liu, Lanlan, Sheng, Nan, Li, Ping, Pan, Hong, Cai, Lintao, Ma, Yifan. Synergistic Therapy of Doxorubicin and miR-129-5p with Self-Cross-Linked Bioreducible Polypeptide Nanoparticles Reverses Multidrug Resistance in Cancer Cells. BIOMACROMOLECULES[J]. 2016, 17(5): 1737-1747, https://www.webofscience.com/wos/woscc/full-record/WOS:000375886500019.
[34] Liu, Lanlan, Yi, Huqiang, Wang, Ce, He, Huamei, Li, Ping, Pan, Hong, Sheng, Nan, Ji, Manyi, Cai, Lintao, Ma, Yifan. Integrated Nanovaccine with MicroRNA-148a Inhibition Reprograms Tumor-Associated Dendritic Cells by Modulating miR-148a/DNMT1/SOCS1 Axis. JOURNAL OF IMMUNOLOGY[J]. 2016, 197(4): 1231-1241, https://www.webofscience.com/wos/woscc/full-record/WOS:000384999100023.
[35] Ji, Manyi, Li, Ping, Sheng, Nan, Liu, Lanlan, Pan, Hong, Wang, Ce, Cai, Lintao, Ma, Yifan. Sialic Acid-Targeted Nanovectors with Phenylboronic Acid-Grafted Polyethylenimine Robustly Enhance siRNA-Based Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 8(15): 9565-9576, https://www.webofscience.com/wos/woscc/full-record/WOS:000374812000006.
[36] Wang, Ce, Liu, Peng, Zhuang, Yan, Li, Ping, Jiang, Boling, Pan, Hong, Liu, Lanlan, Cai, Lintao, Ma, Yifan. Lymphatic-targeted cationic liposomes: A robust vaccine adjuvant for promoting long-term immunological memory. JOURNAL OF CONTROLLED RELEASEnull. 2015, 213: E16-E16, http://dx.doi.org/10.1016/j.jconrel.2015.05.022.
[37] Li, Ping, Zhang, Yijuan, Pan, Hong, Ji, Manyi, Sheng, Nan, Ma, Yifan. Doxorubicin-loaded pH-sensitive dextran-retinal nanoparticles suppress tumor growth by inducing both apoptosis and cell senescence. JOURNAL OF CONTROLLED RELEASEnull. 2015, 213: E88-E89, http://dx.doi.org/10.1016/j.jconrel.2015.05.147.
[38] Luo, Zichao, Wang, Ce, Yi, Huqiang, Li, Ping, Pan, Hong, Liu, Lanlan, Cai, Lintao, Ma, Yifan. Co-delivery of poly I:C and STAT3 siRNA by nanovaccines effectively overcomes tumor-associated dendritic cell dysfunction and elicits anti-tumor immune response. JOURNAL OF CONTROLLED RELEASEnull. 2015, 213: E133-E134, http://dx.doi.org/10.1016/j.jconrel.2015.05.225.
[39] Luo, Zichao, Wang, Ce, Yi, Huqiang, Li, Ping, Pan, Hong, Liu, Lanlan, Cai, Lintao, Ma, Yifan. Nanovaccine loaded with poly I:C and STAT3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells in vivo. BIOMATERIALS[J]. 2015, 38: 50-60, http://dx.doi.org/10.1016/j.biomaterials.2014.10.050.
[40] Pan, Hong, Zhang, Yijuan, Luo, Zichao, Li, Ping, Liu, Lanlan, Wang, Ce, Wang, Hanzhong, Li, Hongchang, Ma, Yifan. Autophagy mediates avian influenza H5N1 pseudotyped particle-induced lung inflammation through NF-kappa B and p38 MAPK signaling pathways. AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY[J]. 2014, 306(2): L183-L195, http://dx.doi.org/10.1152/ajplung.00147.2013.
[41] Pan, Hong, Zhang, Pengfei, Gao, Duyang, Zhang, Yijuan, Li, Ping, Liu, Lanlan, Wang, Ce, Wang, Hanzhong, Ma, Yifan, Cai, Lintao. Noninvasive Visualization of Respiratory Viral Infection Using Bioorthogonal Conjugated Near-Infrared-Emitting Quantum Dots. ACS NANO[J]. 2014, 8(6): 5468-5477, https://www.webofscience.com/wos/woscc/full-record/WOS:000338089200012.
[42] Wang, Ce, Liu, Peng, Zhuang, Yan, Li, Ping, Jiang, Boling, Pan, Hong, Liu, Lanlan, Cai, Lintao, Ma, Yifan. Lymphatic-targeted cationic liposomes: A robust vaccine adjuvant for promoting long-term immunological memory. VACCINE[J]. 2014, 32(42): 5475-5483, http://dx.doi.org/10.1016/j.vaccine.2014.07.081.
[43] Zhang, Yijuan, Pan, Hong, Zhang, Pengfei, Gao, Ningning, Lin, Yi, Luo, Zichao, Li, Ping, Wang, Ce, Liu, Lanlan, Pang, Daiwen, Cai, Lintao, Ma, Yifan. Functionalized quantum dots induce proinflammatory responses in vitro: the role of terminal functional group-associated endocytic pathways. NANOSCALE[J]. 2013, 5(13): 5919-5929, https://www.webofscience.com/wos/woscc/full-record/WOS:000320398300033.
[44] Li, Ping, Luo, Zichao, Liu, Peng, Gao, Ningning, Zhang, Yijuan, Pan, Hong, Liu, Lanlan, Wang, Ce, Cai, Lintao, Ma, Yifan. Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses. JOURNAL OF CONTROLLED RELEASE[J]. 2013, 168(3): 271-279, http://dx.doi.org/10.1016/j.jconrel.2013.03.025.
[45] Wang, Ce, Zhuang, Yan, Zhang, Yijuan, Luo, Zichao, Gao, Ningning, Li, Ping, Pan, Hong, Cai, Lintao, Ma, Yifan. Toll-like receptor 3 agonist complexed with cationic liposome augments vaccine-elicited antitumor immunity by enhancing TLR3-IRF3 signaling and type I interferons in dendritic cells. VACCINE[J]. 2012, 30(32): 4790-4799, http://dx.doi.org/10.1016/j.vaccine.2012.05.027.
发表著作
(1) Biomaterial Engineering. Gene Delivery(Chapter), Springer Nature, 2021-05, 第 1 作者

科研活动

   
科研项目
( 1 ) CAR T活细胞纳米药物对免疫微环境的调控及其抗肿瘤免疫治疗研究, 负责人, 国家任务, 2020-01--2023-12
( 2 ) 基于生物正交标记的活病毒示踪及其体内侵染途径研究, 负责人, 国家任务, 2017-01--2019-12
( 3 ) 基于代谢工程与点击化学的标记技术可视化探究肠道病毒致病机制, 负责人, 地方任务, 2018-03--2020-03
( 4 ) 基于量子点标记的EV71病毒活体示踪及其体内侵染途径研究, 负责人, 地方任务, 2017-05--2020-05
( 5 ) 基于生物正交标记研究肠道病毒侵染途, 负责人, 研究所自主部署, 2015-01--2018-12
( 6 ) PI3K delta/AKT信号通路在蛋白激酶CDK调控NETs形成中的作用机制研究, 负责人, 其他国际合作项目, 2020-05--2021-10
( 7 ) 溶瘤病毒仿生纳米体系人工改造肿瘤靶点及其与CAR-T细胞的联合免疫治疗, 负责人, 国家任务, 2022-01--2024-12
( 8 ) 基于代谢检查点免疫调控的纳米工程化CAR-T细胞抗肿瘤治疗研究, 负责人, 地方任务, 2021-10--2024-10
( 9 ) 动脉粥样硬化多模态精准诊疗一体化技术研究及样机研制, 参与, 国家任务, 2022-11--2025-11
参与会议
(1)微纳仿生免疫   微纳米技术与医疗健康创新大会暨第四届微米纳米技术应用创新大会   2020-10-24
(2)Amino acid metabolic bioorthogonal labeling for dynamical visualizing non-enveloped enterovirus 71 invasion   第四届中美纳米医学与纳米生物技术年会   2019-08-19
(3)In vivo Bioorthogonal labeling for visualization of influenza viral particles infection in living animal   中国微米纳米技术学会纳米科学技术分会第三届年会暨2014全国纳米生物与医学学术会议   2014-11-05

指导学生

现指导学生

胡雨微  硕士研究生  085600-材料与化工  

亢天放  硕士研究生  085600-材料与化工