基本信息

于良  男  硕导  中国科学院大连化学物理研究所

电子邮件: lyu@dicp.ac.c

通信地址: 辽宁省大连市中山路457

邮政编码:116023

个人主页:http://deng.dicp.ac.cn/info/1006/1314.htm


研究领域

1. 理论与计算催化;

2. 二维材料表界面催化活性调控;

3. 能源小分子催化转化;

4. 机器学习辅助催化剂筛选。


招生信息

硕士研究生,化学专业,具备良好的物理化学、量子化学专业基础知识,熟悉Python编程语言。

招生专业
070304-物理化学
招生方向
理论与计算催化
多相催化

教育背景

2010-03--2011-01   Queen’s University Belfast   Visiting Student
2006-08--2012-10   大连化学物理研究所   博士
2001-09--2005-07   山东师范大学   学士
学历
博士研究生

学位

理学博士

工作经历

   
工作简历
2018-06~现在, 中科院大连化物所, 副研究员
2017-04~2018-03,Virginia Tech, 博士后
2015-02~2017-02,Stanford University, 博士后
2014-02~2015-02,厦门大学, Brookhaven National Laboratory, 博士后
2012-10~2014-01,大连化学物理研究所, 助理研究员

专利与奖励

   
专利成果
[1] 邓德会, 涂云川, 刘艳廷, 于良. 一种电化学消杀新型冠状病毒的装置与方法. CN: CN112675349A, 2021-04-20.

[2] 邓德会, 崔晓菊, 陈瑞雪, 苏海燕, 于良, 包信和. 一种电催化水汽变换反应制备高纯氢气的催化剂和装置. CN: CN110835765B, 2021-01-22.

[3] 汪国雄, 于良, 邓德会, 谭大力, 潘秀莲, 包信和. 一种用于电催化反应的同步辐射原位检测装置. CN: CN103884728A, 2014-06-25.

出版信息

发表论文
[1] Zhu, Kaixin, Liang, Suxia, Cui, Xiaoju, Huang, Rui, Wan, Ningbo, Hua, Lei, Li, Haiyang, Chen, Hongyu, Zhao, Zhenchao, Hou, Guangjin, Li, Mingrun, Jiang, Qike, Yu, Liang, Deng, Dehui. Highly efficient conversion of methane to formic acid under mild conditions at ZSM-5-confined Fe-sites. Nano Energy[J]. 2021, 82: http://dx.doi.org/10.1016/j.nanoen.2020.105718.
[2] Tu, Yunchuan, Tang, Wei, Yu, Liang, Liu, Zheyi, Liu, Yanting, Xia, Huicong, Zhang, Haiwei, Chen, Shiyun, Wu, Jia, Cui, Xiaoju, Zhang, Jianan, Wang, Fangjun, Hu, Yangbo, Deng, Dehui. Inactivating SARS-CoV-2 by electrochemical oxidation. Science Bulletin[J]. 2021, 66(7): 720-726, https://www.sciengine.com/doi/10.1016/j.scib.2020.12.025.
[3] Suheng Wang, Kelechi Uwakwe, Liang Yu, Jinyu Ye, Yuezhou Zhu, Jingting Hu, Ruixue Chen, Zheng Zhang, Zhiyou Zhou, Jianfeng Li, Zhaoxiong Xie, Dehui Deng. Highly efficient ethylene production via electrocatalytic hydrogenation of acetylene under mild conditions. Nature Communications[J]. 2021, 12: [4] Hu, Jingting, Yu, Liang, Deng, Jiao, Wang, Yong, Cheng, Kang, Ma, Chao, Zhang, Qinghong, Wen, Wu, Yu, Shengsheng, Pan, Yang, Yang, Jiuzhong, Ma, Hao, Qi, Fei, Wang, Yongke, Zheng, Yanping, Chen, Mingshu, Huang, Rui, Zhang, Shuhong, Zhao, Zhenchao, Mao, Jun, Meng, Xiangyu, Ji, Qinqin, Hou, Guangjin, Han, Xiuwen, Bao, Xinhe, Wang, Ye, Deng, Dehui. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nature Catalysis[J]. 2021, 4(3): 242-250, http://dx.doi.org/10.1038/s41929-021-00584-3.
[5] Yu, Liang, Deng, Dehui, Bao, Xinhe. Chain Mail for Catalysts. Angewandte Chemie International Edition[J]. 2020, 59(36): 15294-15297, https://www.webofscience.com/wos/woscc/full-record/WOS:000555861800001.
[6] Tu, Yunchuan, Deng, Jiao, Ma, Chao, Yu, Liang, Bao, Xinhe, Deng, Dehui. Double-layer hybrid chainmail catalyst for high-performance hydrogen evolution. Nano Energy[J]. 2020, 72: http://dx.doi.org/10.1016/j.nanoen.2020.104700.
[7] Zhang, Zheng, Yu, Liang, Tu, Yunchuan, Chen, Ruixue, Wu, Lihui, Zhu, Junfa, Deng, Dehui. Unveiling the Active Site of Metal-Free Nitrogen-doped Carbon for Electrocatalytic Carbon Dioxide Reduction. Cell Reports Physical Science[J]. 2020, 1(8): http://dx.doi.org/10.1016/j.xcrp.2020.100145.
[8] Zhilong Zheng, Liang Yu, Meng Gao, Xiya Chen, Wu Zhou, Chao Ma, Lihui Wu, Junfa Zhu, Xiangyu Meng, Jingting Hu, Yunchuan Tu, Sisi Wu, Jun Mao, Zhongqun Tian, Dehui Deng. Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer. Nature Communications[J]. 2020, 11(1): 1-10, Springer_JournalArticle.
[9] Meng, Xiangyu, Ma, Chao, Jiang, Luozhen, Si, Rui, Meng, Xianguang, Tu, Yunchuan, Yu, Liang, Bao, Xinhe, Deng, Dehui. Distance Synergy of MoS2-Confined Rhodium Atoms for Highly Efficient Hydrogen Evolution. Angewandte Chemie International Edition[J]. 2020, 59(26): 10502-10507, http://dx.doi.org/10.1002/anie.202003484.
[10] Ren, Xiaomin, Guo, Miao, Li, He, Li, Chengbin, Yu, Liang, Liu, Jian, Yang, Qihua. Microenvironment Engineering of Ruthenium Nanoparticles Incorporated into Silica Nanoreactors for Enhanced Hydrogenations. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2019, 58(41): 14483-14488, https://www.webofscience.com/wos/woscc/full-record/WOS:000481786800001.
[11] Lu, Yubing, Wang, Jiamin, Yu, Liang, Kovarik, Libor, Zhang, Xiwen, Hoffman, Adam S, Gallo, Alessandro, Bare, Simon R, Sokaras, Dimosthenis, Kroll, Thomas, Dagle, Vanessa, Xin, Hongliang, Karim, Ayman M. Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. NATURE CATALYSIS[J]. 2019, 2(2): 149-156, https://www.webofscience.com/wos/woscc/full-record/WOS:000458554800010.
[12] Meng, Xiangyu, Yu, Liang, Ma, Chao, Nan, Bing, Si, Rui, Tu, Yunchuan, Deng, Jiao, Deng, Dehui, Bao, Xinhe. Three-dimensionally hierarchical MoS2/graphene architecture for high-performance hydrogen evolution reaction. Nano Energy[J]. 2019, 61: 611-616, http://dx.doi.org/10.1016/j.nanoen.2019.04.049.
[13] Zhe Li, Liang Yu, Cory Milligan, Tao Ma, Lin Zhou, Yanran Cui, Zhiyuan Qi, Nicole Libretto, Biao Xu, Junwei Luo, Enzheng Shi, Zhenwei Wu, Hongliang Xin, W Nicholas Delgass, Jeffrey T Miller, Yue Wu. Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. NATURE COMMUNICATIONS[J]. 2018, 9(1): https://doaj.org/article/d832ef27fa354d289d343cbb589e3801.
[14] Jun Wang, Liang Yu, Lin Hu, Gang Chen, Hongliang Xin, Xiaofeng Feng. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. NATURE COMMUNICATIONS[J]. 2018, 9(1): https://doaj.org/article/173940b221b645f7866248e16f7f8a04.
[15] Yu, Liang, Vilella, Laia, AbildPedersen, Frank. Generic approach to access barriers in dehydrogenation reactions. COMMUNICATIONS CHEMISTRY[J]. 2018, 1(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000433892000002.
[16] Zhang, Zheng, Xiao, Jianping, Chen, XueJiao, Yu, Song, Yu, Liang, Si, Rui, Wang, Yong, Wang, Suheng, Meng, Xianguang, Wang, Ye, Tian, ZhongQun, Deng, Dehui. Reaction Mechanisms of Well-Defined Metal-N-4 Sites in Electrocatalytic CO2 Reduction. Angewandte Chemie International Edition[J]. 2018, 57(50): 16339-16342, http://www.corc.org.cn/handle/1471x/2372975.
[17] Chen, Xiaoqi, Yu, Liang, Wang, Suheng, Deng, Dehui, Bao, Xinhe. Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction. Nano Energy[J]. 2017, 32: 353-358, http://dx.doi.org/10.1016/j.nanoen.2016.12.056.
[18] Yu, Liang, AbildPedersen, Frank. Bond Order Conservation Strategies in Catalysis Applied to the NH3 Decomposition Reaction. ACS CATALYSIS[J]. 2017, 7(1): 864-871, https://www.webofscience.com/wos/woscc/full-record/WOS:000391783200092.
[19] Yu, Liang, Liu, Yun, Yang, Fan, Evans, Jaime, Rodriguez, Jose A, Liu, Ping. CO Oxidation on Gold-Supported Iron Oxides: New Insights into Strong Oxide-Metal Interactions. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2015, 119(29): 16614-16622, https://www.webofscience.com/wos/woscc/full-record/WOS:000358624000024.
[20] Deng, Dehui, Chen, Xiaoqi, Yu, Liang, Wu, Xing, Liu, Qingfei, Liu, Yun, Yang, Huaixin, Tian, Huanfang, Hu, Yongfeng, Du, Peipei, Si, Rui, Wang, Junhu, Cui, Xiaoju, Li, Haobo, Xiao, Jianping, Xu, Tao, Deng, Jiao, Yang, Fan, Duchesne, Paul N, Zhang, Peng, Zhou, Jigang, Sun, Litao, Li, Jianqi, Pan, Xiulian, Bao, Xinhe. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Science Advances[J]. 2015, 1(11): https://www.webofscience.com/wos/woscc/full-record/WOS:000216604200001.
[21] Guo, Xiaoguang, Fang, Guangzong, Li, Gang, Ma, Hao, Fan, Hongjun, Yu, Liang, Ma, Chao, Wu, Xing, Deng, Dehui, Wei, Mingming, Tan, Dali, Si, Rui, Zhang, Shuo, Li, Jianqi, Sun, Litao, Tang, Zichao, Pan, Xiulian, Bao, Xinhe. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science[J]. 2014, 344(6184): 616-619, http://dx.doi.org/10.1126/science.1253150.
[22] Deng, Jiao, Yu, Liang, Deng, Dehui, Chen, Xiaoqi, Yang, Fan, Bao, Xinhe. Highly active reduction of oxygen on a FeCo alloy catalyst encapsulated in pod-like carbon nanotubes with fewer walls. Journal of Materials Chemistry A[J]. 2013, 1(47): 14868-14873, http://dx.doi.org/10.1039/c3ta13759g.
[23] Zhang, Fan, Pan, Xiulian, Hu, Yongfeng, Yu, Liang, Chen, Xiaoqi, Jiang, Peng, Zhang, Hongbo, Deng, Shibin, Zhang, Jin, Bolin, Trudy B, Zhang, Shuo, Huang, Yuying, Bao, Xinhe. Tuning the redox activity of encapsulated metal clusters via the metallic and semiconducting character of carbon nanotubes. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA[J]. 2013, 110(37): 14861-14866, http://dx.doi.org/10.1073/pnas.1306784110.
[24] Yu, Liang, Li, WeiXue, Pan, Xiulian, Bao, Xinhe. In- and Out-Dependent Interactions of Iron with Carbon Nanotubes. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2012, 116(31): 16461-16466, http://dx.doi.org/10.1021/jp302311r.
[25] Deng, Dehui, Pan, Xiulian, Yu, Liang, Cui, Yi, Jiang, Yeping, Qi, Jing, Li, WeiXue, Fu, Qiang, Ma, Xucun, Xue, Qikun, Sun, Gongquan, Bao, Xinhe. Toward N-doped graphene via solvothermal synthesis. Chemistry of Materials[J]. 2011, 23(5): 1188-1193, http://www.irgrid.ac.cn/handle/1471x/456580.
[26] Yu, Liang, Pan, Xiulian, Cao, Xiaoming, Hu, P, Bao, Xinhe. Oxygen reduction reaction mechanism on nitrogen-doped graphene: A density functional theory study. JOURNAL OF CATALYSIS[J]. 2011, 282(1): 183-190, http://www.irgrid.ac.cn/handle/1471x/456882.
[27] Deng, Dehui, Yu, Liang, Pan, Xiulian, Wang, Shuang, Chen, Xiaoqi, Hu, P, Sun, Lixian, Bao, Xinhe. Size effect of graphene on electrocatalytic activation of oxygen. Chemical Communications[J]. 2011, 47(36): 10016-10018, http://dx.doi.org/10.1039/c1cc13033a.

科研活动

   
科研项目
( 1 ) 二维材料封装金属的电子传递机制及催化调控效应的第一性原理研究, 负责人, 国家任务, 2019-01--2022-12
( 2 ) 二维纳米表界面限域催化甲烷转化的第一性原理研究, 负责人, 国家任务, 2019-01--2021-12
( 3 ) 二维硫化钼限域硫空位催化二氧化碳加氢制碳二产物的 理论研究, 负责人, 国家任务, 2023-01--2026-12
( 4 ) 基于限域催化体系的甲烷低温高效转化, 参与, 国家任务, 2022-01--2023-12
( 5 ) CO2 催化加氢高效合成甲醇, 参与, 国家任务, 2022-12--2027-11