基本信息

梁鑫  男  研究员 博导  纳米科学与技术学院
电子邮件: liangxin@binn.cas.cn; liangxin@ucas.edu.cn
通信地址: 北京市怀柔区雁栖经济开发区杨雁东一路8号院
邮政编码: 101400

研究领域

      围绕微纳能源、功能材料及器件的基础科学问题和工程应用问题开展研究,主要研究方向包括:

1、热输运物理机制

2、先进热功能结构材料及器件

3、热量管理及转换

招生信息

       接收推免和统考研究生,每年计划招收硕士研究生1人(优先考虑直博生),博士研究生1人 ;根据科学研究需要,招收博士后1~2名;同时接收国内外高校联合培养研究生、博士生。欢迎具有凝聚态物理、工程热物理、材料科学与工程、微电子及化学等相关专业的同学加入课题组学习深造。


招生专业
080502-材料学
070205-凝聚态物理
080701-工程热物理

教育背景

2008-09--2013-08   美国哈佛大学(Harvard University)   应用物理 硕士、博士
2006-09--2008-08   加拿大麦克马斯特大学(McMaster University)   材料工程 硕士
2002-09--2006-07   北京科技大学   材料物理 学士

工作经历

   
工作简历
2019-07~现在, 中国科学院北京纳米能源与系统研究所/中国科学院大学纳米科学与技术学院, 研究员、博士生导师
2014-12~2019-06,常州大学, 教授、研究生导师
2013-12~2014-11,美国布朗大学(Brown University), 博士后
2013-09~2013-11,美国哈佛大学(Harvard University), 博士后

学术成果


发表论文
[1] Xin Liang, Changan Wang. Insights into strain dependent lattice thermal conductivity of tin oxide. Acta Materialia. 2022, 239: http://dx.doi.org/10.1016/j.actamat.2022.118289.
[2] Xin Liang, Changan Wang. Anomalous behavior of strain modulated lattice thermal transport in piezoelectric crystals and the effect of polarization. Acta Materialia. 2022, 241: http://dx.doi.org/10.1016/j.actamat.2022.118406.
[3] Xin Liang, Hemeng Wang, Jinlong Ren. Achieving ultralow lattice thermal conductivity and improved thermoelectric performance in BiSe by doping. Journal of the European Ceramic Society[J]. 2022, 42(9): 3905-3912, [4] Liang, Xin, Wang, Hemeng, Wang, Changan. Lattice thermal conductivity of transition metal carbides: Evidence of a strong electron-phonon interaction above room temperature. ACTA MATERIALIA[J]. 2021, 216: http://dx.doi.org/10.1016/j.actamat.2021.117160.
[5] Liang, Xin, Chen, Chuang. Ductile inorganic amorphous/crystalline composite Ag4TeS with phonon-glass electron-crystal transport behavior and excellent stability of high thermoelectric performance on plastic deformation. ACTA MATERIALIA[J]. 2021, 218: http://dx.doi.org/10.1016/j.actamat.2021.117231.
[6] Liang, Xin, Wang, Changan, Jin, Dou. Influence of nonstoichiometry point defects on electronic thermal conductivity. APPLIED PHYSICS LETTERS[J]. 2020, 117(21): http://dx.doi.org/10.1063/5.0031353.
[7] Liang, Xin, Wang, Changan. Electron and phonon transport anisotropy of ZnO at and above room temperature. APPLIED PHYSICS LETTERS[J]. 2020, 116(4): [8] Liang, Xin, Chen, Chuang, Dai, Feihu. Effect of plastic deformation on phonon thermal conductivity of alpha-Ag2S. APPLIED PHYSICS LETTERS[J]. 2020, 117(25): https://www.webofscience.com/wos/woscc/full-record/WOS:000603065800001.
[9] Liang, Xin, Dai, Feihu. Epoxy Nanocomposites with Reduced Graphene Oxide-Constructed Three-Dimensional Networks of Single Wall Carbon Nanotube for Enhanced Thermal Management Capability with Low Filler Loading. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(2): 3051-3058, https://www.webofscience.com/wos/woscc/full-record/WOS:000508464500118.
[10] Liang, Xin, Yang, Yuqing, Dai, Feihu, Wang, Changan. Orientation dependent physical transport behavior and the micro-mechanical response of ZnO nanocomposites induced by SWCNTs and graphene: importance of intrinsic anisotropy and interfaces. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2019, 7(5): 1208-1221, https://www.webofscience.com/wos/woscc/full-record/WOS:000459724600008.
[11] Liang, Xin, Jin, Dou, Dai, Feihu. Phase Transition Engineering of Cu2S to Widen the Temperature Window of Improved Thermoelectric Performance. ADVANCED ELECTRONIC MATERIALS[J]. 2019, 5(10): [12] Liang, Xin, Shen, Lei, Wang, Changan. Origin of anisotropy and compositional dependence of phonon and electron transport in ZnO based natural superlattices and role of atomic layer interfaces. NANO ENERGY[J]. 2019, 59: 651-666, http://dx.doi.org/10.1016/j.nanoen.2019.03.007.
[13] Liang, Xin, Dai, Feihu. Reduction of the Lorenz Number in Copper at Room Temperature due to Strong Inelastic Electron Scattering Brought about by High-Density Dislocations. JOURNAL OF PHYSICAL CHEMISTRY LETTERS[J]. 2019, 10(3): 507-512, [14] Liang, Xin, Shen, Lei. Optimizing interfacial transport properties of InO2 single atomic layers in In2O3(ZnO)(4) natural superlattices for enhanced high temperature thermoelectrics. NANOSCALE[J]. 2018, 10(9): 4500-4514, https://www.webofscience.com/wos/woscc/full-record/WOS:000426708500039.
[15] Liang, Xin, Clarke, David R. Single layer In-O atomic sheets as phonon and electron barriers in ZnO-In2O3 natural superlattices: Implications for thermoelectricity. JOURNAL OF APPLIED PHYSICS[J]. 2018, 124(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000438566400012.
[16] Xin Liang, Lei Shen. Interfacial thermal and electrical transport properties of pristine and nanometer-scale ZnS modified grain boundary in ZnO polycrystals. Acta Materialia[J]. 2018, 148: 100-109, [17] Yang, Yuqing, Liu, Xiaocun, Liang, Xin. Thermoelectric properties of Bi1-xSnxCuSeO solid solutions. DALTON TRANSACTIONS[J]. 2017, 46(8): 2510-2515, https://www.webofscience.com/wos/woscc/full-record/WOS:000395864900014.
[18] Xin Liang, Yingchao Yang, Jun Lou, Brian W Sheldon. The impact of core-shell nanotube structures on fracture in ceramic nanocomposites. Acta Materialia[J]. 2017, 122: 82-91, [19] Liang, Xin. Impact of grain boundary characteristics on lattice thermal conductivity: A kinetic theory study on ZnO. PHYSICAL REVIEW B[J]. 2017, 95(15): https://www.webofscience.com/wos/woscc/full-record/WOS:000399796800002.
[20] Liang, Xin. Mobile copper ions as heat carriers in polymorphous copper sulfide superionic conductors. APPLIED PHYSICS LETTERS[J]. 2017, 111(13): https://www.webofscience.com/wos/woscc/full-record/WOS:000412074000046.
[21] Liang, Xin, Wang, Xinwei. Modeling of theta -> alpha alumina lateral phase transformation with applications to oxidation kinetics of NiAl-based alloys. MATERIALS & DESIGN[J]. 2016, 112: 519-529, https://www.webofscience.com/wos/woscc/full-record/WOS:000387279700059.
[22] Liang, Xin. Nanostructure Engineering of ZnO Based Complex Oxides for Thermoelectric Application. CURRENT NANOSCIENCE[J]. 2016, 12(2): 157-168, https://www.webofscience.com/wos/woscc/full-record/WOS:000373556300003.
[23] Margueron, Samuel, Pokorny, Jan, Skiadopoulou, Stella, Kamba, Stanislav, Liang, Xin, Clarke, David R. Optical and vibrational properties of (ZnO)(k) In2O3 natural superlattice nanostructures. JOURNAL OF APPLIED PHYSICS[J]. 2016, 119(19): https://www.webofscience.com/wos/woscc/full-record/WOS:000377718100031.
[24] Liu, Xiaocun, Jin, Dou, Liang, Xin. Enhanced thermoelectric performance of n-type transformable AgBiSe2 polymorphs by indium doping. APPLIED PHYSICS LETTERS[J]. 2016, 109(13): https://www.webofscience.com/wos/woscc/full-record/WOS:000384747900063.
[25] Liang, Xin. Thermoelectric transport properties of naturally nanostructured Ga-ZnO ceramics: Effect of point defect and interfaces. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY[J]. 2016, 36(7): 1643-1650, http://dx.doi.org/10.1016/j.jeurceramsoc.2016.02.017.
[26] Liang, Xin. Recasting the Callaway and von Baeyer thermal conductivity model on defective oxide materials: the ZnO-In2O3 system as an example. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2015, 17(41): 27889-27893, https://www.webofscience.com/wos/woscc/full-record/WOS:000363193800071.
[27] Su, Xin, Zhang, Teng, Liang, Xin, Gao, Huajian, Sheldon, Brian W. Employing nanoscale surface morphologies to improve interfacial adhesion between solid electrolytes and Li ion battery cathodes. ACTA MATERIALIA[J]. 2015, 98: 175-181, https://www.webofscience.com/wos/woscc/full-record/WOS:000361074000017.
[28] Liang, Xin. Remarkable enhancement in the Kapitza resistance and electron potential barrier of chemically modified In2O3(ZnO)(9) natural superlattice interfaces. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2015, 17(44): 29655-29660, https://www.webofscience.com/wos/woscc/full-record/WOS:000364639700025.
[29] Yang, Yingchao, Liang, Xin, Chen, Weibing, Cao, Linlin, Li, Minglin, Sheldon, Brian W, Lou, Jun. Quantification and promotion of interfacial interactions between carbon nanotubes and polymer derived ceramics. CARBON[J]. 2015, 95: 964-971, http://dx.doi.org/10.1016/j.carbon.2015.08.104.
[30] Liang, Xin. Thermoelectric Transport Properties of Fe-Enriched ZnO with High-Temperature Nanostructure Refinement. ACS APPLIED MATERIALS & INTERFACES[J]. 2015, 7(15): 7927-7937, https://www.webofscience.com/wos/woscc/full-record/WOS:000353607100014.
[31] Liang, Xin, Clarke, David R. Relation between thermolectric properties and phase equilibria in the ZnO-In2O3 binary system. ACTA MATERIALIA[J]. 2014, 63: 191-201, https://www.webofscience.com/wos/woscc/full-record/WOS:000329552100018.
[32] Liang, Xin. Scaling of stacking fault energy and deformation temperature on strain hardening of FCC metals and alloys. PHILOSOPHICAL MAGAZINE LETTERS[J]. 2014, 94(9): 556-563, https://www.webofscience.com/wos/woscc/full-record/WOS:000342316000004.
[33] Liang, Xin, Baram, Mor, Clarke, David R. Thermal (Kapitza) resistance of interfaces in compositional dependent ZnO-In2O3 superlattices. APPLIED PHYSICS LETTERS[J]. 2013, 102(22): https://www.webofscience.com/wos/woscc/full-record/WOS:000320621600097.
[34] Liang, X, McDermid, J R, Bouaziz, O, Wang, X, Embury, J D, Zurob, H S. Microstructural evolution and strain hardening of Fe-24Mn and Fe-30Mn alloys during tensile deformation. ACTA MATERIALIA[J]. 2009, 57(13): 3978-3988, https://www.webofscience.com/wos/woscc/full-record/WOS:000268414100029.
[35] Liang, X, Wang, X, Zurob, H S. Microstructural characterization of transformable Fe-Mn alloys at different length scales. MATERIALS CHARACTERIZATION[J]. 2009, 60(11): 1224-1231, 
发表著作
(1) "Chapter 12 Thermal conductivity of nanostructured ZnO" in Book “Nanostructured Zinc Oxide: Synthesis, Properties and Applications”, Elsevier, 2021-06, 第 1 作者