基本信息
沈建权 女 博导 化学研究所
电子邮件:jqshen@iccas.ac.cn
联系电话:010-62620903
手机号码:
通信地址:北京市海淀区中关村北一街2号
邮政编码:100190

研究领域

Ø       生物制氢
Ø       废水厌氧生物处理
Ø       微生物燃料电池

教育背景

   
学历

博士

学位
工学博士
出国学习工作
1990年12月-1996年3月在日本国东北大学学习;
1996年4月-1998年10月在日本国东北绿化环境保全株式会社工作。

工作经历

   
工作简历
1998年10月回国,进入中国科学院感光化学研究所工作;
1999年4月中国科学院化学研究所

专利与奖励

   
专利成果
[1] 韦丽玲, 曹春, 翟奇然, 刘建亭, 沈建权. 一种元素掺杂三维多孔碳材料及其制备方法与应用. CN: CN109019559B, 2020-08-25.

[2] 沈建权, 邱昭政, 韦丽玲, 苏敏, 贾奇博. 一种单室微生物燃料电池的空气阴极的制作方法. CN: CN103730667A, 2014-04-16.

[3] 贾奇博, 杨海军, 沈建权, 刘必前. 一种非对称耐氧化渗透膜及其制备方法. CN: CN103212312A, 2013-07-24.

[4] 沈建权, 袁柱良, 支晓华, 崔茂金. 一种混合产氢细菌自絮凝颗粒及其培养方法. CN: CN101851592A, 2010-10-06.

[5] 沈建权, 杨海军, 袁柱良, 支晓华. 一种连续废水处理生物制氢的方法及其专用生物制氢发酵液. CN: CN101250555A, 2008-08-27.

[6] 沈建权, 刘光臻, 华扬, 陈申, 沈涛. 利用植物秸秆的生物制氢发酵液的制备方法. CN: CN1176216C, 2004-11-17.

[7] 刘光臻, 张永芳, 沈建权, 陈申. 利用工业有机废水生物制氢的方法. 中国: CN1506465, 2004-06-23.

[8] 张曼华, 敬炳文, 陈申, 沈涛, 沈建权. 一种钌(Ⅱ)多吡啶配合物及其制备方法. CN: CN1087744C, 2002-07-17.

[9] 沈涛, 敬炳文, 张曼华, 周亚琳, 陈申, 沈建权, 王波杰. 曙红-联吡啶钌类复合光敏剂及其合成方法和用途. CN: CN1289776A, 2001-04-04.

[10] 张曼华, 敬炳文, 陈申, 沈涛, 沈建权. 用于二级pH传感的钌(Ⅱ)多吡啶配合物及其制备方法. CN: CN1289774A, 2001-04-04.

[11] 沈建权. 生物发酵制氢装置. CN: CN2416107Y, 2001-01-24.

出版信息

   
发表论文
[1] Changshun Chu, Jianting Liu, Liling Wei, Jiejie Feng, Huayi Li, Jianquan Shen. Iron carbide and iron phosphide embedded N-doped porous carbon derived from biomass as oxygen reduction reaction catalyst for microbial fuel cell. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. 2023, 48(11): 4492-4502, http://dx.doi.org/10.1016/j.ijhydene.2022.10.262.
[2] Jianting Liu, Changshun Chu, Liling Wei, Jiejie Feng, Jianquan Shen. Iron/cobalt-decorated nitrogen-rich 3D layer-stacked porous biochar as high-performance oxygen reduction air-cathode catalyst in microbial fuel cell. BIOSENSORS AND BIOELECTRONICS. 2023, 222: http://dx.doi.org/10.1016/j.bios.2022.114926.
[3] Wang, Huiqiang, Wei, Liling, Shen, Jianquan. Metal-free catalyst for efficient pH-universal oxygen reduction electrocatalysis in microbial fuel cell. JOURNAL OF ELECTROANALYTICAL CHEMISTRY[J]. 2022, 911: http://dx.doi.org/10.1016/j.jelechem.2022.116233.
[4] Liu, Jianting, Wei, Liling, Chu, Changshun, Shen, Jianquan. Tofu gel-derived nitrogen and trace iron co-doped porous carbon as highly efficient air-cathode electrocatalyst for microbial fuel cells. JOURNAL OF POWER SOURCES[J]. 2022, 527: http://dx.doi.org/10.1016/j.jpowsour.2021.230960.
[5] Lan, Gongjia, Li, Huayi, Shen, Jianquan. Bimetallic zeolitic imidazole framework derived Co@NC materials as oxygen reduction reaction catalysts application for microbial fuel cells. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2022, 47(19): 10701-10714, http://dx.doi.org/10.1016/j.ijhydene.2021.12.114.
[6] Liu, Jianting, Wei, Liling, Wang, Huiqiang, Lan, Gongjia, Yang, Haijun, Shen, Jianquan. Silk gel-based N self-doped porous activated carbon as an efficient electrocatalyst in neutral, alkaline and acidic medium. FUEL[J]. 2021, 287: http://dx.doi.org/10.1016/j.fuel.2020.119485.
[7] Liu, Jianting, Wei, Liling, Wang, Huiqiang, Lan, Gongjia, Yang, Haijun, Shen, Jianquan. Biomass-derived N-doped porous activated carbon as a high-performance and cost-effective pH-universal oxygen reduction catalyst in fuel cell. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2020, 45(53): 29308-29321, http://dx.doi.org/10.1016/j.ijhydene.2020.07.216.
[8] Liu, Jianting, Wei, Liling, Wang, Huiqiang, Lan, Gongjia, Yang, Haijun, Shen, Jianquan. In-situ synthesis of heteroatom co-doped mesoporous dominated carbons as efficient electrocatalysts for oxygen reduction reaction. ELECTROCHIMICA ACTA[J]. 2020, 364: http://dx.doi.org/10.1016/j.electacta.2020.137335.
[9] Liu, Jianting, Wei, Liling, Cao, Chun, Lang, Fengzheng, Wang, Huiqiang, Shen, Jianquan. A novel hard-template method for fabricating tofu-gel based N self-doped porous carbon as stable and cost-efficient electrocatalyst in microbial fuel cell. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2019, 44(48): 26477-26488, http://dx.doi.org/10.1016/j.ijhydene.2019.08.072.
[10] Liu, Jianting, Wei, Liling, Cao, Chun, Zhang, Fengtao, Lang, Fengzheng, Wang, Huiqiang, Yang, Haijun, Shen, Jianquan. Salt-induced silk gel-derived N and trace Fe co-doped 3D porous carbon as an oxygen reduction catalyst in microbial fuel cells. NANOSCALE[J]. 2019, 11(28): 13431-13439, https://www.webofscience.com/wos/woscc/full-record/WOS:000476564300021.
[11] Cao, Chun, Wei, Liling, Zhai, Qiran, Ci, Jiliang, Li, Weiwei, Wang, Gang, Shen, Jianquan. Gas-Flow Tailoring Fabrication of Graphene-like Co-Nx-C Nanosheet Supported Sub-10 nm PtCo Nanoalloys as Synergistic Catalyst for Air-Cathode Microbial Fuel Cells. ACS APPLIED MATERIALS & INTERFACES[J]. 2017, 9(27): 22465-22475, https://www.webofscience.com/wos/woscc/full-record/WOS:000405764700040.
[12] Wang, Gang, Wei, Liling, Cao, Chun, Su, Min, Shen, Jianquan. Novel resolution-contrast method employed for investigating electron transfer mechanism of the mixed bacteria microbial fuel cell. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2017, 42(16): 11614-11621, http://dx.doi.org/10.1016/j.ijhydene.2017.02.029.
[13] Cao, Chun, Wei, Liling, Wang, Gang, Shen, Jianquan. Superiority of boron, nitrogen and iron ternary doped carbonized graphene oxide-based catalysts for oxygen reduction in microbial fuel cells. NANOSCALE[J]. 2017, 9(10): 3537-3546, https://www.webofscience.com/wos/woscc/full-record/WOS:000397125500023.
[14] Cao, Chun, Wei, Liling, Wang, Gang, Shen, Jianquan. In-situ growing NiCo2O4 nanoplatelets on carbon cloth as binder-free catalyst air-cathode for high-performance microbial fuel cells. ELECTROCHIMICA ACTA[J]. 2017, 231: 609-616, http://dx.doi.org/10.1016/j.electacta.2017.02.117.
[15] Cao, Chun, Wei, Liling, Su, Min, Wang, Gang, Shen, Jianquan. Template-free and one-pot synthesis of N-doped hollow carbon tube @ hierarchically porous carbon supporting homogeneous AgNPs for robust oxygen reduction catalyst. CARBON[J]. 2017, 112: 27-36, http://dx.doi.org/10.1016/j.carbon.2016.10.083.
[16] Cao, Chun, Wei, Liling, Wang, Gang, Liu, Jianting, Zhai, Qiran, Shen, Jianquan. A polyaniline-derived iron-nitrogen-carbon nanorod network anchored on graphene as a cost-effective air-cathode electrocatalyst for microbial fuel cells. INORGANICCHEMISTRYFRONTIERS[J]. 2017, 4(11): 1930-1938, https://www.webofscience.com/wos/woscc/full-record/WOS:000414779000020.
[17] Cao, Chun, Wei, Liling, Zhai, Qiran, Wang, Gang, Shen, Jianquan. Biomass-derived nitrogen and boron dual-doped hollow carbon tube as cost-effective and stable synergistic catalyst for oxygen electroreduction. ELECTROCHIMICA ACTA[J]. 2017, 249: 328-336, http://dx.doi.org/10.1016/j.electacta.2017.08.025.
[18] Cao, Chun, Wei, Liling, Su, Min, Wang, Gang, Shen, Jianquan. "Spontaneous bubble-template" assisted metal-polymeric framework derived N/Co dual-doped hierarchically porous carbon/Fe3O4 nanohybrids: superior electrocatalyst for ORR in biofuel cells. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2016, 4(23): 9303-9310, https://www.webofscience.com/wos/woscc/full-record/WOS:000378947200043.
[19] Su, Min, Wei, Liling, Qiu, Zhaozheng, Wang, Gang, Shen, Jianquan. Hydrogen production in single chamber microbial electrolysis cells with stainless steel fiber felt cathodes. JOURNAL OF POWER SOURCES[J]. 2016, 301: 29-34, http://dx.doi.org/10.1016/j.jpowsour.2015.09.108.
[20] Cao, Chun, Wei, Liling, Su, Min, Wang, Gang, Shen, Jianquan. Enhanced power generation using nano cobalt oxide anchored nitrogen-decorated reduced graphene oxide as a high-performance air-cathode electrocatalyst in biofuel cells. RSC ADVANCES[J]. 2016, 6(58): 52556-52563, [21] Cao, Chun, Wei, Liling, Su, Min, Wang, Gang, Shen, Jianquan. Low-cost adsorbent derived and in situ nitrogen/iron co-doped carbon as efficient oxygen reduction catalyst in microbial fuel cells. BIORESOURCE TECHNOLOGY[J]. 2016, 214: 348-354, http://dx.doi.org/10.1016/j.biortech.2016.04.111.
[22] Qiu, Zhaozheng, Su, Min, Wei, Liling, Han, Hongliang, Jia, Qibo, Shen, Jianquan. Improvement of microbial fuel cell cathodes using cost-effective polyvinylidene fluoride. JOURNAL OF POWER SOURCES[J]. 2015, 273: 566-573, http://dx.doi.org/10.1016/j.jpowsour.2014.09.124.
[23] Su, Min, Wei, Liling, Qiu, Zhaozheng, Jia, Qibo, Shen, Jianquan. A graphene modified biocathode for enhancing hydrogen production. RSC ADVANCES[J]. 2015, 5(41): 32609-32614, https://www.webofscience.com/wos/woscc/full-record/WOS:000353166300065.
[24] Qiu, Zhaozheng, Wei, Liling, Wang, Gang, Su, Min, Shen, Jianquan. Stainless steel felt as diffusion backing for high-performance microbial fuel cell cathodes. RSC ADVANCES[J]. 2015, 5(57): 46210-46217, http://ir.iccas.ac.cn/handle/121111/28164.
[25] Jia, Qibo, Wei, Liling, Han, Hongliang, Shen, Jianquan. Factors that influence the performance of two-chamber microbial fuel cell. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2014, 39(25): 13687-13693, http://dx.doi.org/10.1016/j.ijhydene.2014.04.023.
[26] Han, Hongliang, Jia, Qibo, Wei, Liling, Shen, Jianquan. Influence of Cu2+ concentration on the biohydrogen production of continuous stirred tank reactor. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2014, 39(25): 13437-13442, http://dx.doi.org/10.1016/j.ijhydene.2014.04.022.
[27] Jia, Qibo, Han, Hongliang, Wang, Lihua, Liu, Biqian, Yang, Haijun, Shen, Jianquan. Effects of CTAC micelles on the molecular structures and separation performance of thin-film composite (TFC) membranes in forward osmosis processes. DESALINATION[J]. 2014, 340: 30-41, http://dx.doi.org/10.1016/j.desal.2014.02.017.
[28] Han, Hongliang, Jia, Qibo, Liu, Biqian, Yang, Haijun, Shen, Jianquan. Fermentative hydrogen production from acetate using Rhodobacter sphaeroides RV. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2013, 38(25): 10773-10778, http://dx.doi.org/10.1016/j.ijhydene.2013.02.134.
[29] Wei, Liling, Han, Hongliang, Shen, Jianquan. Effects of temperature and ferrous sulfate concentrations on the performance of microbial fuel cell. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2013, 38(25): 11110-11116, http://dx.doi.org/10.1016/j.ijhydene.2013.01.019.
[30] Han, Hongliang, Jia, Qibo, Liu, Biqian, Yang, Haijun, Shen, Jianquan. Optimization of photosynthetic hydrogen production from acetate by Rhodobacter sphaeroides RV. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2013, 38(29): 12886-12890, http://dx.doi.org/10.1016/j.ijhydene.2013.05.156.
[31] Han, Hongliang, Liu, Biqian, Yang, Haijun, Shen, Jianquan. Effect of carbon sources on the photobiological production of hydrogen using Rhodobacter sphaeroides RV. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2012, 37(17): 12167-12174, http://dx.doi.org/10.1016/j.ijhydene.2012.03.134.
[32] Han, Hongliang, Wei, Liling, Liu, Biqian, Yang, Haijun, Shen, Jianquan. Optimization of biohydrogen production from soybean straw using anaerobic mixed bacteria. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2012, 37(17): 13200-13208, http://dx.doi.org/10.1016/j.ijhydene.2012.03.073.
[33] Cui, Maojin, Shen, Jianquan. Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2012, 37(1): 1120-1124, http://dx.doi.org/10.1016/j.ijhydene.2011.02.078.
[34] Wei, Liling, Han, Hongliang, Shen, Jianquan. Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell. INTERNATIONALJOURNALOFHYDROGENENERGY[J]. 2012, 37(17): 12980-12986, http://dx.doi.org/10.1016/j.ijhydene.2012.05.068.
[35] Wei, Liling, Yuan, Zhuliang, Cui, Maojin, Han, Hongliang, Shen, Jianquan. Study on electricity-generation characteristic of two-chambered microbial fuel cell in continuous flow mode. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2012, 37(1): 1067-1073, http://dx.doi.org/10.1016/j.ijhydene.2011.02.120.
[36] Han, Hongliang, Cui, Maojin, Wei, Liling, Yang, Haijun, Shen, Jianquan. Enhancement effect of hematite nanoparticles on fermentative hydrogen production. BIORESOURCE TECHNOLOGY[J]. 2011, 102(17): 7903-7909, http://dx.doi.org/10.1016/j.biortech.2011.05.089.
[37] Cui, Maojin, Yuan, Zhuliang, Zhi, Xiaohua, Wei, Liling, Shen, Jianquan. Biohydrogen production from poplar leaves pretreated by different methods using anaerobic mixed bacteria. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2010, 35(9): 4041-4047, http://dx.doi.org/10.1016/j.ijhydene.2010.02.035.
[38] Zhi, Xiaohua, Yang, Haijun, Yuan, Zhuliang, Shen, Jianquan. Kinetic analysis of hydrogen production using anaerobic bacteria in reverse micelles. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2010, 35(7): 2926-2930, http://dx.doi.org/10.1016/j.ijhydene.2009.05.048.
[39] Zhi, Xiaohua, Yang, Haijun, Berthold, Sascha, Doetsch, Christian, Shen, Jianquan. Potential improvement to a citric wastewater treatment plant using bio-hydrogen and a hybrid energy system. JOURNAL OF POWER SOURCES[J]. 2010, 195(19): 6945-6953, http://dx.doi.org/10.1016/j.jpowsour.2010.04.046.
[40] Yuan, Zhuliang, Yang, Haijun, Zhi, Xiaohua, Shen, Jianquan. Increased performance of continuous stirred tank reactor with calcium supplementation. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2010, 35(7): 2622-2626, http://dx.doi.org/10.1016/j.ijhydene.2009.04.018.
[41] Cui, Maojin, Yuan, Zhuliang, Zhi, Xiaohua, Shen, Jianquan. Optimization of biohydrogen production from beer lees using anaerobic mixed bacteria. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2009, 34(19): 7971-7978, http://dx.doi.org/10.1016/j.ijhydene.2009.08.022.
[42] 沈建权, 马占芳, 袁柱良, 崔茂金. 生物质生物制氢现状与未来氢能利用情景. 中国科技成果[J]. 2009, 28-29,32, http://lib.cqvip.com/Qikan/Article/Detail?id=30754150.
[43] Yuan, Zhuliang, Yang, Haijun, Zhi, Xiaohua, Shen, Jianquan. Enhancement effect of L-cysteine on dark fermentative hydrogen production. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2008, 33(22): 6535-6540, http://dx.doi.org/10.1016/j.ijhydene.2008.07.065.
[44] 沈建权, 杨海军, 袁柱良, 支晓华. 生物制氢技术的发展. 中国科技成果[J]. 2008, 10-13, http://lib.cqvip.com/Qikan/Article/Detail?id=26939697.
[45] Zhi, Xiahua, Yang, Haijun, Yuan, Zhuliang, Shen, Jianquan. Bio-hydrogen production of anaerobic bacteria in reverse micellar media. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2008, 33(18): 4747-4754, http://dx.doi.org/10.1016/j.ijhydene.2008.06.047.
[46] Zhang, Yongfang, Shen, Jianquan. Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2007, 32(1): 17-23, http://dx.doi.org/10.1016/j.ijhydene.2006.06.004.
[47] Zhang, YF, Shen, JQ. Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2006, 31(4): 441-446, http://dx.doi.org/10.1016/j.ijhydene.2005.05.006.
[48] Yang, Haijun, Shao, Peng, Lu, Tingmao, Shen, Jianquan, Wang, Dufu, Xu, Zhinian, Yuan, Xing. Continuous bio-hydrogen production from citric acid wastewater via facultative anaerobic bacteria. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2006, 31(10): 1306-1313, http://dx.doi.org/10.1016/j.ijhydene.2005.11.018.
[49] Yang, Haijun, Shen, Jianquan. Effect of ferrous iron concentration on anaerobic bio-hydrogen production from soluble starch. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2006, 31(15): 2137-2146, http://dx.doi.org/10.1016/j.ijhydene.2006.02.009.
[50] Zhang, YF, Liu, GZ, Shen, JQ. Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2005, 30(8): 855-860, http://dx.doi.org/10.1016/j.ijhydene.2004.05.009.
[51] Liu, GZ, Shen, JQ. Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. JOURNAL OF BIOSCIENCE AND BIOENGINEERING[J]. 2004, 98(4): 251-256, http://dx.doi.org/10.1016/S1389-1723(04)00277-4.
[52] 刘光臻, 张永芳, 沈建权. 厌氧产氢细菌连续生物制氢放大实验的研究. 净水技术[J]. 2004, 23(6): 7-9,48, http://lib.cqvip.com/Qikan/Article/Detail?id=11448963.

指导学生

支晓华  博士研究生  070303-有机化学  80032-化学研究所

崔茂金  博士研究生  070303-有机化学  80032-化学研究所