基本信息
黄庆国  男  博导  中国科学院理论物理研究所
电子邮件: huangqg@itp.ac.cn
通信地址: 北京市海淀区中关村东路55号
邮政编码: 100190

研究领域

引力理论,引力波和宇宙学

招生信息

招生专业
070201-理论物理
招生方向
引力波,早期宇宙物理,暗能量,量子引力理论

教育背景

2000-09--2004-07   中国科学院理论物理研究所   博士
学历
-- 研究生
学位
-- 博士

工作经历

   
工作简历
2010-03~现在, 中国科学院理论物理研究所, 研究员
2006-05~2010-03,韩国高等研究院, research fellow
2004-08~2006-05,中国科学院理论交叉研究中心, 博士后

教授课程

现代物理学概述
广义相对论
宇宙学
科研实践Ⅱ-前沿物理研究******
科研实践Ⅰ-综合物理实验******
宇宙学前沿系列讲座

专利与奖励

   
奖励信息
(1) 中国科学院卢嘉锡青年人才奖, , 院级, 2011

出版信息

   
发表论文
[1] De-Shuang Meng, Chen Yuan, 黄庆国. Primordial black holes generated by the non-minimal spectator field. 中国科学:物理学 力学 天文学(英文版)[J]. 2023, 66(8): [2] Guo, RongZhen, Yuan, Chen, Huang, QingGuo. On the interaction between ultralight bosons and quantum-corrected black holes. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2023, http://dx.doi.org/10.1088/1475-7516/2023/04/069.
[3] Zhu, QingHua, Han, YuXuan, Huang, QingGuo. The shadow of supertranslated black hole. EUROPEAN PHYSICAL JOURNAL C[J]. 2023, 83(1): http://dx.doi.org/10.1140/epjc/s10052-023-11232-4.
[4] Yang Jiang, Xi-Long Fan, 黄庆国. Search for stochastic gravitational-wave background from string cosmology with Advanced LIGO and Virgo's O1∼O3 data. JCAP[J]. 2023, [5] Jiang, Yang, Huang, QingGuo. Constraining the gravitational-wave spectrum from cosmological first-order phase transitions using data from LIGO-Virgo first three observing runs. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2023, http://dx.doi.org/10.1088/1475-7516/2023/06/053.
[6] Chen, ZuCheng, Du, ShenShi, Huang, QingGuo, You, ZhiQiang. Constraints on primordial-black-hole population and cosmic expansion history from GWTC-3. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2023, http://dx.doi.org/10.1088/1475-7516/2023/03/024.
[7] Jiang, Yang, Huang, QingGuo. Upper limits on the polarized isotropic stochastic gravitational-wave background from advanced LIGO-Virgo's first three observing runs. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2023, http://dx.doi.org/10.1088/1475-7516/2023/02/026.
[8] Wu, YuMei, Chen, ZuCheng, Huang, QingGuo. Search for stochastic gravitational-wave background from massive gravity in the NANOGrav 12.5-year dataset. PHYSICAL REVIEW D[J]. 2023, 107(4): http://dx.doi.org/10.1103/PhysRevD.107.042003.
[9] Yan-Chen Bi, Yu-Mei Wu, Zu-Cheng Chen, 黄庆国. Implications for the supermassive black hole binaries from the NANOGrav 15-year data set. 中国科学:物理学 力学 天文学(英文版)[J]. 2023, 66: [10] Zu-Cheng Chen, Yu-Mei Wu, 黄庆国. Search for the Gravitational-wave Background from Cosmic Strings with the Parkes Pulsar Timing Array Second Data Release. The Astrophysical Journal[J]. 2022, 936: [11] Wu, YuMei, Chen, ZuCheng, Huang, QingGuo, Zhu, Xingjiang, Bhat, N D Ramesh, Feng, Yi, Hobbs, George, Manchester, Richard N, Russell, Christopher J, Shannon, R M. Constraining ultralight vector dark matter with the Parkes Pulsar Timing Array second data release. 2022, http://arxiv.org/abs/2210.03880.
[12] Chen, ZuCheng, Yuan, Chen, Huang, QingGuo. Confronting the primordial black hole scenario with the gravitational-wave events detected by LIGO-Virgo. PHYSICS LETTERS B[J]. 2022, 829: http://dx.doi.org/10.1016/j.physletb.2022.137040.
[13] Zu-Cheng Chen, Yu-Mei Wu, 黄庆国. Searching for isotropic stochastic gravitational-wave background in the international pulsar timing array second data release. Commun. Theor. Phys.[J]. 2022, 74: [14] Yang Jiang, 黄庆国. Implications for Cosmic Domain Walls from LIGO-Virgo First Three Observing Runs. Phys.Rev.D[J]. 2022, 106(10): [15] Wu, YuMei, Chen, ZuCheng, Huang, QingGuo. Constraining the Polarization of Gravitational Waves with the Parkes Pulsar Timing Array Second Data Release. ASTROPHYSICAL JOURNAL[J]. 2022, 925(1): http://dx.doi.org/10.3847/1538-4357/ac35cc.
[16] De-Shuang Meng, Chen Yuan, 黄庆国. One-loop correction to the enhanced curvature perturbation with local-type non-Gaussianity for the formation of primordial black holes. Phys. Rev. D[J]. 2022, 106: [17] Chen Yuan, Yang Jiang, 黄庆国. Constraints on an ultralight scalar boson from Advanced LIGO and Advanced Virgo’s first three observing runs using the stochastic gravitational-wave background. Phys.Rev.D[J]. 2022, 106: [18] Guo, RongZhen, Yuan, Chen, Huang, QingGuo. Near-horizon microstructure and superradiant instabilities of black holes. PHYSICAL REVIEW D[J]. 2022, 105(6): http://dx.doi.org/10.1103/PhysRevD.105.064029.
[19] Yuan, Chen, Huang, QingGuo. Gravitational waves induced by the local-type non-Gaussian curvature perturbations. 2021, [20] Li, Jun, Chen, ZuCheng, Huang, QingGuo. Measuring the tilt of primordial gravitational-wave power spectrum from observations (vol 62, 110421, 2019). SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY. 2021, 64(5): http://dx.doi.org/10.1007/s11433-021-1663-3.
[21] Zhang, Xue, Huang, QingGuo. Hubble constant and sound horizon from the late-time Universe. 2021, http://arxiv.org/abs/2006.16692.
[22] Chen, ZuCheng, Yuan, Chen, Huang, QingGuo. Non-tensorial gravitational wave background in NANOGrav 12.5-year data set. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY[J]. 2021, 64(12): 84-89, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000716423900002.
[23] Fang, Yun, Guo, RongZhen, Huang, QingGuo. Tests for the existence of horizon through gravitational waves from a small binary in the vicinity of a massive object. PHYSICS LETTERS B[J]. 2021, 822: https://doaj.org/article/315ffe823e4f4ae7a2086f5dff815202.
[24] Yuan, Chen, Huang, QingGuo. A topic review on probing primordial black hole dark matter with scalar induced gravitational waves. ISCIENCEnull. 2021, 24(8): http://dx.doi.org/10.1016/j.isci.2021.102860.
[25] Zhang, Xue, Huang, QingGuo. Hubble constant and sound horizon from the late-time Universe. PHYSICAL REVIEW D[J]. 2021, 103(4): http://dx.doi.org/10.1103/PhysRevD.103.043513.
[26] Wu, YuMei, Huang, QingGuo. Parametrized second post-Newtonian framework with conservation laws. PHYSICAL REVIEW D[J]. 2021, 104(6): http://dx.doi.org/10.1103/PhysRevD.104.064050.
[27] Yuan Chen, Chen ZuCheng, Huang QingGuo. Log-dependent slope of scalar induced gravitational waves in the infrared regions. 2020, http://arxiv.org/abs/1910.09099.
[28] Yuan, Chen, Chen, ZuCheng, Huang, QingGuo. Log-dependent slope of scalar induced gravitational waves in the infrared regions. PHYSICAL REVIEW D[J]. 2020, 101(4): http://dx.doi.org/10.1103/PhysRevD.101.043019.
[29] Wang, YiFan, Huang, QingGuo, Li, Tjonnie G F, Liao, Shihong. Searching for primordial black holes with stochastic gravitational-wave background in the space-based detector frequency band. PHYSICAL REVIEW D[J]. 2020, 101(6): http://dx.doi.org/10.1103/PhysRevD.101.063019.
[30] Chen, ZuCheng, Yuan, Chen, Huang, QingGuo. Pulsar Timing Array Constraints on Primordial Black Holes with NANOGrav 11-Year Data Set. 2020, http://arxiv.org/abs/1910.12239.
[31] Luo, HuaMei, Lin, Wenbin, Chen, ZuCheng, Huang, QingGuo. Extraction of gravitational wave signals with optimized convolutional neural network. FRONTIERS OF PHYSICS[J]. 2020, 15(1): 135-140, http://lib.cqvip.com/Qikan/Article/Detail?id=7101615520.
[32] Fang, Yun, Huang, QingGuo. Three body first post-Newtonian effects on the secular dynamics of a compact binary near a spinning supermassive black hole. PHYSICAL REVIEW D[J]. 2020, 102(10): http://dx.doi.org/10.1103/PhysRevD.102.104002.
[33] Wang, Ke, Huang, QingGuo. Implications for cosmology from ground-based Cosmic Microwave Background observations. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2020, http://dx.doi.org/10.1088/1475-7516/2020/06/045.
[34] Zhang, Xue, Huang, QingGuo. Measuring H-0 from low-z datasets. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY[J]. 2020, 63(9): 2-6, http://lib.cqvip.com/Qikan/Article/Detail?id=7102514447.
[35] Wang, Ke, Huang, QingGuo. Implications for cosmology from Ground-based Cosmic Microwave Background observations. 2020, http://arxiv.org/abs/1912.05491.
[36] Yuan, Chen, Chen, ZuCheng, Huang, QingGuo. Scalar induced gravitational waves in different gauges. PHYSICAL REVIEW D[J]. 2020, 101(6): http://dx.doi.org/10.1103/PhysRevD.101.063018.
[37] Chen, ZuCheng, Yuan, Chen, Huang, QingGuo. Pulsar Timing Array Constraints on Primordial Black Holes with NANOGrav 11-Year Dataset. PHYSICAL REVIEW LETTERS[J]. 2020, 124(25): https://www.webofscience.com/wos/woscc/full-record/WOS:000541706800005.
[38] Chen, ZuCheng, Huang, QingGuo. Distinguishing primordial black holes from astrophysical black holes by Einstein Telescope and Cosmic Explorer. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2020, http://dx.doi.org/10.1088/1475-7516/2020/08/039.
[39] Li XiaoDong, Miao Haitao, Wang Xin, Zhang Xue, Fang Feng, Luo Xiaolin, Huang QingGuo, Li Miao. The redshift dependence of Alcock-Paczynski effect: cosmological constraints from the current and next generation observations. 2019, http://arxiv.org/abs/1903.04757.
[40] Li, Jun, Che, ZuCheng, Huang, QingGuo. Measuring the tilt of primordial gravitational-wave power spectrum from observations. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY[J]. 2019, 62(11): https://www.sciengine.com/doi/10.1007/s11433-019-9605-5.
[41] Sang Yu, Huang QingGuo. Stochastic Gravitational-Wave Background from Axion-Monodromy Oscillons in String Theory During Preheating. 2019, http://arxiv.org/abs/1905.00371.
[42] Jun Li, ZuCheng Che, QingGuo Huang. Measuring the tilt of primordial gravitational-wave power spectrum from observations. 中国科学:物理学、力学、天文学英文版. 2019, 135-137, http://lib.cqvip.com/Qikan/Article/Detail?id=74718871504849574949484954.
[43] Li, XiaoDong, Miao, Haitao, Wang, Xin, Zhang, Xue, Fang, Feng, Luo, Xiaolin, Huang, QingGuo, Li, Miao. The Redshift Dependence of the Alcock-Paczynski Effect: Cosmological Constraints from the Current and Next Generation Observations. ASTROPHYSICAL JOURNAL[J]. 2019, 875(2): http://dx.doi.org/10.3847/1538-4357/ab0f30.
[44] Chen, ZuCheng, Huang, Fan, Huang, QingGuo. Stochastic Gravitational-wave Background from Binary Black Holes and Binary Neutron Stars and Implications for LISA. ASTROPHYSICAL JOURNAL[J]. 2019, 871(1): http://dx.doi.org/10.3847/1538-4357/aaf581.
[45] 张雪, 黄庆国. Constraints on H0 from WMAP and BAO Measurements. 理论物理通讯:英文版[J]. 2019, 71(7): 826-830, https://www.webofscience.com/wos/woscc/full-record/WOS:000475775800008.
[46] Fang, Yun, Huang, QingGuo. Secular evolution of compact binaries revolving around a spinning massive black hole. PHYSICAL REVIEW D[J]. 2019, 99(10): http://dx.doi.org/10.1103/PhysRevD.99.103005.
[47] Fang, Yun, Chen, Xian, Huang, QingGuo. Impact of a Spinning Supermassive Black Hole on the Orbit and Gravitational Waves of a Nearby Compact Binary. ASTROPHYSICAL JOURNAL[J]. 2019, 887(2): http://dx.doi.org/10.3847/1538-4357/ab510e.
[48] Sang, Yu, Huang, QingGuo. Stochastic gravitational-wave background from axion-monodromy oscillons in string theory during preheating. PHYSICAL REVIEW D[J]. 2019, 100(6): [49] Chang, Zhe, Huang, QingGuo, Wang, Sai, Zhao, ZhiChao. Low-redshift constraints on the Hubble constant from the baryon acoustic oscillation "standard rulers" and the gravitational wave "standard sirens". EUROPEAN PHYSICAL JOURNAL C[J]. 2019, 79(2): https://doaj.org/article/0d78b9c426514e69b2ee8d8e1a093c9a.
[50] Zhang, Xue, Huang, QingGuo. Constraints on H-0 from WMAP and BAO Measurements. COMMUNICATIONS IN THEORETICAL PHYSICS[J]. 2019, 71(7): 826-830, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=6527954&detailType=1.
[51] Zhang, Xue, Huang, QingGuo, Li, XiaoDong. Tight H-0 constraint from galaxy redshift surveys: combining baryon acoustic oscillation measurements and Alcock-Paczynski test with a CMB prior. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY[J]. 2019, 483(2): 1655-1662, http://dx.doi.org/10.1093/mnras/sty3191.
[52] Li Jun, Huang Qingguo. Inflation model selection revisited. SCIENCE CHINA. PHYSICS, MECHANICS & ASTRONOMY[J]. 2019, 62(12): 120412-, https://www.sciengine.com/doi/10.1007/s11433-019-9446-1.
[53] Chen, Lu, Huang, QingGuo, Wang, Ke. Distance priors from Planck final release. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2019, http://dx.doi.org/10.1088/1475-7516/2019/02/028.
[54] Yuan, Chen, Chen, ZuCheng, Huang, QingGuo. Probing primordial-black-hole dark matter with scalar induced gravitational waves. PHYSICAL REVIEW D[J]. 2019, 100(8): http://dx.doi.org/10.1103/PhysRevD.100.081301.
[55] Jun Li, QingGuo Huang. Inflation model selection revisited. 中国科学:物理学、力学、天文学英文版[J]. 2019, 62(12): 28-33, http://lib.cqvip.com/Qikan/Article/Detail?id=7100270247.
[56] Yuan Chen, Chen ZuCheng, Huang QingGuo. Probing Primordial-Black-Hole Dark Matter with Scalar Induced Gravitational Waves. 2019, http://arxiv.org/abs/1906.11549.
[57] Zhe Chang, QingGuo Huang, Sai Wang, ZhiChao Zhao. Low-redshift constraints on the Hubble constant from the baryon acoustic oscillation "standard rulers" and the gravitational wave "standard sirens". EUROPEAN PHYSICAL JOURNAL C: PARTICLES AND FIELDS[J]. 2019, 79(2): 1-13, https://doaj.org/article/0d78b9c426514e69b2ee8d8e1a093c9a.
[58] Huang, QingGuo, Wang, Sai. Optimistic estimation on probing primordial gravitational waves with CMB B-mode polarization. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY[J]. 2019, 483(2): 2177-2184, https://www.webofscience.com/wos/woscc/full-record/WOS:000462258200057.
[59] Jun Li, QingGuo Huang. Measuring the spectral running from cosmic microwave background and primordial black holes. EUROPEAN PHYSICAL JOURNAL C: PARTICLES AND FIELDS[J]. 2018, 78(11): 1-6, http://ir.itp.ac.cn/handle/311006/22777.
[60] Wang, Sai, Wang, YiFan, Huang, QingGuo, Li, Tjonnie G F. Constraints on the Primordial Black Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-Wave Background. PHYSICAL REVIEW LETTERS[J]. 2018, 120(19): http://ir.itp.ac.cn/handle/311006/22902.
[61] Li, Jun, Huang, QingGuo. Signatures of modified dispersion relation of graviton in the cosmic microwave background. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2018, http://ir.itp.ac.cn/handle/311006/22748.
[62] Xu, LiXin, Huang, QingGuo. Detecting the neutrinos mass hierarchy from cosmological data. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY[J]. 2018, 61(3): http://ir.itp.ac.cn/handle/311006/22951.
[63] RongGen Cai, ZongKuan Guo, QingGuo Huang, Tao Yang. Super-Eddington accreting massive black holes explore high-z cosmology: Monte-Carlo simulations. ARXIVnull. 2018, 97(12): https://arxiv.org/abs/1801.00604.
[64] Li, Jun, Huang, QingGuo. Measuring the spectral running from cosmic microwave background and primordial black holes. EUROPEAN PHYSICAL JOURNAL C[J]. 2018, 78(11): http://ir.itp.ac.cn/handle/311006/22777.
[65] 黄庆国, 朴云松. 宇宙如何起源?. 科学通报[J]. 2018, 63(24): 2509-2517, http://lib.cqvip.com/Qikan/Article/Detail?id=676354827.
[66] Chen, ZuCheng, Huang, QingGuo. Merger Rate Distribution of Primordial Black Hole Binaries. ASTROPHYSICAL JOURNAL[J]. 2018, 864(1): http://ir.itp.ac.cn/handle/311006/22828.
[67] 黄庆国. Detecting the neutrino mass hierarchy from cosmological data. Sci.China Phys.Mech.Astron. 2018, [68] Pi, Shi, Zhang, Yingli, Huang, QingGuo, Sasaki, Misao. Scalaron from R-2-gravity as a heavy field. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2018, http://dx.doi.org/10.1088/1475-7516/2018/05/042.
[69] Huang, QingGuo, Pi, Shi. Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2018, http://ir.itp.ac.cn/handle/311006/22930.
[70] 郭宗宽, 黄庆国. 来自宇宙的微弱声音——2017年度诺贝尔物理学奖成果简析. 科技导报[J]. 2017, 35(23): 12-15, http://lib.cqvip.com/Qikan/Article/Detail?id=674125895.
[71] Chen, Lu, Huang, QingGuo, Wang, Ke. New cosmological constraints with extended-Baryon Oscillation Spectroscopic Survey DR14 quasar sample. EUROPEAN PHYSICAL JOURNAL C[J]. 2017, 77(11): http://ir.itp.ac.cn/handle/311006/22182.
[72] 郭宗宽, 黄庆国. 来自宇宙的微弱声音——2017年度诺贝尔物理学奖成果简析. 科技导报[J]. 2017, 35(23): 12-15, http://lib.cqvip.com/Qikan/Article/Detail?id=674125895.
[73] Huang, QingGuo, Wang, Ke. Effect of the early reionization on the cosmic microwave background and cosmological parameter estimates. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2017, 2017(7): http://ir.itp.ac.cn/handle/311006/22186.
[74] ZongKuan Guo, QingGuo Huang, RongGen Cai,, YuanZhong Zhang. Cosmological constraints on Lorentz invariance violation in the neutrino sector. 2017, http://www.chinaxiv.org/abs/201709.00166.
[75] Huang, QingGuo. Physics in the early universe. INTERNATIONAL JOURNAL OF MODERN PHYSICS D[J]. 2017, 26(1): http://dx.doi.org/10.1142/S0218271817400016.
[76] ZongKuan Guo, QingGuo Huang, RongGen Cai, YuanZhong Zhang. Cosmological constraints on Lorentz invariance violation in the neutrino sector. CHINAXIV. 2017, 86(6): 65004-, http://www.chinaxiv.org/abs/201709.00166.
[77] 黄庆国. New cosmological constraints with extended Bayon Oscillation Spectroscopic Survey DR14 quasar sample. EPJC. 2017, [78] 黄庆国. 是什么驱动宇宙暴胀?. 科学通报[J]. 2017, 62(36): 4216-4219, http://lib.cqvip.com/Qikan/Article/Detail?id=75888466504849555154484853.
[79] Huang, QingGuo, Wang, Ke, Wang, Sai. Inflation model constraints from data released in 2015. PHYSICALREVIEWD[J]. 2016, 93(10): http://ir.itp.ac.cn/handle/311006/21236.
[80] Huang, QingGuo, Wang, Ke, Wang, Sai. Constraints on the neutrino mass and mass hierarchy from cosmological observations. EUROPEAN PHYSICAL JOURNAL C[J]. 2016, 76(9): http://ir.itp.ac.cn/handle/311006/21232.
[81] QingGuo Huang, Ke Wang, Sai Wang. Constraints on the neutrino mass and mass hierarchy from cosmological observations. THE EUROPEAN PHYSICAL JOURNAL C. 2016, 76(9): http://www.chinaxiv.org/abs/201609.01056.
[82] Qing-Guo Huang, Ke Wang. How the dark energy can reconcile Planck with local determination of the Hubble constant. THE EUROPEAN PHYSICAL JOURNAL C. 2016, 76(9): http://dx.doi.org/10.1140/epjc/s10052-016-4352-x.
[83] 黄庆国. 自洽的大统一理论必须要求多维时空. 科学世界[J]. 2016, 1-1, http://lib.cqvip.com/Qikan/Article/Detail?id=668738824.
[84] Huang, QingGuo, Wang, Ke. How the dark energy can reconcile Planck with local determination of the Hubble constant. EUROPEAN PHYSICAL JOURNAL C[J]. 2016, 76(9): http://ir.itp.ac.cn/handle/311006/23171.
[85] Cheng, Cheng, Zhao, Wen, Huang, QingGuo, Santos, Larissa. Preferred axis of CMB parity asymmetry in the masked maps. PHYSICS LETTERS B[J]. 2016, 757: 445-453, http://ir.itp.ac.cn/handle/311006/23259.
[86] Chen, Lu, Huang, QingGuo, Wang, Ke. Constraint on the abundance of primordial black holes in dark matter from Planck data. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2016, http://ir.itp.ac.cn/handle/311006/23074.
[87] 黄庆国. Constraints on inflation model from BICEP2 and WMAP 9-year data. IJMPD. 2015, [88] Cheng Cheng, Huang QingGuo. An accurate determination of the Hubble constant from baryon acoustic oscillation datasets. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY[J]. 2015, 58(9): http://www.irgrid.ac.cn/handle/1471x/1114830.
[89] Huang QingGuo. The (p, q) inflation model. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY[J]. 2015, 58(11): http://www.irgrid.ac.cn/handle/1471x/1114754.
[90] Huang, QingGuo, Ribeiro, Raquel H, Xing, YuHang, Zhang, KeChao, Zhou, ShuangYong. On the uniqueness of the non-minimal matter coupling in massive gravity and bigravity. PHYSICS LETTERS B[J]. 2015, 748: 356-360, http://www.irgrid.ac.cn/handle/1471x/1114818.
[91] Cheng, Cheng, Huang, QingGuo. Constraint on inflation model from BICEP2 and WMAP 9-year data. INTERNATIONAL JOURNAL OF MODERN PHYSICS D[J]. 2015, 24(4): http://www.irgrid.ac.cn/handle/1471x/1114988.
[92] Fu, TianFu, Huang, QingGuo. The four-point correlation function of graviton during inflation. JOURNAL OF HIGH ENERGY PHYSICS[J]. 2015, 2015(7): http://www.irgrid.ac.cn/handle/1471x/1114865.
[93] Huang, QingGuo, Wang, Ke, Wang, Sai. Distance priors from Planck 2015 data. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2015, http://dx.doi.org/10.1088/1475-7516/2015/12/022.
[94] Huang, QingGuo, Ribeiro, Raquel H, Xing, YuHang, Zhang, KeChao, Zhou, ShuangYong. On the uniqueness of the non-minimal matter coupling in massive gravity and bigravity. PHYSICS LETTERS B[J]. 2015, 748(C): 356-360, http://www.irgrid.ac.cn/handle/1471x/1114818.
[95] Huang, QingGuo, Wang, Sai, Zhao, Wen. Forecasting sensitivity on tilt of power spectrum of primordial gravitational waves after Planck satellite. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2015, http://www.irgrid.ac.cn/handle/1471x/1114790.
[96] Huang, QingGuo. Gravitational waves: A probe to the physics in the early universe. INTERNATIONAL JOURNAL OF MODERN PHYSICS A[J]. 2015, 30(28-29): http://www.irgrid.ac.cn/handle/1471x/1114768.
[97] Huang, QingGuo, Wang, Sai. No evidence for the blue-tilted power spectrum of relic gravitational waves. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2015, http://www.irgrid.ac.cn/handle/1471x/1114924.
[98] Huang, QingGuo. Lyth bound revisited. PHYSICAL REVIEW D[J]. 2015, 91(12): http://www.irgrid.ac.cn/handle/1471x/1114902.
[99] Cheng Cheng, Huang Qingguo, Zhao Wen. Constraints on the extensions to the base ΛCDM model from BICEP2, Plank and WMAP. SCIENCE CHINA. PHYSICS, MECHANICS & ASTRONOMY[J]. 2014, 57(8): 1460-1465, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=5198422&detailType=1.
[100] Cheng, Cheng, Huang, QingGuo. The tilt of primordial gravitational waves spectra from BICEP2. MODERN PHYSICS LETTERS A[J]. 2014, 29(33): http://www.irgrid.ac.cn/handle/1471x/949008.
[101] 黄庆国. The title of primordial gravitational waves spectra from BICEP2. MPLA. 2014, [102] Huang, QingGuo. An analytic calculation of the growth index for f (R) dark energy model. EUROPEAN PHYSICAL JOURNAL C[J]. 2014, 74(7): http://www.irgrid.ac.cn/handle/1471x/949116.
[103] Cheng, Cheng, Huang, QingGuo. Probing the primordial Universe from the low-multipole CMB data. PHYSICS LETTERS B[J]. 2014, 738(-): 140-143, http://dx.doi.org/10.1016/j.physletb.2014.09.036.
[104] 黄庆国. Constraints on the extensions to the base LambdaCDM model from BICEP2, Planck and WMAP. Sci China-Phys Mech Astron. 2014, [105] Cheng Cheng, Huang QingGuo, Zhao Wen. Constraints on the extensions to the base ACDM model from BICEP2, Planck and WMAP. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY[J]. 2014, 57(8): 1460-1465, http://www.irgrid.ac.cn/handle/1471x/949102.
[106] Cheng, Cheng, Huang, QingGuo, Wang, Sai. Constraint on the primordial gravitational waves from the joint analysis of BICEP2 and Planck HFI 353 GHz dust polarization data. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2014, http://www.irgrid.ac.cn/handle/1471x/948959.
[107] Cheng, Cheng, Huang, QingGuo. Dark side of the Universe after Planck data. PHYSICAL REVIEW D[J]. 2014, 89(4): http://www.irgrid.ac.cn/handle/1471x/836548.
[108] Cheng, Cheng, Huang, QingGuo. Constraints on the cosmological parameters from BICEP2, Planck, and WMAP. EUROPEAN PHYSICAL JOURNAL C[J]. 2014, 74(11): http://dx.doi.org/10.1140/epjc/s10052-014-3139-1.
[109] Huang, QingGuo. A polynomial f(R) inflation model. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2014, https://www.webofscience.com/wos/woscc/full-record/WOS:000358351300014.
[110] Cheng Cheng, Qing-Guo Huang. Constraints on the cosmological parameters from BICEP2, Planck, and WMAP. THE EUROPEAN PHYSICAL JOURNAL C. 2014, 74(11): http://dx.doi.org/10.1140/epjc/s10052-014-3139-1.
[111] Huang, QingGuo, Zhang, KeChao, Zhou, ShuangYong. Generalized massive gravity in arbitrary dimensions and its Hamiltonian formulation. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2013, http://www.irgrid.ac.cn/handle/1471x/836374.
[112] Huang, QingGuo. g(NL) in the curvaton model constrained by PLANCK. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2013, http://www.irgrid.ac.cn/handle/1471x/836445.
[113] Choi, KiYoung, Huang, QingGuo. Can the standard model Higgs boson seed the formation of structures in our Universe?. PHYSICAL REVIEW D[J]. 2013, 87(4): http://dx.doi.org/10.1103/PhysRevD.87.043501.
[114] Cheng, Cheng, Huang, QingGuo, Ma, YinZhe. Constraints on single-field inflation with WMAP, SPT and ACT data - a last-minute stand before Planck. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2013, http://www.irgrid.ac.cn/handle/1471x/836399.
[115] Huang, QingGuo, Wang, Yi. Large local non-Gaussianity from general ultra slow-roll inflation. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2013, http://dx.doi.org/10.1088/1475-7516/2013/06/035.
[116] Ma, YinZhe, Huang, QingGuo, Zhang, Xin. Confronting brane inflation with Planck and pre-Planck data. PHYSICAL REVIEW D[J]. 2013, 87(10): http://www.irgrid.ac.cn/handle/1471x/836430.
[117] Fang, Chao, Huang, QingGuo. The trouble with asymptotically safe inflation. EUROPEAN PHYSICAL JOURNAL C[J]. 2013, 73(4): http://www.irgrid.ac.cn/handle/1471x/836459.
[118] LI XiaoDong, WANG Shuang, HUANG QingGuo, ZHANG Xin, LI Miao. Dark energy and fate of the Universe. 中国科学:物理学、力学、天文学英文版[J]. 2012, 55(7): 1330-1334, http://lib.cqvip.com/Qikan/Article/Detail?id=42314451.
[119] Zhang WenShuai, Cheng Cheng, Huang QingGuo, Li Miao, Li Song, Li XiaoDong, Wang Shuang. Testing modified gravity models with recent cosmological observations. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY[J]. 2012, 55(12): 2244-2258, https://www.sciengine.com/doi/10.1007/s11433-012-4945-9.
[120] Huang, QingGuo, Piao, YunSong, Zhou, ShuangYong. Mass-varying massive gravity. PHYSICAL REVIEW D[J]. 2012, 86(12): http://www.irgrid.ac.cn/handle/1471x/836029.
[121] Huang, QingGuo, Lin, FengLi. Cosmological constant, inflation and no-cloning theorem. PHYSICS LETTERS B[J]. 2012, 712(1-2): 143-145, http://dx.doi.org/10.1016/j.physletb.2012.04.062.
[122] Cheng, Cheng, Huang, QingGuo, Li, XiaoDong, Ma, YinZhe. Constraints on primordial gravitational waves with variable sound speed from current CMB data. PHYSICAL REVIEW D[J]. 2012, 86(12): http://dx.doi.org/10.1103/PhysRevD.86.123512.
[123] Li XiaoDong, Wang Shuang, Huang QingGuo, Zhang Xin, Li Miao. Dark energy and fate of the Universe. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY[J]. 2012, 55(7): 1330-1334, https://www.sciengine.com/doi/10.1007/s11433-012-4748-z.
[124] Li, XiaoDong, Li, Song, Wang, Shuang, Zhang, WenShuai, Huang, QingGuo, Li, Miao. Probing cosmic acceleration by using the SNLS3 SNIa dataset. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2011, http://dx.doi.org/10.1088/1475-7516/2011/07/011.
[125] Huang, QingGuo. Negative spectral index of f(NL) in the axion-type curvaton model (vol 2010, pg 26, 2010). JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS. 2011, http://www.irgrid.ac.cn/handle/1471x/640601.
[126] Huang, QingGuo. Spectral index and running of g(NL) from an isocurvature scalar field. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2011, http://dx.doi.org/10.1088/1475-7516/2011/04/010.
[127] Zhao, Wen, Huang, QingGuo. Testing inflationary consistency relations by the potential CMB observations. CLASSICAL AND QUANTUM GRAVITY[J]. 2011, 28(23): http://dx.doi.org/10.1088/0264-9381/28/23/235003.
[128] 黄庆国. Scale dependences of local form non-Gaussianity parameters from a DBI isocurvatre field. JCAP. 2011, [129] Zheng, Rui, Huang, QingGuo. Growth factor in f(T) gravity. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2011, http://www.irgrid.ac.cn/handle/1471x/640590.
[130] Chingangbam, Pravabati, Huang, QingGuo. New features in the curvaton model. PHYSICAL REVIEW D[J]. 2011, 83(2): http://dx.doi.org/10.1103/PhysRevD.83.023527.
[131] Huang, QingGuo, Lin, Chunshan. Scale dependences of local form non-Gaussianity parameters from a DBI isocurvature field. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2011, http://dx.doi.org/10.1088/1475-7516/2011/10/005.
[132] 黄庆国. Testing inflationary consistency relatios by the potential CMB observations. Class.Quant.Grav.. 2011, [133] Chen, Bin, Huang, QingGuo. Field theory at a Lifshitz point. PHYSICS LETTERS B[J]. 2010, 683(2-3): 108-113, https://www.webofscience.com/wos/woscc/full-record/WOS:000274421100005.
[134] Huang, QingGuo. Consistency relation for the Lorentz invariant single-field inflation. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2010, https://www.webofscience.com/wos/woscc/full-record/WOS:000279490800024.
[135] Huang, QingGuo. Negative spectral index of f(NL) in the axion-type curvaton model. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2010, http://ir.iphy.ac.cn/handle/311004/49796.
[136] Huang, QingGuo. The trispectrum in ghost inflation. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2010, http://ir.iphy.ac.cn/handle/311004/45589.
[137] Huang, QingGuo. Scale dependence of f(NL) in N-flation. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2010, https://www.webofscience.com/wos/woscc/full-record/WOS:000286930700017.
[138] 黄庆国. Negative spectral index of $f_{NL}$ in the axion-type curvaton mode. JCAP. 2010, [139] Izumi, Keisuke, Mukohyama, Shinji. Trispectrum from ghost inflation. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2010, https://www.webofscience.com/wos/woscc/full-record/WOS:000279604500017.
[140] Huang, QingGuo. A geometric description of the non-Gaussianity generated at the end of multi-field inflation. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2009, https://www.webofscience.com/wos/woscc/full-record/WOS:000267776100003.
[141] Huang, QingGuo, Li, Miao, Li, XiaoDong, Wang, Shuang. Fitting the constitution type Ia supernova data with the redshift-binned parametrization method. PHYSICAL REVIEW D[J]. 2009, 80(8): http://dx.doi.org/10.1103/PhysRevD.80.083515.
[142] Huang, QingGuo, Tye, S H Henry. THE COSMOLOGICAL CONSTANT PROBLEM AND INFLATION IN THE STRING LANDSCAPE. INTERNATIONAL JOURNAL OF MODERN PHYSICS A[J]. 2009, 24(10): 1925-1962, https://www.webofscience.com/wos/woscc/full-record/WOS:000265208000004.
[143] Huang, QingGuo. The trispectrum in the multi-brid inflation. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2009, https://www.webofscience.com/wos/woscc/full-record/WOS:000267775700017.
[144] Chingangbam, Pravabati, Huang, QingGuo. The curvature perturbation in the axion-type curvaton model. JOURNALOFCOSMOLOGYANDASTROPARTICLEPHYSICS[J]. 2009, https://www.webofscience.com/wos/woscc/full-record/WOS:000265972600002.
[145] Huang, QingGuo. Theoretic limits on the equation of state parameter of quintessence. PHYSICAL REVIEW D[J]. 2008, 77(10): https://www.webofscience.com/wos/woscc/full-record/WOS:000257329300038.
[146] Huang, QingGuo. Weak gravity conjecture for effective field theories with N species. PHYSICAL REVIEW D[J]. 2008, 77(10): https://www.webofscience.com/wos/woscc/full-record/WOS:000257329300108.
[147] Huang, QingGuo. Spectral index in curvaton scenario. PHYSICAL REVIEW D[J]. 2008, 78(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000259368500027.
[148] Huang, QingGuo. The N-vaton. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2008, https://www.webofscience.com/wos/woscc/full-record/WOS:000259700200012.
[149] Huang, QingGuo. Weak gravity conjecture with large extra dimensions. PHYSICS LETTERS B[J]. 2008, 658(4): 155-157, http://dx.doi.org/10.1016/j.physletb.2007.03.051.
[150] Huang, QingGuo, Wang, Yi. Curvaton dynamics and the non-linearity parameters in the curvaton model. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2008, https://www.webofscience.com/wos/woscc/full-record/WOS:000259700200004.
[151] Huang, QingGuo. A curvaton with a polynomial potential. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2008, https://www.webofscience.com/wos/woscc/full-record/WOS:000261260200020.
[152] 黄庆国. Large Non-Gaussianity Implication for Curvaton Scenari. Phys.Lett.B. 2008, [153] Qing-Guo Huang. Observational consequences of quantum cosmology. NUCLEAR PHYSICS, SECTION B. 2007, 777(1): 253-261, http://dx.doi.org/10.1016/j.nuclphysb.2007.04.015.
[154] Huang, QingGuo. Constraints on the spectral index for the inflation models in the string landscape. PHYSICAL REVIEW D[J]. 2007, 76(6): http://dx.doi.org/10.1103/PhysRevD.76.061303.
[155] Huang, QingGuo. Gravitational correction and Weak gravity conjecture. JOURNAL OF HIGH ENERGY PHYSICS[J]. 2007, https://www.webofscience.com/wos/woscc/full-record/WOS:000245922000053.
[156] Huang, QingGuo. Slow-roll reconstruction for running spectral index. PHYSICAL REVIEW D[J]. 2007, 76(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000249155800027.
[157] Huang, QingGuo. Simplified chain inflation. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2007, https://www.webofscience.com/wos/woscc/full-record/WOS:000246851300013.
[158] Huang, QingGuo, Li, Miao, Wang, Yi. Eternal chaotic inflation is prohibited by the weak gravity conjecture. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2007, https://www.webofscience.com/wos/woscc/full-record/WOS:000249811000009.
[159] Huang, QingGuo. Weak gravity conjecture constraints on inflation. JOURNAL OF HIGH ENERGY PHYSICS[J]. 2007, https://www.webofscience.com/wos/woscc/full-record/WOS:000247030800096.
[160] Huang, QG, Ke, K. Non-Gaussianity in KKLMMT model. PHYSICS LETTERS B[J]. 2006, 633(4-5): 447-452, https://www.webofscience.com/wos/woscc/full-record/WOS:000235229300007.
[161] Huang, QingGuo, Li, Miao, Song, Wei. Weak gravity conjecture in the asymptotical dS and AdS background. JOURNAL OF HIGH ENERGY PHYSICS[J]. 2006, https://www.webofscience.com/wos/woscc/full-record/WOS:000242714400031.
[162] Huang, QG, Ke, K, Li, M. One conjecture and two observations on de Sitter space. JOURNAL OF HIGH ENERGY PHYSICS[J]. 2006, https://www.webofscience.com/wos/woscc/full-record/WOS:000235923800029.
[163] Huang, QingGuo, She, JianHuang. Weak gravity conjecture for noncommutative field theory. JOURNAL OF HIGH ENERGY PHYSICS[J]. 2006, https://www.webofscience.com/wos/woscc/full-record/WOS:000244081100015.
[164] Huang, QingGuo. Running of the running of the spectral index and WMAP three-year data. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2006, https://www.webofscience.com/wos/woscc/full-record/WOS:000242577700004.
[165] Huang, QingGuo, Li, Miao. Running spectral index in noncommutative inflation and WMAP three year results. NUCLEAR PHYSICS B[J]. 2006, 755: 286-294, http://dx.doi.org/10.1016/j.nuclphysb.2006.08.023.
[166] Huang, QingGuo, Li, Miao, She, JianHuang. Brane inflation after Wilkinson Microwave Anisotropy Probe three year results. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2006, https://www.webofscience.com/wos/woscc/full-record/WOS:000242577700010.
[167] Huang, QG, Li, M. Power spectra in spacetime noncommutative inflation. NUCLEAR PHYSICS B[J]. 2005, 713(1-3): 219-234, http://dx.doi.org/10.1016/j.nuclphysb.2005.02.002.
[168] Huang, QG, Li, M. The holographic dark energy in a non-flat universe. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2004, https://www.webofscience.com/wos/woscc/full-record/WOS:000223638500005.
[169] Huang, QG, Gong, YG. Supernova constraints on a holographic dark energy model. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2004, https://www.webofscience.com/wos/woscc/full-record/WOS:000223638500012.
[170] Huang, QG, Li, M. Time varying alpha in N=8 extended supergravity. JOURNAL OF HIGH ENERGY PHYSICS[J]. 2003, https://www.webofscience.com/wos/woscc/full-record/WOS:000185083300026.
[171] Huang, QG, Li, M. Noncommutative inflation and the CMB multipoles. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2003, https://www.webofscience.com/wos/woscc/full-record/WOS:000186915300015.
[172] Piao, YS, Huang, QG, Zhang, XM, Zhang, YZ. Non-minimally coupled tachyon and inflation. PHYSICSLETTERSB[J]. 2003, 570(1-2): 1-4, http://ir.ihep.ac.cn/handle/311005/225428.
[173] Huang, QG, Li, M. CMB power spectrum from noncommutative spacetime. JOURNAL OF HIGH ENERGY PHYSICS[J]. 2003, https://www.webofscience.com/wos/woscc/full-record/WOS:000185083400014.
[174] Spectral index and running of $g_{NL}$ from an isocurvature scalar field. http://arxiv.org/abs/1102.4686.
[175] Huang, Qing-Guo, Li, Miao. Anthropic Principle Favors the Holographic Dark Energy. http://arxiv.org/abs/hep-th/0410095.
[176] Scale dependence of $f_{NL}$ in N-flation. http://arxiv.org/abs/1009.3326.
[177] Chen, Zu-Cheng, Huang, Qing-Guo. Merger Rate Distribution of Primordial-Black-Hole Binaries. http://arxiv.org/abs/1801.10327.
[178] Zhang, Xue, Huang, Qing-Guo, Li, Xiao-Dong. Tight $H_0$ constraint from galaxy redshfit surveys: combining baryon acoustic osillation measurements and Alcock-Paczynski test. http://arxiv.org/abs/1801.07403.
[179] Huang, Qing-Guo, Li, Miao, She, Jian-Huang. Brane Inflation After WMAP Three Year Results. http://arxiv.org/abs/hep-th/0604186.
[180] Huang, Qing-Guo. Noncommutative KKLMMT Model. http://arxiv.org/abs/astro-ph/0605442.

科研活动

   
科研项目
( 1 ) 国家万人计划青年拔尖人才, 主持, 国家级, 2016-01--2018-12
( 2 ) 宇宙加速膨胀的研究, 主持, 国家级, 2016-01--2019-12
( 3 ) 宇宙学及其相关量子场论, 主持, 国家级, 2014-01--2016-12
( 4 ) 宇宙加速膨胀及暗物质研究, 参与, 国家级, 2014-01--2018-12
( 5 ) 引力波和宇宙演化, 参与, 国家级, 2017-01--2021-12
( 6 ) 引力波及其探测相关的理论物理问题研究, 主持, 部委级, 2018-01--2020-12

指导学生

已指导学生

程程  博士研究生  070201-理论物理  

傅天赋  硕士研究生  070201-理论物理  

张克超  博士研究生  070201-理论物理  

郭忠凯  硕士研究生  070201-理论物理  

王科  博士研究生  070201-理论物理  

邢宇航  博士研究生  070201-理论物理  

李君  博士研究生  070201-理论物理  

现指导学生

陈璐  博士研究生  070201-理论物理  

陈祖成  博士研究生  070201-理论物理  

方芸  博士研究生  070201-理论物理  

国荣祯  硕士研究生  070201-理论物理  

黄帆  博士研究生  070201-理论物理  

孟德双  硕士研究生  070201-理论物理  

韩雨轩  硕士研究生  070201-理论物理  

吴玉梅  博士研究生  070201-理论物理  

袁晨  博士研究生  070201-理论物理