基本信息
张国庆  男  博导  中国科学院青藏高原研究所
电子邮件: guoqing.zhang@itpcas.ac.cn
通信地址: 北京市朝阳区林萃路16号院
邮政编码:

研究领域

青藏高原湖泊-积雪-冰川变化的遥感监测

招生信息

自然地理学

遥感与地理信息系统

水文学

招生专业
070501-自然地理学
070503-地图学与地理信息系统
招生方向
湖泊遥感
环境遥感

教育背景

2006-09--2011-07   中国地质大学 (北京)   博士 (硕博连读)
1998-09--2002-07   东华理工大学 (原华东地质学院)   学士
学历与学位

博士

工作经历

   
工作简历
2020-09~现在, 中国科学院青藏高原研究所, 研究员
2014-06~2020-08,中国科学院青藏高原研究所, 副研究员
2013-08~2014-05,中国科学院青藏高原研究所, 助理研究员
2011-06~2013-07,中国科学院青藏高原研究所, 博士后
2009-09~2011-09,The University of Texas at San Antonio, 博士联合培养
2002-07~2007-12,东华理工大学, 助教,讲师

发表论文

第一/通讯作者论文

1.     Zhang, G.*,T. Bolch*, T. Yao, D. R. Rounce, W. Chen, G. Veh, O. King, S. K. Allen, M. Wang, and W. Wang (2023), Underestimated mass loss from lake-terminating glaciers in the greater Himalaya, Nature Geoscience, 16: 333-338. doi:10.1038/s41561-023-01150-1[封面论文]

2.     Zhang, G.,Bolch, T., 2023. Quantifying ice mass loss caused by the replacement of glacial ice with lake water. Nature Geoscience, 16: 290-291. doi:10.1038/s41561-023-01151-0

3.     Yao, T.*, T. Bolch, D. Chen, J. Gao, W. Immerzeel, S. Piao, F. Su, L. Thompson, Y. Wada, L. Wang, T. W. W. Wang, G. Wu, B. Xu, W. Yang, G. Zhang*, and P. Zhao (2022), The imbalance of the Asian Water Tower, Nature Reviews Earth & Environment, doi: 10.1038/s43017-022-00299-4 [高被引论文]

4.     Rinzin, S., G. Zhang*, A. Sattar, S. Wangchuk, S. K. Allen, S. Dunning, and M. Peng (2023), GLOF hazard, exposure, vulnerability, and risk assessment of potentially dangerous glacial lakes in the Bhutan Himalaya, J Hydrol, 619, 129311, doi: 10.1016/j.jhydrol.2023.129311

5.     Chen, W., T. Yao, G. Zhang*, R. I. Woolway, W. Yang, F. Xu, and T. Zhou (2023), Glacier surface heatwaves over the Tibetan Plateau, Geophys Res Lett, 50(6): e2022GL101115. doi:10.1029/2022GL101115

6.     Chen, W., Y. Liu, G. Zhang*, K. Yang, T. Zhou, J. Wang, and C. K. Shum (2022), What controls lake contraction and then expansion in Tibetan Plateaus endorheic basin over the past half century?, Geophys Res Lett, 49, doi: 10.1029/2022GL101200

7.     Zhang, G., G. Veh, Q. Liu, S. Allen, and X. Wang (2022), Editorial: Lake Changes, Drivers and Consequences in High Mountain Asia, Frontiers in Earth Science, 10, 927762, doi: 10.3389/feart.2022.927762

8.     Zhang, G., Y. Ran, W. Wan, W. Luo, W. Chen, F. Xu, and X. Li (2021), 100 years of lake evolution over the Qinghai–Tibet Plateau, Earth System Science Data, 13(8), 3951-3966, doi: 10.5194/essd-13-3951-2021

9.     Zhang, G., and S. Duan (2021), Lakes as sentinels of climate change on the Tibetan Plateau, All Earth, 33(1), 161-165, doi: 10.1080/27669645.2021.2015870

10.   Chen, W.*, T. Yao, G. Zhang*, F. Li, G. Zheng, Y. Zhou, and F. Xu (2021), Towards ice thickness inversion: an evaluation of global DEMs by ICESat-2 in the glacierized Tibetan Plateau, The Cryosphere, 2021, 1-36, doi: 10.5194/tc-2021-197

11.   Xu, F., G. Zhang*, S. Yi, and W. Chen (2021), Seasonal trends and cycles of lake-level variations over the Tibetan Plateau using multi-sensor altimetry data, J Hydrol, 604, 127251, doi: 10.1016/j.jhydrol.2021.127251

12.   Rinzin, S., G. Zhang*, and S. Wangchuk (2021), Glacial lake area change and potential outburst flood hazard assessment in the Bhutan Himalaya, Frontiers in Earth Science, 9, 775195, doi: 10.3389/feart.2021.775195

13.   Zhang, G., T. Bolch, W. Chen, and J. F. Crétaux (2021), Comprehensive estimation of lake volume changes on the Tibetan Plateau during 1976–2019 and basin-wide glacier contribution, Science of the Total Environment 772, 145463, doi: 10.1016/j.scitotenv.2021.145463

14.   Zhang, G., T. Yao, H. Xie, K. Yang, L. Zhu, C. K. Shum, T. Bolch, S. Yi, S. Allen, L. Jiang, W. Chen, and C. Ke (2020), Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms, Earth-sci Rev, 208, 103269, doi: 10.1016/j.earscirev.2020.103269 [高被引论文]

15.   Zhang, G., et al. (2020), Are China’s water bodies (lakes) underestimated? Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.1922250117

16.   Luo, W., G. Zhang*, W. Chen, and F. Xu (2020), Response of glacial lakes to glacier and climate changes in the western Nyainqentanglha range, Sci Total Environ, 139607, doi:10.1016/j.scitotenv.2020.139607..

17.   Zhang, G., W. Chen, G. Li, W. Yang, S. Yi, and W. Luo (2020), Lake water and glacier mass gains in the northwestern Tibetan Plateau observed from multi-sensor remote sensing data: Implication of an enhanced hydrological cycle, Remote Sens Environ, 237, 111554, doi: 10.1016/j.rse.2019.111554

18.   Zhang, Y., G. Zhang*, and T. Zhu (2019), Seasonal cycles of lakes on the Tibetan Plateau detected by Sentinel-1 SAR data, Sci Total Environ, doi: 10.1016/j.scitotenv.2019.135563

19.   Zhang, G., et al. (2019), Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes, Remote Sens Environ, 221, 386-404, doi: 10.1016/j.rse.2018.11.038. [高被引论文]

20.   Zhang, G., et al. (2019), Tibetan Plateau’s lake level and volume changes from NASA’s ICESat/ICESat-2 and Landsat missions, Geophys Res Lett, doi: 10.1029/2019GL085032

21.   Zhang, G., et al. (2019), A robust but variable lake expansion on the Tibetan Plateau, Science Bulletin, 64(18), 1306-1309, doi: 10.1016/j.scib.2019.07.018

22.   Zhang, G., T. Bolch, S. Allen, A. Linsbauer, W. Chen, and W. Wang (2019), Glacial lake evolution and glacier-lake interactions in the Poiqu River basin, central Himalaya, 1964−2017, Journal of Glaciology, doi:10.1017/jog.2019.13

23.   Khadka, N., G. Zhang*, and W. Chen (2019), The state of six dangerous glacial lakes in the Nepalese Himalaya, Terrestrial, Atmospheric and Oceanic Sciences. doi: 10.3319/TAO.2018.09.28.03

24.   Khadka, N., G. Zhang*, and S. Thakuri (2018), Glacial Lakes in the Nepal Himalaya: Inventory and Decadal Dynamics (1977–2017), Remote Sensing, 10(12), 1913, doi: 10.3390/rs10121913

25.   Zhang, G., et al. (2017), Lake volume and groundwater storage variations in Tibetan Plateau's endorheic basin, Geophys Res Lett, 44, 5550-5560, doi: 10.1002/2017GL073773 [高被引论文]

26.   Zhang, G., G. Zheng, Y. Gao, Y. Xiang, Y. Lei, and J. Li (2017), Automated water classification in the Tibetan Plateau using Chinese GF-1 WFV data, Photogrammetric Engineering & Remote Sensing, 83(3), 33-43, doi: 10.14358/PERS.83.7.415

27.   Zhang, G., et al. (2017), Extensive and drastically different alpine lake changes on Asias high plateaus during the past four decades, Geophys Res Lett, 44, 252-260, doi: 10.1002/2016GL072033. [高被引论文]

28.   Zhang, G., J. Li, and G. Zheng (2017), Lake-area mapping in the Tibetan Plateau: an evaluation of data and methods, Int J Remote Sens, 38(3), 742-772, doi: 10.1080/01431161.2016.1271478.

29.   Yu, J., G. Zhang*, T. Yao, H. Xie, H. Zhang, C. Ke, and R. Yao (2016), Developing daily cloud-free snow composite products from MODIS Terra-Aqua and IMS for the Tibetan Plateau, IEEE T Geosci Remote, 54(4), 2171-2180, doi: 10.1109/TGRS.2015.2496950.

30.   Zhang, G., T. Yao, H. Xie, W. Wang, and W. Yang (2015), An inventory of glacial lakes in the Third Pole region and their changes in response to global warming, Global Planet. Change 131, 148-157, doi: 10.1016/j.gloplacha.2015.05.013

31.   Zhang, G., T. Yao, H. Xie, J. Qin, Q. Ye, Y. Dai, and R. Guo (2014), Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data, Journal of Geophysical Research: Atmospheres, 119(14), 8552-8567, doi: 10.1002/2014JD021615

32.   Zhang, G., H. Xie, T. Yao, H. Li, and S. Duan (2014), Quantitative water resources assessment of Qinghai Lake basin using Snowmelt Runoff Model (SRM), J. Hydrol., 519, 976-987, doi: 10.1016/j.jhydrol.2014.08.022

33.   Zhang, G., T. Yao, H. Xie, K. Zhang, and F. Zhu (2014), Lakes' state and abundance across the Tibetan Plateau, Chinese Science Bulletin, 59(24), 3010-3021, doi:10.1007/s11434-014-0258-x. [2015年优秀作者]

34.   Zhang, G., T. Yao, H. Xie, S. Kang, and Y. Lei (2013), Increased mass over the Tibetan Plateau: From lakes or glaciers? Geophysical Research Letters, 40(10), 2125-2130, doi:10.1002/grl.50462

35.   Zhang, G., H. Xie, T. Yao, and S. Kang (2013), Water balance estimates of ten greatest lakes in China using ICESat and Landsat data, Chin. Sci. Bull. , 58(31), 3815-3829, doi: 10.1007/s11434-013-5818-y

36.   Zhang, G., H. Xie, T. Yao, T. Liang, and S. Kang (2012), Snow cover dynamics of four lake basins over Tibetan Plateau using time series MODIS data (2001-2010), Water Resour. Res., 48(10), W10529, doi: 10.1029/2012WR011971

37.   Zhang, G., H. Xie, S. Duan, M. Tian, and D. Yi (2011), Water level variation of Lake Qinghai from satellite and in situ measurements under climate change, J. Appl. Remote Sens., 5, 053532, doi: 10.1117/1.3601363

38.   Zhang, G., H. Xie, S. Kang, D. Yi, and S. F. Ackley (2011), Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009), Remote Sens. Environ., 115(7), 1733-1742, doi: 10.1016/j.rse.2011.03.005. [高被引论文]

39.   张国庆, 王蒙蒙, 周陶, 陈文锋 (2022), 青藏高原湖泊面积、水位与水量变化遥感监测研究进展, 遥感学报, 26(1), doi: 10.11834/jrs.20221171

40.   张国庆 (2018), 青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展, 地理科学进展, 37(2), 214-223, doi: 10.18306/dlkxjz.2018.02.004. [基金委青年基金优秀结题报告约稿]

41.   张国庆, Xie H., 姚檀栋, 康世昌, 2013. 基于ICESatLandsat的中国10大湖泊水量平衡估算. 科学通报, 58(26): 2664-2678.

共同作者论文

1.     Su, Y., Y. Ran, G. Zhang, and X. Li (2023), Remotely sensed lake area changes in permafrost regions of the Arctic and the Tibetan Plateau between 1987 and 2017, Sci Total Environ, 880, 163355, doi: 10.1016/j.scitotenv.2023.163355

2.     Zhang, H., F. Zhang, G. Zhang, and W. Yan (2022), Why do CMIP6 models fail to simulate snow depth in terms of temporal change and high mountain snow of China skillfully?, Geophys Res Lett, 49, e2022GL098888, doi: 10.1029/2022GL098888

3.     Zhao, R., P. Fu, Y. Zhou, X. Xiao, S. Grebby, G. Zhang, and J. Dong (2022), Annual 30-m big Lake Maps of the Tibetan Plateau in 1991–2018, Scientific Data, 9(1), 164, doi: 10.1038/s41597-022-01275-9

4.     Wang, L., H. Liu, X. Zhong, J. Zhou, L. Zhu, T. Yao, C. Xie, J. Ju, D. Chen, K. Yang, L. Zhao, S. Lu, S. Khanal, J. Jin, W. Liu, B. Liu, Y. e. Du, X. Yao, Y. Lei, G. Zhang, and S. Nepal (2022), Domino effect of a natural cascade alpine lake system on the Third Pole, PNAS Nexus, 1(3), doi: 10.1093/pnasnexus/pgac053

5.     Bolch, T., T. Yao, A. Bhattacharya, Y. Hu, O. King, L. Liu, J. B. Pronk, P. Rastner, and G. Zhang (2022), Earth observation to investigate occurrence, characteristics and changes of glaciers, glacial lakes and rock glaciers in Poiqu River Basin (Central Himalaya), Remote Sensing, 14, 1927, doi: 10.3390/rs14081927

6.     Allen, S., A. Sattar, O. King, G. Zhang, A. Bhattacharya, T. Yao, and T. Bolch (2022), Glacial lake outburst flood hazard under current and future conditions: first insights from a transboundary Himalayan basin, Natural Hazards and Earth System Sciences, doi: 10.5194/nhess-2021-167

7.     Zheng, G., S. Allen, A. Bao, J. B. Canovas, M. Huss, G. Zhang, J. Li, Y. Yuan, L. Jiang, T. Yu, and W. Chen (2021), Increasing risk of glacial lake outburst floods from future Third Pole deglaciation, Nature Climate Change, doi: 10.1038/s41558-021-01028-3 [高被引论文]

8.     Khadka, N., X. Chen, N. Yong, S. Thakuri, G. Zheng, and G. Zhang (2021), Evaluation of Glacial Lake Outburst Flood susceptibility using multi-criteria assessment framework in Mahalangur Himalaya, Frontiers in Earth Science, doi: 10.3389/feart.2020.601288

9.     Chen, W., T. Yao, G. Zhang, S. Li, and G. Zheng (2021), Accelerated glacier mass loss in the largest river and lake source regions of the Tibetan Plateau and its links with local water balance over 1976–2017, J Glaciol, 1-15, doi: 10.1017/jog.2021.9

10.   Liu, Y., H. Chen, H. Li, G. Zhang, and H. Wang (2021), What induces the interdecadal shift of the dipole patterns of summer precipitation trends over the Tibetan Plateau?, Int J Climatol, doi: 10.1002/joc.7122

11.   Zhang, J., J. Zhou, G. Zhang, Y. Ji, Y. Zeng, W. Fan, and A. Aikelamu (2021), Climate- and human-driven variations in lake area and number in North Xinjiang, China, Int J Remote Sens, 42(2), 469-485, doi: 10.1080/01431161.2020.1809740

12.   Zhang, H., F. Zhang, G. Zhang, W. Yan, and S. Li (2020), Enhanced scaling effects significantly lower the ability of MODIS normalized difference snow index to estimate fractional and binary snow cover on the Tibetan Plateau, J Hydrol, 592, doi: 10.1016/j.jhydrol.2020.125795

13.   Liu, Y., Chen, H., Zhang, G., Sun, J., Li, H. and Wang, H., 2020. Changes in lake area in the Inner Mongolian Plateau under climate change: the role of the Atlantic Multidecadal Oscillation and Arctic sea ice. Journal of Climate, 33: 1335-1349, doi: 10.1175/jcli-d-19-0388.1

14.   Liu, D., H. Duan, S. Loiselle, C. Hu, G. Zhang, J. Li, H. Yang, J. R. Thompson, Z. Cao, M. Shen, R. Ma, M. Zhang, and W. Han (2020), Observations of water transparency in China’s lakes from space, International Journal of Applied Earth Observation and Geoinformation, 92, 102187, doi: 10.1016/j.jag.2020.102187

15.   Roohi, S., N. Sneeuw, J. Benveniste, S. Dinardo, E. A. Issawy, and G. Zhang (2020), Evaluation of CryoSat-2 water level derived from different retracking scenarios over selected inland water bodies, Adv Space Res, doi: 10.1016/j.asr.2019.06.024

16.   Allen, S. K., G. Zhang, W. Wang, T. Yao, and T. Bolch (2019), Potentially dangerous glacial lakes across the Tibetan Plateau revealed using a large-scale automated assessment approach, Science Bulletin, 64(7), 435-445, doi: 10.1016/j.scib.2019.03.011

17.   Liu, Y., H. Chen, G. Zhang, J. Sun, and H. Wang (2019), The advanced South Asian monsoon onset accelerates lake expansion over the Tibetan Plateau, Science Bulletin, 64(20), 1486-1489, doi: 10.1016/j.scib.2019.08.011

18.   Tang, W., J. Li, K. Yang, J. Qin, G. Zhang, and Y. Wang (2019), Dependence of remote sensing accuracy of global horizontal irradiance at different scales on satellite sampling frequency, Sol Energy, 193, 597-603, doi: 10.1016/j.solener.2019.10.007

19.   Zheng, G., A. Bao, J. Li, G. Zhang, H. Xie, H. Guo, L. Jiang, T. Chen, C. Chang, and W. Chen (2019), Sustained growth of high mountain lakes in the headwaters of the Syr Darya River, Central Asia, Global Planet Change, 176, 84-99, doi: 10.1016/j.gloplacha.2019.03.004

20.   Zhu, S., B. Liu, W. Wan, H. Xie, Y. Fang, X. Chen, H. Li, W. Fang, G. Zhang, M. Tao, and Y. Hong (2019), A New Digital Lake Bathymetry Model Using the Step-Wise Water Recession Method to Generate 3D Lake Bathymetric Maps Based on DEMs, Water, 11(6), 1151, doi: 10.3390/w11061151

21.   Liu, B., W. Wan, H. Xie, H. Li, S. Zhu, G. Zhang, L. Wen, and Y. Hong (2019), A long-term dataset of lake surface water temperature over the Tibetan Plateau derived from AVHRR 1981–2015, Scientific Data, 6(1), 48, doi: 10.1038/s41597-019-0040-7

22.   Jiang, L., O. B. Andersen, K. Nielsen, G. Zhang, and P. Bauer-Gottwein (2019), Influence of local geoid variation on water surface elevation estimates derived from multi-mission altimetry for Lake Namco, Remote Sens Environ, doi: 10.1016/j.rse.2018.11.004

23.   Cai, Y., C. Ke, X. Li, G. Zhang, Z. Duan, and H. Lee (2019), Variations of Lake Ice Phenology on the Tibetan Plateau from 2001 to 2017 Based on MODIS Data, Journal of Geophysical Research: Atmospheres, Accepted

24.   Zhang, H., F. Zhang, G. Zhang, T. Che, W. Yan, M. Ye, and N. Ma (2019), Ground-based evaluation of MODIS snow cover product V6 across China: implications for the selection of NDSI threshold, Sci Total Environ, doi: 10.1016/j.scitotenv.2018.10.128

25.   Hwang, C., Y. Cheng, W. Yang, G. Zhang, Y. Huang, W. Shen, Y. Pan, (2018), Lake level changes in the Tibetan Plateau from Cryosat-2, SARAL, ICESat and Jason-2 altimeters, Terrestrial, Atmospheric and Oceanic Sciences, doi: 10.3319/TAO.2018.07.09.01

26.   Xiang, Y., T. Yao, Y. Gao, G. Zhang, W. Wang, and L. Tian (2018), Retreat rates of debris-covered and debris-free glaciers in the Koshi River Basin, central Himalayas, from 1975 to 2010, Environmental Earth Sciences, 77, doi: 10.1007/s12665-018-7457-8

27.   Zhang, H., F. Zhang, G. Zhang, T. Che, and W. Yan (2018), How accurately can the air temperature lapse rate over the Tibetan Plateau be estimated from MODIS LSTs?, Journal of Geophysical Research: Atmospheres, doi: 10.1002/2017JD028243

28.   Zhang, H., F. Zhang, G. Zhang, Y. Ma, K. Yang, and M. Ye (2018), Daily air temperature estimation on glacier surfaces in the Tibetan Plateau using MODIS LST data, J Glaciol, 1-16, doi: 10.1017/jog.2018.6

29.   Liu, W., F. Sun, Y. Li, G. Zhang, Y. F. Sang, W. H. Lim, J. Liu, H. Wang, and P. Bai (2018), Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets, Hydrol. Earth Syst. Sci., 22(1), 351-371.

30.   Yang, K., H. Lu, S. Yue, G. Zhang, Y. Lei, L. Zhu, and W. Wang (2018), Quantifying recent precipitation change and predicting lake expansion in the Inner Tibetan Plateau, Climatic Change, doi: 10.1007/s10584-017-2127-5

31.   Lei, Y., T. Yao, K. Yang, Y. Sheng, M. Kleinherenbrink, S. Yi, B. W. Bird, X. Zhang, L. Zhu, and G. Zhang (2017), Lake seasonality across the Tibetan Plateau and their varying relationship with regional mass changes and local hydrology, Geophys Res Lett, 44(2), 892-900, doi: 10.1002/2016GL072062.

32.   Zhang, H., F. Zhang, G. Zhang, X. He, and L. Tian (2016), Evaluation of cloud effects on air temperature estimation using MODIS LST based on ground measurements over the Tibetan Plateau, Atmos. Chem. Phys., 2016(16), 13681-13696.

33.   Zhang, H., Zhang, F., Ye, M., Che, T., Zhang, G., 2016. Estimating daily air temperatures over the Tibetan Plateau by dynamically integrating MODIS LST data. Journal of Geophysical Research: Atmospheres, 121(19): 11425-11441, doi: 10.1002/2016JD025154

34.   O'reilly, C. M., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S., Rowley, R. J., Schneider, P., Lenters, J. D., Mcintyre, P. B., Kraemer, B. M., Weyhenmeyer, G. A., Straile, D., Dong, B., Adrian, R., Allan, M. G., Anneville, O., Arvola, L., Austin, J., Bailey, J. L., Baron, J. S., Brookes, J. D., De Eyto, E., Dokulil, M. T., Hamilton, D. P., Havens, K., Hetherington, A. L., Higgins, S. N., Hook, S., Izmest'eva, L. R., Joehnk, K. D., Kangur, K., Kasprzak, P., Kumagai, M., Kuusisto, E., Leshkevich, G., Livingstone, D. M., Macintyre, S., May, L., Melack, J. M., Mueller-Navarra, D. C., Naumenko, M., Noges, P., Noges, T., North, R. P., Plisnier, P.-D., Rigosi, A., Rimmer, A., Rogora, M., Rudstam, L. G., Rusak, J. A., Salmaso, N., Samal, N. R., Schindler, D. E., Schladow, S. G., Schmid, M., Schmidt, S. R., Silow, E., Soylu, M. E., Teubner, K., Verburg, P., Voutilainen, A., Watkinson, A., Williamson, C. E., & Zhang, G., Rapid and highly variable warming of lake surface waters around the globe, Geophys. Res. Lett., 42(24): 10773-10781, doi: 10.1002/2015GL066235 [Nature 报道] [Science 报道] [高被引论文]

35.   Wang, W., Y. Gao, P. Iribarren Anacona, Y. Lei, Y. Xiang, G. Zhang, S. Li, and A. Lu (2015), Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo valley, Central Himalayas, Geomorphology, doi: 10.1016/j.geomorph.2015.08.013.

36.   Lei, Y., K. Yang, B. Wang, Y. Sheng, B. W. Bird, G. Zhang, and L. Tian (2014), Response of inland lake dynamics over the Tibetan Plateau to climate change, Clim. Change 125, 281-290, doi:10.1007/s10584-014-1175-3.

37.   Huang, X., H. Xie, G. Zhang, and T. Liang (2013), A novel solution for outlier removal of ICESat altimetry data: a case study in the Yili watershed, China, Frontiers of Earth Science, 7(2), 217-226, doi:10.1007/s11707-013-0362-2.

38.   朱立平, 彭萍, 张国庆, 乔宝晋, , 杨瑞敏, 王君波 (2020), 全球变化下青藏高原湖泊在地表水循环中的作用, 湖泊科学, 32(3), 597-608.

39.   朱立平, 张国庆, 杨瑞敏, , 阳坤, 乔宝晋, 韩博平, 2019. 青藏高原最近40年湖泊变化的主要表现与发展趋势. 中国科学院院刊, 34(11): 1254-1263.

40.   邬光剑, 姚檀栋, 王伟财, 赵华标, 杨威, 张国庆, 李生海, 余武生, 类延斌, 胡文涛, 2019. 青藏高原及周边地区的冰川灾害. 中国科学院院刊, 34(11): 1285-1292.

41.   姚檀栋, 朴世龙, 沈妙根, 高晶, 杨威, 张国庆, 类延斌, 高杨, 朱立平, 徐柏青, 2017. 印度季风与西风相互作用在现代青藏高原产生连锁式环境效应. 中国科学院院刊, 32(9): 976-984.

42.   戴玉凤, 高杨, 张国庆, 向洋, 2013. 2003-2011年青藏高原佩枯错相对水量变化及其对气候变化的响应. 冰川冻土, 35(03): 723-732.

专著

1.     Bolch, T, Shea, JM, Liu, S, Azam, FM, Gao, Y, Gruber, S, Immerzeel, W, Kulkarni, A, Tahir, A, Zhang, G, Zhang, Y, Bannerjee, A, Berthier, E, Brun, F, Kääb, A, Kraaijenbrink, P, Moholdt, G, Nicholson, L, Pepin, N, Racoviteanu, A & Fujita, K 2018, Status and change of the HKH Cryosphere. in P Wester, A Mishra, A Mukherji & AB Shrestha (eds), The Hindu Kush Himalaya Assessment – Mountains, Climate Change, Sustainability and People. Springer.

2.     Xie, H., T. Liang, X. Wang, and G. Zhang, 2015. Remote sensing mapping and modeling of snow cover parameters and applications (Chapter 10). Remote Sensing Handbook Volume III: Water Resources, Disasters, and Urban Monitoring, Modeling, and Mapping, edited by P.S. Thenkabail, Taylor & Francis Group Press