基本信息
陈龙祥  男  硕导  中国科学院福建物质结构研究所
电子邮件: chenlx@fjirsm.ac.cn
通信地址: 福建省晋江市罗山街道溪东路166号
邮政编码:

研究领域

1)制冷工质热物性推算与测量

2)工业节能技术研究,包括ORC、Kalina,Brayton等先进动力循环系统优化与改进

3)新能源储能系统优化设计,包括压缩空气储能、泵热储能等

4)多能耦合系统构建及优化,包括海水淡化与蓄冷耦合、压缩空气与碳捕集耦合等

5)流体仿真,包括基于有限元以及基于SPH仿真


招生信息

招收流体机械、热能与动力工程、工程热物理和能源互联网等相关方向实习生,硕士生以及博士后。

招生专业
080701-工程热物理
080705-制冷及低温工程
招生方向
热物性测量,余热回收,先进物理储能技术

教育背景

2011-09--2015-06   中国科学技术大学   博士学位
2007-09--2011-07   中国科学技术大学   学士学位
学历

博士

学位
博士

工作经历

2015.07-2018.12 中国科学院海西研究院泉州装备制造研究所,助理研究员

2019.01至今 中国科学院海西研究院泉州装备制造研究所,副研究员

专利与奖励

专利:
1)一种以工业循环水为热源的热泵干燥系统,发明专利,陈龙祥,谢媚娜,王森林
2)LNG冷能梯级利用发电的冷藏车,发明专利,陈龙祥,谢媚娜,王森林
3)一种物料余热回收干燥系统,发明专利,陈龙祥,谢媚娜,王森林
4)一种适用于冷藏车的余热驱动制冷系统,发明专利,陈龙祥,谢媚娜,王森林
奖励:

2023年,入选中国科学院青年创新促进会会员;
2020年,入选海西研究院“春苗”青年人才
2018年,入选福建省引进高层次人才C类人才;
2014年,获得中国科学院院长优秀奖;
2013年,获得研究生国家奖学金。


专利成果
[1] 陈龙祥, 张留淦, 叶楷, 汪凤翔. 压缩空气储能与碳捕集耦合系统. CN: CN115324876A, 2022-11-11.
[2] 陈龙祥, 胡明强, 叶楷. 一种可移动集装箱式的热泵烘干系统、运输车及烘干方法. CN: CN114103592A, 2022-03-01.
[3] 陈龙祥, 叶楷, 汪凤翔. 一种海水淡化与冰蓄冷耦合系统. CN: CN215667243U, 2022-01-28.
[4] 叶楷, 蔡金垵, 陈龙祥, 蔡金钗, 汪凤翔, 范国智. 一种综合环境模拟测试机. CN: CN214667532U, 2021-11-09.
[5] 汪凤翔, 陈龙祥, 谢媚娜. 一种基于挥发性流体的绝热恒压压缩空气储能系统. CN: CN108266229B, 2020-07-10.
[6] 陈龙祥, 谢媚娜, 王森林. 一种适用于冷藏车的余热驱动制冷系统. CN: CN106052187B, 2019-02-12.
[7] 谢媚娜, 解伟, 陈龙祥. 一种适用于电网调峰带喷射器的绝热压缩空气储能系统. CN: CN207879412U, 2018-09-18.
[8] 谢媚娜, 解伟, 陈龙祥. 一种适用于电网调峰带强迫预冷的压缩空气储能系统. CN: CN207795526U, 2018-08-31.
[9] 陈龙祥, 谢媚娜, 王森林. 一种物料余热回收干燥系统. CN: CN105910416B, 2018-04-17.
[10] 陈龙祥, 谢媚娜, 王森林. LNG冷能梯级利用发电的冷藏车. CN: CN106014518B, 2018-03-06.
[11] 陈龙祥, 谢媚娜, 王森林. 一种以工业循环水为热源的热泵干燥系统. CN: CN105627702B, 2018-03-02.

出版信息

发表论文
[1] Xie, Meina, Liu, Songling, Chen, Longxiang, Zhang, Yining, Wang, Yutian, Xie, Shan, Zhao, Yingru. Techno-economic and environmental assessment of a novel co-generation system integrating heat pump with Allam cycle. ENERGY CONVERSION AND MANAGEMENT[J]. 2023, 277: http://dx.doi.org/10.1016/j.enconman.2022.116606.
[2] Chen, Longxiang, Zhang, Liugan, Wang, Yongzhen, Xie, Meina, Yang, Huipeng, Ye, Kai, Mohtaram, Soheil. Design and performance evaluation of a novel system integrating Water-based carbon capture with adiabatic compressed air energy storage. ENERGY CONVERSION AND MANAGEMENT[J]. 2023, 276: http://dx.doi.org/10.1016/j.enconman.2022.116583.
[3] Meina Xie, Longxiang Chen, Kai Wu, Zekun Liu, Jian Lin, Chenxing Jiang, Shan Xie, Yingru Zhao. A novel peak shaving approach to improving load flexibility of the Allam cycle by integrating cold energy storage. JOURNAL OF CLEANER PRODUCTION. 2023, 386: http://dx.doi.org/10.1016/j.jclepro.2022.135769.
[4] Longxiang Chen, Xi Liu, Kai Ye, Meina Xie, Wenchao Lan. Thermodynamic and economic analysis of an integration system of multi-effect desalination (MED) with ice storage based on a heat pump. ENERGY. 2023, 283: http://dx.doi.org/10.1016/j.energy.2023.129064.
[5] Chen, Longxiang, Zhang, Liugan, Yang, Huipeng, Xie, Meina, Ye, Kai. Dynamic simulation of a Re-compressed adiabatic compressed air energy storage (RA-CAES) system. ENERGY[J]. 2022, 261: http://dx.doi.org/10.1016/j.energy.2022.125351.
[6] Xi Liu, Wenchao Lan, Kai Ye, Wei Han, Jincheng Zhang, Soheil Mohtaram, Longxiang Chen. Numerical simulation and experimental analysis of ice crystal growth and freezing-centrifugal desalination for seawater with different compositions. SEPARATION AND PURIFICATION TECHNOLOGY. 2022, 298: http://dx.doi.org/10.1016/j.seppur.2022.121656.
[7] Chen, Longxiang, Wang, Yongzhen, Xie, Meina, Ye, Kai, Mohtaram, Soheil. Energy and exergy analysis of two modified adiabatic compressed air energy storage (A-CAES) system for cogeneration of power and cooling on the base of volatile fluid. JOURNAL OF ENERGY STORAGE[J]. 2021, 42: http://dx.doi.org/10.1016/j.est.2021.103009.
[8] Zhang, Nan, Hu, Peng, Chen, Longxiang, Liu, Minghou, Chen, Qi. Measurements of Critical Properties of the Binary Mixture of 1,1,1-Trifluoroethane (HFC-143a) + trans-1,3,3,3-Tetrafluoropropene (HFO-1234ze(E)). JOURNAL OF CHEMICAL AND ENGINEERING DATA[J]. 2021, 66(7): 2717-2722, http://dx.doi.org/10.1021/acs.jced.1c00065.
[9] Zhi, LiangHui, Hu, Peng, Chen, LongXiang, Zhao, Gang. Performance analysis and optimization of engine waste heat recovery with an improved transcritical-subcritical parallel organic Rankine cycle based on zeotropic mixtures. APPLIED THERMAL ENGINEERING[J]. 2020, 181: http://dx.doi.org/10.1016/j.applthermaleng.2020.115991.
[10] Zhi, LiangHui, Hu, Peng, Chen, LongXiang, Zhao, Gang. Thermodynamic analysis of an innovative transcritical CO2 parallel Rankine cycle driven by engine waste heat and liquefied natural gas cold. ENERGY CONVERSION AND MANAGEMENT[J]. 2020, 209: http://dx.doi.org/10.1016/j.enconman.2020.112583.
[11] Zhang, Nan, Hu, Peng, Chen, Longxiang, Zhi, Lianghui. Molecular modeling of vapor-liquid equilibrium properties of HFC-161 and its mixture HFC-161+HFO-1234yf. JOURNAL OF MOLECULAR LIQUIDS[J]. 2020, 306: http://dx.doi.org/10.1016/j.molliq.2020.112896.
[12] Jing, Rui, Xie, Mei Na, Wang, Feng Xiang, Chen, Long Xiang. Fair P2P energy trading between residential and commercial multi-energy systems enabling integrated demand-side management. APPLIED ENERGY[J]. 2020, 262: http://dx.doi.org/10.1016/j.apenergy.2020.114551.
[13] Zhi, LiangHui, Hu, Peng, Chen, LongXiang, Zhao, Gang. Thermodynamic analysis of a novel transcritical-subcritical parallel organic Rankine cycle system for engine waste heat recovery. ENERGY CONVERSION AND MANAGEMENT[J]. 2019, 197: http://dx.doi.org/10.1016/j.enconman.2019.111855.
[14] Zhi, LiangHui, Hu, Peng, Chen, LongXiang, Zhao, Gang. Multiple parametric analysis, optimization and efficiency prediction of transcritical organic Rankine cycle using trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) for low grade waste heat recovery. ENERGY CONVERSION AND MANAGEMENT[J]. 2019, 180: 44-59, http://dx.doi.org/10.1016/j.enconman.2018.10.086.
[15] 张楠, 陈龙祥, 胡芃. 混合工质临界性质的推算研究. 化工学报[J]. 2019, 70(A02): 1-7, http://lib.cqvip.com/Qikan/Article/Detail?id=7003148906.
[16] Chen, Long Xiang, Hu, Peng, Sheng, Chun Chen, Zhang, Nan, Xie, Mei Na, Wang, Feng Xiang. Thermodynamic analysis of three ejector based organic flash cycles for low grade waste heat recovery. ENERGY CONVERSION AND MANAGEMENT[J]. 2019, 185: 384-395, http://dx.doi.org/10.1016/j.enconman.2019.02.016.
[17] Zhi, LiangHui, Hu, Peng, Chen, LongXiang, Zhao, Gang. Parametric analysis and optimization of transcritical-subcritical dual-loop organic Rankine cycle using zeotropic mixtures for engine waste heat recovery. ENERGY CONVERSION AND MANAGEMENT[J]. 2019, 195: 770-787, http://dx.doi.org/10.1016/j.enconman.2019.05.062.
[18] Chen, Long Xiang, Xie, Mei Na, Zhao, Pan Pan, Wang, Feng Xiang, Hu, Peng, Wang, Dong Xiang. A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid. APPLIED ENERGY[J]. 2018, 210: 198-210, http://dx.doi.org/10.1016/j.apenergy.2017.11.009.
[19] Chen, Long Xiang, Hu, Peng, Zhao, Pan Pan, Xie, Mei Na, Wang, Feng Xiang. Thermodynamic analysis of a High Temperature Pumped Thermal Electricity Storage (HT-PTES) integrated with a parallel organic Rankine cycle (ORC). ENERGY CONVERSION AND MANAGEMENT[J]. 2018, 177: 150-160, http://dx.doi.org/10.1016/j.enconman.2018.09.049.
[20] Chen, Long Xiang, Hu, Peng, Zhao, Pan Pan, Xie, Mei Na, Wang, Dong Xiang, Wang, Feng Xiang. A novel throttling strategy for adiabatic compressed air energy storage system based on an ejector. ENERGY CONVERSION AND MANAGEMENT[J]. 2018, 158: 50-59, http://dx.doi.org/10.1016/j.enconman.2017.12.055.
[21] Hu, Peng, Cai, XuDong, Chen, LongXiang, Xu, Hang, Zhao, Gang. pvT Properties of 2,3,3,3-Tetrafluoroprop-1-ene (HFO-1234yf) in the Gaseous Phase. JOURNAL OF CHEMICAL AND ENGINEERING DATA[J]. 2017, 62(10): 3353-3359, https://www.webofscience.com/wos/woscc/full-record/WOS:000413131800035.
[22] Chen, LongXiang, Hu, Peng, Sheng, ChunChen, Xie, MeiNa. A novel compressed air energy storage (CAES) system combined with pre-cooler and using low grade waste heat as heat source. ENERGY[J]. 2017, 131: 259-266, http://dx.doi.org/10.1016/j.energy.2017.05.047.
[23] Hu, Peng, Zhang, GaoWei, Chen, LongXiang, Liu, MingHou. Theoretical Analysis for Heat Transfer Optimization in Subcritical Electrothermal Energy Storage Systems. ENERGIES[J]. 2017, 10(2): https://doaj.org/article/0d36f2d8b388463f8ee5ce823ade44d3.
[24] Hu, Peng, Zhu, WanBao, Chen, LongXiang, Cai, XuDong, Chen, ZeShao. Vapor-liquid equilibria measurements of 1,1,1,2-tetrafluoroethane (HFC-134a)+2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf) + isobutane (HC-600a) ternary system. FLUID PHASE EQUILIBRIA[J]. 2016, 414: 111-116, http://dx.doi.org/10.1016/j.fluid.2016.01.028.
[25] Chen, LongXiang, Hu, Peng, Zhu, WanBao, Jia, Lei, Chen, ZeShao. Vapor-liquid equilibria of fluoroethane (HFC-161)+2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf). FLUID PHASE EQUILIBRIA[J]. 2015, 392: 19-23, http://dx.doi.org/10.1016/j.fluid.2015.02.014.
[26] Hu, Peng, Chen, LongXiang, Zhu, WanBao, Jia, Lei, Chen, ZeShao. Isothermal VLE measurements for the binary mixture of 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf)+1,1-difluoroethane (HFC-152a). FLUID PHASE EQUILIBRIA[J]. 2014, 373: 80-83, http://dx.doi.org/10.1016/j.fluid.2014.04.015.
[27] Hu, Peng, Chen, LongXiang, Chen, ZeShao. Vapor-liquid equilibria for binary system of 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf) + isobutane (HC-600a). FLUID PHASE EQUILIBRIA[J]. 2014, 365: 1-4, http://dx.doi.org/10.1016/j.fluid.2013.12.015.
[28] Peng Hu, LongXiang Chen, WanBao Zhu, Lei Jia, ZeShao Chen. Vapor−liquid equilibria for the binary system of 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf) + 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea). FLUID PHASE EQUILIBRIA. 2014, 379: 59-61, http://dx.doi.org/10.1016/j.fluid.2014.07.014.
[29] Hu, Peng, Chen, LongXiang, Chen, ZeShao. Vapor-liquid equilibria for the 1,1,1,2-tetrafluoroethane (HFC-134a)+1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea) and 1,1,1-trifluoroethane (HFC-143a)+2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf) systems. FLUID PHASE EQUILIBRIA[J]. 2013, 360: 293-297, http://dx.doi.org/10.1016/j.fluid.2013.09.056.
[30] Hu, Peng, Chen, LongXiang, Chen, ZeShao. A modified differential-model for interaction parameters in PR EoS with vdW mixing rules for mixtures containing HFCs and HCs. FLUID PHASE EQUILIBRIA[J]. 2012, 324: 64-69, http://dx.doi.org/10.1016/j.fluid.2012.03.027.

科研活动

   
科研项目
( 1 ) 含HFO混合工质的临界性质和超临界PVTx性质研究, 负责人, 国家任务, 2018-01--2020-12
( 2 ) 低 GWP 混合工质热物性研究, 负责人, 地方任务, 2017-04--2020-03
( 3 ) 新型高原运输振动四综合环境模拟系统, 负责人, 企业委托, 2021-04--2022-03
( 4 ) 基于制冷工质的可变容压缩空气储能系统研制, 负责人, 地方任务, 2021-08--2024-07
( 5 ) 拉链布带的超临界无水染色产业化示范, 负责人, 地方任务, 2022-05--2023-04