基本信息

况永波  男  博导  中国科学院宁波材料技术与工程研究所
电子邮件: kuangyongbo@nimte.ac.cn
通信地址: 宁波市镇海区中官西路1219号
邮政编码: 315201

实验室主页: https://kuangyongbo.nimte.ac.cn  

研究领域

人工光合成:光电解水制氢;光电二氧化碳还原;新型人工光合成反应;新型氧化物吸光半导体材料;光电极表界面工程;人工光合成模型器件等。

能源催化:光能-化学能和化学能-电能转化过程中的催化反应设计、(助)催化剂制备、催化反应机理研究;多功能、耐酸碱、耐高温、自生成、自修复等新概念催化剂、催化体系等。

招生信息

   
招生专业
080501-材料物理与化学
070304-物理化学
0703J1-纳米科学与技术
招生方向
人工光合成,能源催化,绿色催化

教育背景

2009-10--2011-09   日本东京工业大学   博士
2007-10--2009-09   日本东京工业大学   硕士
2003-09--2007-07   上海交通大学   本科

出版信息

   
发表论文
[1] Deyu Liu, Xiuyu Chen, Yuepeng Qiao, Yang Zhou, Yongbo Kuang. Awakening the Photoelectrochemical Activity of α‐SnWO4 Photoanodes with Extraordinary Crystallinity Induced by Reductive Annealing. ADVANCED ENERGY & SUSTAINABILITY RESEARCH[J]. 2022, 3(4): n/a-n/a, https://doaj.org/article/6e632a0b2d56437aa0574dd7c21458b3.
[2] He, Fan, Zhao, Yingjie, Yang, Xiaoxuan, Zheng, Sixing, Yang, Bin, Li, Zhongjian, Kuang, Yongbo, Zhang, Qinghua, Lei, Lecheng, Qiu, Ming, Dai, Liming, Hou, Yang. Metal-Organic Frameworks with Assembled Bifunctional Microreactor for Charge Modulation and Strain Generation toward Enhanced Oxygen Electrocatalysis. ACS NANO[J]. 2022, 16(6): 9523-9534, http://dx.doi.org/10.1021/acsnano.2c02685.
[3] Cheng, Boshi, Li, Xing, Xu, Hongqiang, Zhu, Lin, Zhang, Yuting, Yin, Bo, Ma, Mingchan, Kuang, Yongbo, He, Haiyong, Hu, Di. Strengthen Synergistic Effect of Soft Carbon and Hard Carbon Toward High-Performance Anode for K-Ion Battery. ACS APPLIED MATERIALS & INTERFACES[J]. 2022, 14(28): 31879-31888, http://dx.doi.org/10.1021/acsami.2c05633.
[4] An, Na, Tian, Hengzheng, Zhou, Yang, Zou, Yalong, Xiu, Hao, Cao, Yufeng, Wang, Ying, Li, Jianming, Liu, Deyu, Kuang, Yongbo. Instant formation of excellent oxygen evolution catalyst film via controlled spray pyrolysis for electrocatalytic and photoelectrochemical water splitting. JOURNAL OF ENERGY CHEMISTRY[J]. 2022, 66(3): 657-665, http://dx.doi.org/10.1016/j.jechem.2021.09.023.
[5] Cao, Yufeng, Qiao, Huajian, Zou, Yalong, An, Na, Zhou, Yang, Liu, Deyu, Kuang, Yongbo. Room Temperature Electrodeposition of Ready-to-Use TiOx for Uniform p-n Heterojunction Over Nanoarchitecture. FRONTIERS IN CHEMISTRY[J]. 2022, 10: http://dx.doi.org/10.3389/fchem.2022.832342.
[6] Zhu, Shuairu, Liu, Deyu, Li, Jianming, Kuang, Yongbo. Chemical Vapor Deposition of Crystalized Nanoscale alpha-SnWO4 Thin Films and Their Photoelectrocatalytic Properties. ACS APPLIED ENERGY MATERIALS[J]. 2022, 5(11): 14372-14380, [7] Fu, Sheng, Sun, Nannan, Le, Jiabo, Zhang, Wenxiao, Miao, Renjie, Zhang, Wenjun, Kuang, Yongbo, Song, Weijie, Fang, Junfeng. Tailoring Defects Regulation in Air-Fabricated CsPbI3 for Efficient Inverted All-Inorganic Perovskite Solar Cells with V-oc of 1.225 V. ACS APPLIED MATERIALS & INTERFACES[J]. 2022, 14(27): 30937-30945, http://dx.doi.org/10.1021/acsami.2c07420.
[8] Hao Xiu, Tianshu Gao, Na An, Ying Wang, Yang Zhou, Xiaopeng Qi, 刘德宇, Kuang, Yongbo. Universal Deposition Strategy of Nanoporous Complex Oxide Thin Films for Photoelectrochemical Applications. ACS Applied Energy Materials[J]. 2022, 5(4): 5127-5135, [9] Li, Shengxu, Ma, Rui, Xu, Shunqi, Zheng, Tianyue, Fu, Guangen, Wu, Yanling, Liao, Zhongquan, Kuang, Yongbo, Hou, Yang, Wang, Dashuai, Petkov, Petko Stoev, Simeonova, Kristina, Feng, Xinliang, Wu, LiZhu, Li, XuBing, Zhang, Tao. Direct Construction of Isomeric Benzobisoxazole-Vinylene-Linked Covalent Organic Frameworks with Distinct Photocatalytic Properties. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2022, 144(30): 13953-13960, http://dx.doi.org/10.1021/jacs.2c06042.
[10] Chen, Ao, Le, JiaBo, Kuang, Yongbo, Cheng, Jun. Modeling stepped Pt/water interfaces at potential of zero charge with ab initio molecular dynamics (vol 157, 094702, 2022). JOURNAL OF CHEMICAL PHYSICSnull. 2022, 157(14): [11] Hou, Huilin, Yang, Wenxiang, Sun, Hong, Zhang, Huaqin, Feng, Xiaolong, Kuang, Yongbo. Tailored Synthesis of Ga2O3 Nanofibers Towards Enhanced Photocatalytic Hydrogen Evolution. CATALYSIS LETTERS. 2022, http://dx.doi.org/10.1007/s10562-022-04217-7.
[12] Zhu, Shuairu, Liu, Deyu, Lv, LinZhe, Le, Jiabo, Zhou, Yang, Li, Jianming, Kuang, Yongbo. Charged matrix stabilized cobalt oxide electrocatalyst with extraordinary oxygen evolution performance at pH 7. ELECTROCHIMICA ACTA[J]. 2022, 436: http://dx.doi.org/10.1016/j.electacta.2022.141448.
[13] Zou, Yalong, Liu, Deyu, Meng, Xiangrui, Liu, Qitao, Zhou, Yang, Li, Jianming, Zhao, Zhiying, Chen, Ding, Kuang, Yongbo. Structural limiting factors of mixed-valent tin oxides in photoelectrochemical application: A comparative exploration. JOURNAL OF ENERGY CHEMISTRY[J]. 2021, 56(5): 504-511, http://lib.cqvip.com/Qikan/Article/Detail?id=7104346437.
[14] Zou, Yalong, Le, Jiabo, Cao, Yufeng, An, Na, Zhou, Yang, Li, Jianming, Liu, Deyu, Kuang, Yongbo. Tetragonal tungsten bronze type Sn(ii)-based quaternary oxides: a new class of visible-light-absorbing semiconductors for photoelectrochemical water oxidation. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2021, 9(37): 21085-21093, http://dx.doi.org/10.1039/d1ta05809f.
[15] Wang, Ying, Chen, Xiuyu, Xiu, Hao, Zhuang, Huanglong, Li, Jianming, Zhou, Yang, Liu, Deyu, Kuang, Yongbo. General In Situ Photoactivation Route with IPCE over 80% toward CdS Photoanodes for Photoelectrochemical Applications. SMALL[J]. 2021, 17(52): http://dx.doi.org/10.1002/smll.202104307.
[16] Xia, Chonghan, Meng, Xiangrui, Chen, Xiuyu, Zhou, Yang, Liu, Deyu, Kuang, Yongbo. Sn2TiO4 Photoanodes for Near-Infrared Light-Driven Water Splitting with Ultralow Onset Potentials. ACS APPLIED ENERGY MATERIALS[J]. 2021, 4(11): 13006-13014, http://dx.doi.org/10.1021/acsaem.1c02643.
[17] Zhang, Qiqi, Liu, Min, Zhou, Wei, Zhang, Yajun, Hao, Weichang, Kuang, Yongbo, Liu, Huimin, Wang, Defa, Liu, Lequan, Ye, Jinhua. A novel Cl- modification approach to develop highly efficient photocatalytic oxygen evolution over BiVO4 with AQE of 34.6%. NANO ENERGY[J]. 2021, 81: http://dx.doi.org/10.1016/j.nanoen.2020.105651.
[18] Zhu, Shuairu, Le, Jiabo, Li, Jianming, Liu, Deyu, Kuang, Yongbo. Tungsten doped manganese silicate films as stable and efficient oxygen evolution catalysts in near-neutral media. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2021, 9(33): 17893-17904, http://dx.doi.org/10.1039/d1ta01524a.
[19] Huang, Dingwang, Wang, Kang, Li, Lintao, Feng, Kuang, An, Na, Ikeda, Shigeru, Kuang, Yongbo, Ng, Yunhau, Jiang, Feng. 3.17% efficient Cu2ZnSnS4-BiVO4 integrated tandem cell for standalone overall solar water splitting. ENERGY & ENVIRONMENTAL SCIENCE[J]. 2021, 14(3): 1480-1489, https://www.webofscience.com/wos/woscc/full-record/WOS:000639555200015.
[20] 倪鑫, 周扬, 谭瑞琴, 况永波. 光电化学水分解中铁酸盐光阴极的制备与改性. 化学进展[J]. 2020, 32(10): 1515-1534, https://manu56.magtech.com.cn/progchem/CN/10.7536/PC200334.
[21] Ni, Xin, Zhou, Yang, Tan, Ruiqin, Kuang, Yongbo. Fabrication and Modification of Ferrite Photocathodes for Photoelectrochemical Water Splitting. PROGRESS IN CHEMISTRY[J]. 2020, 32(10): 1515-1534, https://www.webofscience.com/wos/woscc/full-record/WOS:000596561300007.
[22] Cao, Yufeng, Liu, Deyu, Ni, Xin, Meng, Xiangrui, Zhou, Yang, Sun, Zhenfan, Kuang, Yongbo. Better Charge Separation in CuO Nanowire Array Photocathodes: Micro-/Nanostructure Regulation for Photoelectrochemical Reaction. ACSAPPLIEDENERGYMATERIALS[J]. 2020, 3(7): 6334-6343, https://www.webofscience.com/wos/woscc/full-record/WOS:000557375200038.
[23] Cao, Lijun, Zhu, Shuairu, Pan, Baohai, Dai, Xinyan, Zhao, Weiwei, Liu, Yuan, Xie, Weiping, Kuang, Yongbo, Liu, Xiaoqing. Stable and durable laser-induced graphene patterns embedded in polymer substrates. CARBON[J]. 2020, 163: 85-94, http://dx.doi.org/10.1016/j.carbon.2020.03.015.
[24] Ma, Zizai, Hou, Huilin, Song, Kai, Fang, Zhi, Wang, Lin, Gao, Fengmei, Yang, Weiyou, Tang, Bin, Kuang, Yongbo. Engineering oxygen vacancies by one-step growth of distributed homojunctions to enhance charge separation for efficient photoelectrochemical water splitting. CHEMICALENGINEERINGJOURNAL[J]. 2020, 379: http://dx.doi.org/10.1016/j.cej.2019.122266.
[25] Liu Qitao, Liu Deyu, Li Jianming, Kuang Yongbo. The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting. FRONTIERS OF PHYSICS[J]. 2019, 14(5): http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=6623060&detailType=1.
[26] Kaneko, Hiroyuki, Minegishi, Tsutomu, Kobayashi, Hiroyuki, Kuang, Yongbo, Domen, Kazunari. Suppression of poisoning of photocathode catalysts in photoelectrochemical cells for highly stable sunlight-driven overall water splitting. JOURNAL OF CHEMICAL PHYSICS[J]. 2019, 150(4): [27] Jiang, Weigang, Yu, Runnan, Liu, Zhiyang, Peng, Ruixiang, Mi, Dongbo, Hong, Ling, Wei, Qiang, Hou, Jianhui, Kuang, Yongbo, Ge, Ziyi. Ternary Nonfullerene Polymer Solar Cells with 12.16% Efficiency by Introducing One Acceptor with Cascading Energy Level and Complementary Absorption. ADVANCED MATERIALS[J]. 2018, 30(1): http://dx.doi.org/10.1002/adma.201703005.
[28] Hayashi, Toshio, Niishiro, Ryo, Ishihara, Hitoshi, Yamaguchi, Masaharu, Jia, Qingxin, Kuang, Yongbo, Higashi, Tomohiro, Iwase, Akihide, Minegishi, Tsutomu, Yamada, Taro, Domen, Kazunari, Kudo, Akihiko. Powder-based (CuGa1-yIny)(1-x)Zn2xS2 solid solution photocathodes with a largely positive onset potential for solar water splitting. SUSTAINABLE ENERGY & FUELS[J]. 2018, 2(9): 2016-2024, https://www.webofscience.com/wos/woscc/full-record/WOS:000443282700009.
[29] Ma, Guijun, Kuang, Yongbo, Murthy, Dharmapura H K, Hisatomi, Takashi, Seo, Jeongsuk, Chen, Shanshan, Matsuzaki, Hiroyuki, Suzuki, Yohichi, Katayama, Masao, Minegishi, Tsutomu, Seki, Kazuhiko, Furube, Akihiro, Domen, Kazunari. Plate-like Sm2Ti2S2O5 Particles Prepared by a Flux-Assisted One-Step Synthesis for the Evolution of O-2 from Aqueous Solutions by Both Photocatalytic and Photoelectrochemical Reactions. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2018, 122(25): 13492-13499, http://ir.nimte.ac.cn/handle/174433/17374.
[30] Kobayashi, Hiroyuki, Sato, Naotoshi, Orita, Masahiro, Kuang, Yongbo, Kaneko, Hiroyuki, Minegishi, Tsutomu, Yamada, Taro, Domen, Kazunari. Development of highly efficient CuIn0.5Ga0.5Se2-based photocathode and application to overall solar driven water splitting. ENERGYENVIRONMENTALSCIENCE[J]. 2018, 11(10): 3003-3009, https://www.webofscience.com/wos/woscc/full-record/WOS:000448339100024.
[31] Yoshinaga, Taizo, Saruyama, Masaki, Xiong, Anke, Ham, Yeilin, Kuang, Yongbo, Niishiro, Ryo, Akiyama, Seiji, Sakamoto, Masanori, Hisatomi, Takashi, Domen, Kazunari, Teranishi, Toshiharu. Boosting photocatalytic overall water splitting by Co doping into Mn3O4 nanoparticles as oxygen evolution cocatalysts. NANOSCALE[J]. 2018, 10(22): [32] Kuang, Yongbo, Yamada, Taro, Domen, Kazunari. Surface and Interface Engineering for Photoelectrochemical Water Oxidation. JOULEnull. 2017, 1(2): 290-305, http://dx.doi.org/10.1016/j.joule.2017.08.004.
[33] Higashi, Tomohiro, Kaneko, Hiroyuki, Minegishi, Tsutomu, Kobayashi, Hiroyuki, Zhong, Miao, Kuang, Yongbo, Hisatomi, Takashi, Katayama, Masao, Takata, Tsuyoshi, Nishiyama, Hiroshi, Yamada, Taro, Domen, Kazunari. Overall water splitting by photoelectrochemical cells consisting of (ZnSe)(0.85)(CuIn0.7Ga0.3Se2)(0.15) photocathodes and BiVO4 photoanodes. CHEMICAL COMMUNICATIONS[J]. 2017, 53(85): 11674-11677, https://www.webofscience.com/wos/woscc/full-record/WOS:000413637900013.
[34] Goto, Yosuke, Minegishi, Tsutomu, Kageshima, Yosuke, Higashi, Tomohiro, Kaneko, Hiroyuki, Kuang, Yongbo, Nakabayashi, Mamiko, Shibata, Naoya, Ishihara, Hitoshi, Hayashi, Toshio, Kudo, Akihiko, Yamada, Taro, Domen, Kazunari. A particulate (ZnSe)(0.85)(CuIn0.7Ga0.3Se2)(0.15) photocathode modified with CdS and ZnS for sunlight-driven overall water splitting. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2017, 5(40): 21242-21248, https://www.webofscience.com/wos/woscc/full-record/WOS:000413189100019.
[35] Kuang, Yongbo, Jia, Qingxin, Ma, Guijun, Hisatomi, Takashi, Minegishi, Tsutomu, Nishiyama, Hiroshi, Nakabayashi, Mamiko, Shibata, Naoya, Yamada, Taro, Kudo, Akihiko, Domen, Kazunari. Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration. NATURE ENERGY[J]. 2017, 2(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000396303000004.
[36] Niishiro, Ryo, Takano, Yuichi, Jia, Qingxin, Yamaguchi, Masaharu, Iwase, Akihide, Kuang, Yongbo, Minegishi, Tsutomu, Yamada, Taro, Domen, Kazunari, Kudo, Akihiko. A CoOx-modified SnNb2O6 photoelectrode for highly efficient oxygen evolution from water. CHEMICAL COMMUNICATIONS[J]. 2017, 53(3): 629-632, https://www.webofscience.com/wos/woscc/full-record/WOS:000391954000033.
[37] 马贵军. Ultrastable low-bias water spitting photoanodes via photocorrosion inhibition and in-situ catalyst regeneration. Nature Energy. 2016, [38] Kaneko, Hiroyuki, Minegishi, Tsutomu, Nakabayashi, Mamiko, Shibata, Naoya, Kuang, Yongbo, Yamada, Taro, Domen, Kazunari. A Novel Photocathode Material for Sunlight-Driven Overall Water Splitting: Solid Solution of ZnSe and Cu(In,Ga)Se-2. ADVANCED FUNCTIONAL MATERIALS[J]. 2016, 26(25): 4570-4577, [39] Kuang, Yongbo, Jia, Qingxin, Nishiyama, Hiroshi, Yamada, Taro, Kudo, Akihiko, Domen, Kazunari. A Front-Illuminated Nanostructured Transparent BiVO4 Photoanode for > 2% Efficient Water Splitting. ADVANCED ENERGY MATERIALS[J]. 2016, 6(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000368849200011.
[40] Ma, Guijun, Chen, Shanshan, Kuang, Yongbo, Akiyama, Seiji, Hisatomi, Takashi, Nakabayashi, Mamiko, Shibata, Naoya, Katayama, Masao, Minegishi, Tsutomu, Domen, Kazunari. Visible Light-Driven Z-Scheme Water Splitting Using Oxysulfide H-2 Evolution Photocatalysts. JOURNAL OF PHYSICAL CHEMISTRY LETTERS[J]. 2016, 7(19): 3892-3896, https://www.webofscience.com/wos/woscc/full-record/WOS:000384966500029.
[41] Jiang, Feng, Gunawan, Harada, Takashi, Kuang, Yongbo, Minegishi, Tsutomu, Domen, Kazunari, Ikeda, Shigeru. Pt/In2S3/CdS/Cu2ZnSnS4 Thin Film as an Efficient and Stable Photocathode for Water Reduction under Sunlight Radiation. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2015, 137(42): 13691-13697, https://www.webofscience.com/wos/woscc/full-record/WOS:000363916600036.
[42] Zhong, Miao, Hisatomi, Takashi, Kuang, Yongbo, Zhao, Jiao, Liu, Min, Iwase, Akihide, Jia, Qingxin, Nishiyama, Hiroshi, Minegishi, Tsutomu, Nakabayashi, Mamiko, Shibata, Naoya, Niishiro, Ryo, Katayama, Chisato, Shibano, Hidetaka, Katayama, Masao, Kudo, Akihiko, Yamada, Taro, Domen, Kazunari. Surface Modification of CoOx Loaded BiVO4 Photoanodes with Ultrathin p-Type NiO Layers for Improved Solar Water Oxidation. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2015, 137(15): 5053-5060, https://www.webofscience.com/wos/woscc/full-record/WOS:000353606700036.
[43] 况永波. High performance Pt-free cathode catalyst for polymer electrolyte membrane fuel cells prepared from widely available chemicals. Journal of Materials Chemistry A. 2014, [44] Nabae, Yuta, Rokubuichi, Hodaka, Mikuni, Masatomo, Kuang, Yongbo, Hayakawa, Teruaki, Kakimoto, Masaaki. Catalysis by Carbon Materials for the Aerobic Baeyer-Villiger Oxidation in the Presence of Aldehydes. ACS CATALYSIS[J]. 2013, 3(2): 230-236, https://www.webofscience.com/wos/woscc/full-record/WOS:000314557900018.
[45] Kuang, Yongbo, Nabae, Yuta, Hayakawa, Teruaki, Kakimoto, Masaaki. Nanoshell carbon-supported cobalt catalyst for the aerobic oxidation of alcohols in the presence of benzaldehyde: An efficient, solvent free protocol. APPLIED CATALYSIS A-GENERAL[J]. 2012, 423: 52-58, http://dx.doi.org/10.1016/j.apcata.2012.02.018.
[46] Kuang, Yongbo, Nabae, Yuta, Hayakawa, Teruaki, Kakimoto, Masaaki. Solvent free aerobic oxidation of alcohols with 1-methyl-2-azaadamantane N-oxyl as a recyclable catalyst through phase separation. GREEN CHEMISTRY[J]. 2011, 13(7): 1659-1663, https://www.webofscience.com/wos/woscc/full-record/WOS:000292450600011.
[47] Kuang, Yongbo, Islam, Nazrul M, Nabae, Yuta, Hayakawa, Teruaki, Kakimoto, Masaaki. Selective Aerobic Oxidation of Benzylic Alcohols Catalyzed by Carbon-Based Catalysts: A Nonmetallic Oxidation System. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2010, 49(2): 436-440, https://www.webofscience.com/wos/woscc/full-record/WOS:000273847100035.
[48] Kuang, Yongbo, Rokubuichi, Hodaka, Nabae, Yuta, Hayakawa, Teruaki, Kakimoto, Masaaki. A Nitric Acid-Assisted Carbon-Catalyzed Oxidation System with Nitroxide Radical Cocatalysts as an Efficient and Green Protocol for Selective Aerobic Oxidation of Alcohols. ADVANCED SYNTHESIS & CATALYSIS[J]. 2010, 352(14-15): 2635-2642, https://www.webofscience.com/wos/woscc/full-record/WOS:000284003100040.
[49] Gu, Xingzhong, Kuang, Yongbo, Guo, Xiaoxia, Fang, Hanhua, Ni, Zhonghua. Synthesis and drug release properties of poly(ethylene oxide) segmented polysulfone copolymers. JOURNAL OF CONTROLLED RELEASE[J]. 2008, 127(3): 267-272, http://dx.doi.org/10.1016/j.jconrel.2008.01.020.
[50] Zhang, Ying, Fang, Jianhua, Kuang, Yongbo, Guo, Xiaoxia, Lu, Haojie, Yang, Pengyuan. Wash-free in-situ self-desalting and peptide enrichment by block copolymer analyzed with MALDI-TOFMS. CHEMICAL COMMUNICATIONS[J]. 2007, 4468-4470, https://www.webofscience.com/wos/woscc/full-record/WOS:000250588900008.

科研活动

   
科研项目
( 1 ) “团队人才”计划启动项目, 主持, 市地级, 2017-05--2021-05
( 2 ) 含有二价锡的水分解光阳极的光电化学稳定性研究, 主持, 国家级, 2019-01--2021-12
( 3 ) 光(电)解水制氢材料长期稳定循环性能研究, 主持, 院级, 2018-01--2018-12
( 4 ) 太阳能光电解水制氢, 主持, 省级, 2018-10--2023-09
( 5 ) 新颖绿色非贵金属催化材料与反应工艺, 主持, 省级, 2018-10--2021-10