基本信息
黄朝锋  男  博导  中国科学院分子植物科学卓越创新中心
电子邮件: huangcf@cemps.ac.cn
通信地址: 上海市徐汇区枫林路300植物生理生态研究所
邮政编码: 200032

研究领域

植物营养与逆境生物学

招生信息

   
招生专业
071007-遗传学
071001-植物学
招生方向
植物金属逆境生物学
表观遗传学

教育背景

2006-10--2009-09   爱媛大学   博士学位
2004-10--2006-09   日本香川大学   硕士学位
2000-09--2003-06   华南农业大学   硕士学位
1996-09--2000-06   华南农业大学   学士学位
学历

博士研究生

学位
博士

工作经历

   
工作简历
2020-05~现在, 中科院分子植物科学卓越创新中心, 研究员
2016-12~2020-04,中科院上海生命科学研究院, 研究员
2012-08~2016-11,南京农业大学, 教授
2012-01~2012-07,中科院上海生科院, 副研究员
2011-01~2011-12,美国普渡大学, 博士后
2010-09~2010-12,美国加州大学河滨分校, 博士后
2009-10~2010-08,冈山大学资源植物科学研究所, 特别契约助理教授
2003-07~2004-06,中科院上海生科院植物生理生态研究所, 研究助理

教授课程

植物金属离子逆境
植物逆境生物学
资源环境生物技术

专利与奖励

   
专利成果
[1] 黄朝锋, 高会玲, 谢文香. 一种低锰利用基因、蛋白、重组表达载体及其制备与应用. CN: CN107164387B, 2020-08-04.
[2] 黄朝锋, 张阳, 张杰, 郭金两. 调控抗铝毒转录因子STOP1蛋白的基因及其应用. CN: CN109748960A, 2019-05-14.
[3] 黄朝锋, 朱海凤, 徐大超. 一种调控植物种子休眠时间的方法. CN: CN106544347B, 2019-05-10.
[4] 黄朝锋, 刘朔. 一种耐铝毒基因、突变体及其制备方法与应用. 中国: CN107164389A, 2017-09-15.
[5] 赵方杰, 黄朝锋, 唐仲, 闫佳莉, 王佩同. 一个控制水稻籽粒高镉积累的基因突变位点及其应用. 中国: CN106868016A, 2017-06-20.

出版信息

   
发表论文
[1] Zhou, Fanglin, Singh, Somesh, Zhang, Jie, Fang, Qiu, Li, Chongyang, Wang, Jiawen, Zhao, Chunzhao, Wang, Pengcheng, Huang, ChaoFeng. The MEKK1-MKK1/2-MPK4 cascade phosphorylates and stabilizes STOP1 to confer aluminum resistance in Arabidopsis. MOLECULAR PLANT[J]. 2023, 16(2): 337-353, http://dx.doi.org/10.1016/j.molp.2022.11.010.
[2] Xie, Wenxiang, Liu, Shuo, Gao, Huiling, Wu, Jun, Liu, Dilin, Kinoshita, Toshinori, Huang, ChaoFeng. PP2C.D phosphatase SAL1 positively regulates aluminum resistance via restriction of aluminum uptake in rice. PLANT PHYSIOLOGY. 2023, http://dx.doi.org/10.1093/plphys/kiad122.
[3] Zhu, Xue, Wang, Peng, Bai, Zhimin, Herde, Marco, Ma, Yanqi, Li, Na, Liu, Shuo, Huang, Chao-Feng, Cui, Rongxiu, Ma, Hongyu, Zhang, Meng, Wang, Hui, Wei, Tiandi, Quan, Taiyong, Zhang, Wei, Liu, Chunguang, Zhang, Tao, Yang, ZhongBao. Calmodulin-like protein CML24 interacts with CAMTA2 and WRKY46 to regulate ALMT1-dependent Al resistance in Arabidopsis thaliana. NEW PHYTOLOGIST[J]. 2022, 233(6): 2471-2487, [4] Li, Lun, Zhu, Zongzheng, Liao, Yonghui, Yang, Changhong, Fan, Ni, Zhang, Jie, Yamaji, Naoki, Dirick, Leon, Ma, Jian Feng, Curie, Catherine, Huang, Chao-Feng. NRAMP6 and NRAMP1 cooperatively regulate root growth and manganese translocation under manganese deficiency in Arabidopsis. PLANT JOURNAL[J]. 2022, [5] Zhu, YiFang, Guo, Jinliang, Zhang, Yang, Huang, Chao-Feng. The THO/TREX Complex Component RAE2/TEX1 Is Involved in the Regulation of Aluminum Resistance and Low Phosphate Response in Arabidopsis. FRONTIERS IN PLANT SCIENCE[J]. 2021, 12: http://dx.doi.org/10.3389/fpls.2021.698443.
[6] Fang, Qiu, Zhang, Jie, Yang, DongLei, Huang, Chao-Feng. The SUMO E3 licase SIZ1 partially regulates STOP1 SUMOylation and stability in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR[J]. 2021, 16(5): https://www.webofscience.com/wos/woscc/full-record/WOS:000627232900001.
[7] Yang, ChangHong, Wang, Chao, Singh, Somesh, Fan, Ni, Liu, Shuo, Zhao, Li, Cao, Hengliang, Xie, Wenxiang, Yang, Chengwei, Huang, Chao-Feng. Golgi-localised manganese transporter PML3 regulates Arabidopsis growth through modulating Golgi glycosylation and cell wall biosynthesis. NEW PHYTOLOGIST[J]. 2021, 231(6): 2200-2214, http://dx.doi.org/10.1111/nph.17209.
[8] Fang, Qiu, Zhou, Fanglin, Zhang, Yang, Singh, Somesh, Huang, Chao-Feng. Degradation of STOP1 mediated by the F-box proteins RAH1 and RAE1 balances aluminum resistance and plant growth in Arabidopsis thaliana. PLANT JOURNAL[J]. 2021, 106(2): 493-506, http://dx.doi.org/10.1111/tpj.15181.
[9] Guo, Jinliang, Zhang, Yang, Gao, Huiling, Li, Shengben, Wang, ZhenYu, Huang, Chao-Feng. Mutation of HPR1 encoding a component of the THO/TREX complex reduces STOP1 accumulation and aluminium resistance in Arabidopsis thaliana. NEW PHYTOLOGIST[J]. 2020, 228(1): 179-193, https://www.webofscience.com/wos/woscc/full-record/WOS:000539294700001.
[10] Liu, Shuo, Zhao, Li, Liao, Yonghui, Luo, Zhenling, Wang, Hua, Wang, Peng, Zhao, Han, Xia, Jixing, Huang, Chao-Feng. Dysfunction of the 4-coumarate:coenzyme A ligase 4CL4 impacts aluminum resistance and lignin accumulation in rice. PLANT JOURNAL[J]. 2020, 104(5): 1233-1250, http://dx.doi.org/10.1111/tpj.14995.
[11] Fang, Qiu, Zhang, Jie, Zhang, Yang, Fan, Ni, van den Burg, Harrold A, Huang, Chao-Feng. Regulation of Aluminum Resistance in Arabidopsis Involves the SUMOylation of the Zinc Finger Transcription Factor STOP1. PLANTCELL[J]. 2020, 32(12): 3921-3938, https://www.webofscience.com/wos/woscc/full-record/WOS:000601001800024.
[12] Liu, ChaoLei, Gao, ZhenYu, Shang, LianGuang, Yang, ChangHong, Ruan, BanPu, Zeng, DaLi, Guo, LongBiao, Zhao, FangJie, Huang, Chao-Feng, Qian, Qian. Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY[J]. 2020, 62(3): 314-329, http://lib.cqvip.com/Qikan/Article/Detail?id=7101804571.
[13] Zhang, Yang, Zhang, Jie, Guo, Jinliang, Zhou, Fanglin, Singh, Somesh, Xu, Xuan, Xie, Qi, Yang, Zhongbao, Huang, Chao-Feng. F-box protein RAE1 regulates the stability of the aluminum-resistance transcription factor STOP1 in Arabidopsis. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA[J]. 2019, 116(1): 319-327, [14] Yang Changhong, Zhang Yang, Huang Chao-Feng. Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5. JOURNAL OF INTEGRATIVE AGRICULTURE[J]. 2019, 18(3): 688-697, http://lib.cqvip.com/Qikan/Article/Detail?id=90717888504849574851485049.
[15] Zhang, Yang, Guo, Jinliang, Chen, Mo, Li, Lun, Wang, Lihua, Huang, Chao-Feng. The Cell Cycle Checkpoint Regulator ATR Is Required for Internal Aluminum Toxicity-Mediated Root Growth Inhibition in Arabidopsis. FRONTIERS IN PLANT SCIENCE[J]. 2018, 9: https://doaj.org/article/c6d3bc097a174909a609296e1075a830.
[16] Zhu, Haifeng, Xie, Wenxiang, Xu, Dachao, Miki, Daisuke, Tang, Kai, Huang, Chao-Feng, Zhu, JianKang. DNA demethylase ROS1 negatively regulates the imprinting of DOGL4 and seed dormancy in Arabidopsis thaliana. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA[J]. 2018, 115(42): E9962-E9970, https://www.webofscience.com/wos/woscc/full-record/WOS:000447491300023.
[17] Yang Zhang, Jinliang Guo, Mo Chen, Lun Li, Lihua Wang, ChaoFeng Huang. Corrigendum: The Cell Cycle Checkpoint Regulator ATR Is Required for Internal Aluminum Toxicity-Mediated Root Growth Inhibition in Arabidopsis. FRONTIERS IN PLANT SCIENCE[J]. 2018, 9: https://doaj.org/article/348d723f569e4a968ea13be47fcae63a.
[18] Qi, GuoNing, Yao, FenYong, Ren, HuiMin, Sun, ShuJing, Hussain, Jamshaid, Huang, ChaoFeng, Wang, YongFei. Constitutive activation of calcium-dependent protein kinase 3 confers a drought tolerance by inhibiting inward K+ channel KAT1 and stomatal opening in Arabidopsis. SCIENCE BULLETIN[J]. 2018, 63(16): 1037-1039, http://lib.cqvip.com/Qikan/Article/Detail?id=676322897.
[19] Gao, Huiling, Xie, Wenxiang, Yang, Changhong, Xu, Jingyi, Li, Jingjun, Wang, Hua, Chen, Xi, Huang, Chao-Feng. NRAMP2, a trans-Golgi network-localized manganese transporter, is required for Arabidopsis root growth under manganese deficiency. NEW PHYTOLOGIST[J]. 2018, 217(1): 179-193, https://www.webofscience.com/wos/woscc/full-record/WOS:000426309500020.
[20] Liu, Shuo, Gao, Huiling, Wu, Xiaoyan, Fang, Qiu, Chen, Lan, Zhao, FangJie, Huang, Chao-Feng. Isolation and Characterization of an Aluminum-resistant Mutant in Rice. RICE[J]. 2016, 9: https://www.webofscience.com/wos/woscc/full-record/WOS:000388138900001.
[21] Yang, Ying, Liu, Yu, Huang, ChaoFeng, de Silva, Jacquie, Zhao, FangJie. Aluminium alleviates fluoride toxicity in tea (Camellia sinensis). PLANT AND SOIL[J]. 2016, 402(1-2): 179-190, http://dx.doi.org/10.1007/s11104-015-2787-8.
[22] Yan, Jiali, Wang, Peitong, Wang, Peng, Yang, Meng, Lian, Xingming, Tang, Zhong, Huang, ChaoFeng, Salt, David E, Zhao, Fang Jie. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. PLANT CELL AND ENVIRONMENT[J]. 2016, 39(9): 1941-1954, https://www.webofscience.com/wos/woscc/full-record/WOS:000382981100008.
[23] Zhu, Haifeng, Wang, Hua, Zhu, Yifang, Zou, Jianwen, Zhao, FangJie, Huang, ChaoFeng. Genome-wide transcriptomic and phylogenetic analyses reveal distinct aluminum-tolerance mechanisms in the aluminum-accumulating species buckwheat (Fagopyrum tataricum). BMC PLANT BIOLOGY[J]. 2015, 15(1): http://dx.doi.org/10.1186/s12870-014-0395-z.
[24] Chao-Feng Huang, JianKang Zhu. RNA Splicing Factors and RNA-Directed DNA Methylation. BIOLOGY[J]. 2014, 3(2): 243-254, https://doaj.org/article/fae7df9ae61e4302ade74b02de254aa3.
[25] Yang, Meng, Zhang, Yuanyuan, Zhang, Lejing, Hu, Jintao, Zhang, Xing, Lu, Kai, Dong, Huaxia, Wang, Dujun, Zhao, FangJie, Huang, ChaoFeng, Lian, Xingming. OsNRAMP5 contributes to manganese translocation and distribution in rice shoots. JOURNAL OF EXPERIMENTAL BOTANY[J]. 2014, 65(17): 4849-4861, https://www.webofscience.com/wos/woscc/full-record/WOS:000342927200013.
[26] Dou, Kun, Huang, Chao-Feng, Ma, ZeYang, Zhang, CuiJun, Zhou, JinXing, Huang, HuanWei, Cai, Tao, Tang, Kai, Zhu, JianKang, He, XinJian. The PRP6-like splicing factor STA1 is involved in RNA-directed DNA methylation by facilitating the production of Pol V-dependent scaffold RNAs. NUCLEIC ACIDS RESEARCH[J]. 2013, 41(18): 8489-8502, https://www.webofscience.com/wos/woscc/full-record/WOS:000325776600016.
[27] Huang, Chao-Feng, Miki, Daisuke, Tang, Kai, Zhou, HaoRan, Zheng, Zhimin, Chen, Wei, Ma, ZeYang, Yang, Lan, Zhang, Heng, Liu, Renyi, He, XinJian, Zhu, JianKang. A Pre-mRNA-Splicing Factor Is Required for RNA-Directed DNA Methylation in Arabidopsis. PLOS GENETICS[J]. 2013, 9(9): https://doaj.org/article/38b5ab863f1f4b20b1385278970f2176.
[28] Huang Chao-Feng, Yamaji Naoki, Chen Zhichang, Ma Jian Feng. A tonoplast-localized half-size ABC transporter is required for internal detoxification of Al in rice. Plant Journal[J]. 2012, 69: 857-867, [29] Huang, ChaoFeng, Yamaji, Naoki, Ono, Kazuko, Ma, Jian Feng. A leucine-rich repeat receptor-like kinase gene is involved in the specification of outer cell layers in rice roots. PLANT JOURNAL[J]. 2012, 69(4): 565-576, http://dx.doi.org/10.1111/j.1365-313X.2011.04824.x.
[30] Tsutsui, Tomokazu, Yamaji, Naoki, Huang, Chao Feng, Motoyama, Ritsuko, Nagamura, Yoshiaki, Ma, Jian Feng. Comparative Genome-Wide Transcriptional Analysis of Al-Responsive Genes Reveals Novel Al Tolerance Mechanisms in Rice. PLOS ONE[J]. 2012, 7(10): https://doaj.org/article/afd06fa4cb1545b2aeba765d3a1536d2.
[31] Ueno, Daisei, Yamaji, Naoki, Kono, Izumi, Huang, Chao Feng, Ando, Tsuyu, Yano, Masahiro, Ma, Jian Feng. Gene limiting cadmium accumulation in rice. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA[J]. 2010, 107(38): 16500-16505, https://www.webofscience.com/wos/woscc/full-record/WOS:000282003700024.
[32] Huang, ChaoFeng, Yamaji, Naoki, Ma, Jian Feng. Knockout of a Bacterial-Type ATP-Binding Cassette Transporter Gene, AtSTAR1, Results in Increased Aluminum Sensitivity in Arabidopsis. PLANT PHYSIOLOGY[J]. 2010, 153(4): 1669-1677, https://www.webofscience.com/wos/woscc/full-record/WOS:000280566000019.
[33] Huang, ChaoFeng, Yamaji, Naoki, Nishimura, Minoru, Tajima, Shigeyuki, Ma, Jian Feng. A Rice Mutant Sensitive to Al Toxicity is Defective in the Specification of Root Outer Cell Layers. PLANT AND CELL PHYSIOLOGY[J]. 2009, 50(5): 976-985, https://www.webofscience.com/wos/woscc/full-record/WOS:000266117000007.
[34] Yamaji, Naoki, Huang, Chao Feng, Nagao, Sakiko, Yano, Masahiro, Sato, Yutaka, Nagamura, Yoshiaki, Ma, Jian Feng. A Zinc Finger Transcription Factor ART1 Regulates Multiple Genes Implicated in Aluminum Tolerance in Rice. PLANT CELL[J]. 2009, 21(10): 3339-3349, http://dx.doi.org/10.1105/tpc.109.070771.
[35] Huang, Chao Feng, Yamaji, Naoki, Mitani, Namiki, Yano, Masahiro, Nagamura, Yoshiaki, Ma, Jian Feng. A Bacterial-Type ABC Transporter Is Involved in Aluminum Tolerance in Rice. PLANT CELL[J]. 2009, 21(2): 655-667, http://dx.doi.org/10.1105/tpc.108.064543.
[36] Wang, Liping, Yin, Hengfu, Qian, Qian, Yang, Jun, Huang, Chaofeng, Hu, Xiaohe, Luo, Da. NECK LEAF 1, a GATA type transcription factor, modulates organogenesis by regulating the expression of multiple regulatory genes during reproductive development in rice. CELL RESEARCH[J]. 2009, 19(5): 598-611, http://www.corc.org.cn/handle/1471x/2396416.
[37] Ma, JF, Nagao, S, Huang, CF, Nishimura, M. Isolation and characterization of a rice mutant hypersensitive to Al. PLANT AND CELL PHYSIOLOGY[J]. 2005, 46(7): 1054-1061, https://www.webofscience.com/wos/woscc/full-record/WOS:000230757100004.

科研活动

1、植物抗铝毒机制的研究
铝在地壳中是最丰富的金属元素,约占8%。在中性或碱性土壤中,铝主要以不可溶的硅酸铝或氧化铝形式存在,对植物不会产生毒害。但是在酸性土壤中,部分三价铝离子(Al3+)被溶解出抑制植物根的生长,进而影响作物的生长发育,最终导致作物减产。因此,铝毒是作物在酸性土壤生产的主要限制因子,也是仅次于干旱的第二大非生物逆境,并且随着过度频繁地耕作和氮肥的过度使用土壤有进一步酸化的趋势,这使得铝毒问题变得日益严重。为了应对酸性土壤的铝毒害,植物进化了一系列的抗铝毒机制,其中以锌指转录因子STOP1/ART1为核心的表达调控是植物中保守的和关键的抗铝毒机制。本课题主要通过正向遗传筛选、蛋白互作筛选、磷酸化组学等手段解析STOP1/ART1的转录后调控机制及其上游铝毒感受和信号转导机制,并鉴定抗铝毒新基因,揭示植物抗铝毒新机制,为改良作物抗铝毒提供新思路和重要基因资源。

2、植物锰、镉运输与调控机制的研究
锰参与植物光合、酶氧化还原、脂类合成等过程,是植物必需的矿质营养元素,而重金属镉是对植物和人类都具有较大毒害的矿质元素。由于镉不是植物的必需元素,植物没有进化出专门运输镉的转运蛋白。研究表明,镉主要通过锰吸收途径进入植物体内。本课题组主要研究植物对锰的运输与调控机制,并利用对锰运输与调控机制的理解阻控作物对镉的积累,保障作物的食品安全。


科研项目
( 1 ) 植物抗铝毒转录因子STOP1/ART1蛋白降解机制的解析, 负责人, 国家任务, 2016-01--2019-12
( 2 ) 作物抗酸性土壤铝毒基因的克隆和功能解析, 负责人, 地方任务, 2015-07--2018-06
( 3 ) 大宗农作物低积累品种筛选与应用示范, 负责人, 国家任务, 2015-04--2019-12
( 4 ) 水稻抗铝毒新基因SAL3的克隆和功能解析, 负责人, 国家任务, 2019-01--2022-12
( 5 ) S-亚硝基化调控转录因子STOP1功能和植物抗铝毒的作用机制解析, 负责人, 国家任务, 2022-01--2025-12
( 6 ) 植物抗铝毒转录因子STOP1的SUMO化调控机制, 负责人, 地方任务, 2020-07--2023-06