基本信息
孔钒宇  男  硕导  中国科学院上海光学精密机械研究所
电子邮件: kfanyu123@siom.ac.cn
通信地址: 清河路390号
邮政编码:

招生信息

   
招生专业
080502-材料学
080503-材料加工工程
招生方向
衍射光学;光栅
激光损伤
薄膜

教育背景

2009-09--2014-06   中国科学院大学   工学博士

工作经历

   
工作简历
2014-07~现在, 中科院上海光机所, 助理研究员/副研究员

专利与奖励

   
专利成果
( 1 ) 54度~62度入射使用的宽谱脉宽压缩光栅, 专利授权, 2021, 第 3 作者, 专利号: CN111580205B

( 2 ) 1064纳米波段的非对称结构全介质反射式合束光栅, 专利授权, 2021, 第 4 作者, 专利号: CN112394436B

( 3 ) 涡旋光轨道角动量数的测量装置及其测量方法, 发明专利, 2021, 第 4 作者, 专利号: CN112880978A

( 4 ) 一种短波范围反射式体光栅的光栅结构写入方法, 发明专利, 2021, 第 3 作者, 专利号: CN112596139A

( 5 ) 利用宽光谱比值实现光栅掩膜实时显影监测的装置和监测方法, 专利授权, 2021, 第 4 作者, 专利号: CN111595555B

( 6 ) 一种基于光热折变玻璃的反射式体光栅制备方法, 专利授权, 2021, 第 2 作者, 专利号: CN110879433B

( 7 ) 光栅深刻蚀的方法, 发明专利, 2020, 第 4 作者, 专利号: CN111916330A

( 8 ) 高效主动换热光谱合束光栅集成化模块及其制备方法, 发明专利, 2020, 第 5 作者, 专利号: CN111854291A

( 9 ) 多块多通道复用体布拉格光栅级联角度偏转器, 专利授权, 2020, 第 4 作者, 专利号: CN108873316B

( 10 ) 用于1064纳米波段的全介质反射式光谱合束光栅, 发明专利, 2020, 第 4 作者, 专利号: CN111769425A

( 11 ) 集成化反射式光栅主动冷却装置, 发明专利, 2020, 第 5 作者, 专利号: CN111141096A

( 12 ) 高功率激光系统中反射光学元件的制备及其测温方法, 发明专利, 2020, 第 7 作者, 专利号: CN110736561A

( 13 ) 超大超重衬底表面光刻胶均匀涂覆的旋涂设备, 发明专利, 2020, 第 2 作者, 专利号: CN110673444A

( 14 ) 三硼酸锂晶体表面增透微结构及其制备方法, 发明专利, 2019, 第 1 作者, 专利号: CN110230096A

( 15 ) 基于等效温度的光学元件弱吸收测试装置及方法, 发明专利, 2019, 第 8 作者, 专利号: CN109900737A

( 16 ) 1064纳米偏振无关宽带高衍射效率双层反射型全介质光栅, 专利授权, 2019, 第 4 作者, 专利号: CN105891925B

( 17 ) 一种800纳米中心波长的金属介质膜宽带脉宽压缩光栅, 发明专利, 2018, 第 1 作者, 专利号: CN108732670A

( 18 ) 真空环境下光学元件损伤阈值的测量装置和测量方法, 发明专利, 2018, 第 2 作者, 专利号: CN106840610B

( 19 ) 宽带高衍射效率非对称形貌反射型光栅, 发明专利, 2017, 第 4 作者, 专利号: CN106772734A

( 20 ) 微波遥控镀膜挡板装置, 发明专利, 2014, 第 3 作者, 专利号: CN103726018A

( 21 ) 减反射玻璃的制备方法, 发明专利, 2012, 第 5 作者, 专利号: CN102491649A

出版信息

   
发表论文
[1] Teng, Zhaoquan, Sun, Yong, Kong, Fanyu, Jin, Yunxia, Liu, Youchen, Wang, Yonglu, Zhang, Yibin, Cao, Hongchao, Xu, Ziyuan, He, Hongbo, Shao, Jianda. Sub-wavelength microstructures on lithium triborate surface with high transmittance and laser-induced damage threshold at 1064 nm. OPTICS AND LASER TECHNOLOGY[J]. 2022, 145: http://dx.doi.org/10.1016/j.optlastec.2021.107487.
[2] Han, Yuxing, Jin, Yunxia, Kong, Fanyu, Wang, Yonglu, Zhang, Yibin, Cao, Hongchao, Cui, Yun, Shao, Jianda. TM polarization preferentially implemented in the next generation of high-intensity laser systems based on multilayer dielectric gratings. APPLIED PHYSICS LETTERS[J]. 2022, 120(11): [3] Han, Yuxing, Jin, Yunxia, Kong, Fanyu, Wang, Yonglu, Zhang, Yibin, Cao, Hongchao, Cui, Yun, Shao, Jianda. High-repetition-rate and multi-pulse ultrashort laser damage of gold-coated photoresist grating. APPLIED SURFACE SCIENCE[J]. 2022, 576: http://dx.doi.org/10.1016/j.apsusc.2021.151819.
[4] Xu, Jiao, Chen, Junming, Zhang, Dongping, Wang, Yonglu, Zhang, Yibin, Kong, Fanyu, Cao, Hongchao, Jin, Yunxia, Shao, Jianda. Accurate temperature measurement of a spectral beam combination grating based on VO2 film. APPLIED OPTICS[J]. 2020, 59(14): 4461-4465, https://www.webofscience.com/wos/woscc/full-record/WOS:000537850800034.
[5] Sun Yong, Kong Fanyu, Jin Yunxia, Wang Yonglu, Zhang Yibin, Cao Hongchao, He Hongbo, Chu J, Shao J. Design and Fabrication of Antireflective Surface Microstructures on Lithium Triborate. TENTH INTERNATIONAL CONFERENCE ON THIN FILM PHYSICS AND APPLICATIONS (TFPA 2019)null. 2019, 11064: [6] Chen, Peng, Jin, Yunxia, He, Dongbing, Chen, Junming, Xu, Jiao, Dai, Huifang, Zhao, Jingyin, Kong, Fanyu, He, Hongbo. Fabrication of high-precision reflective volume Bragg gratings. APPLIED OPTICS[J]. 2019, 58(10): 2500-2504, [7] Fanyu Kong. Study on the fabrication of high precision reflective volume Bragg gratings. applied optics. 2019, [8] Zou, Xi, Kong, Fanyu, Jin, Yunxia, Chen, Peng, Chen, Junming, Xu, Jiao, Wang, Yonglu, Zhang, Yibin, Shao, Jianda. Influence of nodular defect size on metal dielectric mixed gratings for ultra-short ultra-high intensity laser system. OPTICAL MATERIALS[J]. 2019, 91: 177-182, http://dx.doi.org/10.1016/j.optmat.2019.02.027.
[9] Xu, Jiao, Zou, Xi, Chen, Junming, Zhang, Yibi, Wang, Yonglu, Jin, Yunxia, Kong, Fanyu, Cao, Hongchao, Chen, Peng, Shao, Jianda. Metal dielectric gratings with high femtosecond laser damage threshold of twice as much as that of traditional gold gratings. OPTICS LETTERS[J]. 2019, 44(11): 2871-2874, https://www.webofscience.com/wos/woscc/full-record/WOS:000469838100066.
[10] 戴慧芳, 陈鹏, 赵靖寅, 孙勇, 徐姣, 孔钒宇, 晋云霞. 啁啾体布拉格光栅的脉冲响应特性. 光学学报[J]. 2019, 39(10): 60-66, http://lib.cqvip.com/Qikan/Article/Detail?id=7100291180.
[11] 邹溪, 晋云霞, 孔钒宇, 王勇禄, 张益彬, 邵建达. 多层介质膜脉宽压缩光栅清洗方法研究. 无机材料学报. 2019, 34(12): 1285-1289, http://lib.cqvip.com/Qikan/Article/Detail?id=7100594955.
[12] Xu, Jiao, Chen, Junming, Chen, Peng, Wang, Yonglu, Zhang, Yibin, Kong, Fanyu, Cao, Hongchao, Jin, Yunxia, Shao, Jianda. Continuous-wave laser damage mechanism of a spectral combining grating. APPLIED OPTICS[J]. 2019, 58(10): 2551-2555, [13] Zou Xi, Jin YunXia, Kong FanYu, Wang YongLu, Zhang YiBin, Shao JianDa. Cleaning Methods for Multilayer Dielectric Pulse Compression Gratings. JOURNAL OF INORGANIC MATERIALS[J]. 2019, 34(12): 1285-1289, [14] Xu Jiao, Chen Junming, Chen Peng, Wang Yonglu, Zhang Yinbin, Kong Fanyu, Cao Hongchao, Jin Yunxia, Shao Jianda, Chu J, Shao J. Performance of a spectral beam combining grating with YAG substrate. TENTH INTERNATIONAL CONFERENCE ON THIN FILM PHYSICS AND APPLICATIONS (TFPA 2019)null. 2019, 11064: [15] Huang, Haopeng, Wang, Leilei, Kong, Fanyu, Xia, Zhilin, Jin, Yunxia, Xu, Jiao, Chen, Junming, Cui, Yun, Shao, Jianda. Effects of substrate on the femtosecond laser-induced damage properties of gold films. OPTICAL MATERIALS[J]. 2018, 81: 115-121, http://dx.doi.org/10.1016/j.optmat.2018.05.013.
[16] Chen, Peng, Jin, Yunxia, He, Dongbing, Chen, Junming, Xu, Jiao, Zhao, Jingyin, Zhang, Yibin, Kong, Fanyu, He, Hongbo, Shao, Jianda. Design and fabrication of multiplexed volume Bragg gratings as angle amplifiers in high power beam scanning system. OPTICS EXPRESS[J]. 2018, 26(19): 25336-25346, https://www.webofscience.com/wos/woscc/full-record/WOS:000444705000088.
[17] Chen, Junming, Zhang, Yibing, Wang, Yonglu, Kong, Fanyu, Jin, Yunxia, Chen, Peng, Xu, Jiao, Sun, Shuhui, Shao, Jianda. Polarization-independent two-dimensional diffraction metal-dielectric grating. APPLIED PHYSICS LETTERS[J]. 2018, 113(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000440046600019.
[18] Chen, Peng, He, Dongbing, Jin, Yunxia, Chen, Junming, Zhao, Jingyin, Xu, Jiao, Zhang, Yibin, Kong, Fanyu, He, Hongbo. Method for precise evaluation of refractive index modulation amplitude inside the volume Bragg grating recorded in photo-thermo-refractive glass. OPTICS EXPRESS[J]. 2018, 26(1): 157-164, https://www.webofscience.com/wos/woscc/full-record/WOS:000419549600013.
[19] Xu, Jiao, Chen, Junming, Chen, Peng, Wang, Yonglu, Zhang, Yibin, Kong, Fanyu, Jin, Yunxia, Shao, Jianda. Study of the key factors affecting temperature of spectral-beam-combination grating. OPTICS EXPRESS[J]. 2018, 26(17): 21675-21684, https://www.webofscience.com/wos/woscc/full-record/WOS:000442136200025.
[20] Huang, Haopeng, Kong, Fanyu, Xia, Zhilin, Jin, Yunxia, Li, Linxin, Wang, Leilei, Chen, Junming, Cui, Yun, Shao, Jianda. Femtosecond-laser-induced damage initiation mechanism on metal multilayer dielectric gratings for pulse compression. OPTICAL MATERIALS[J]. 2018, 75: 727-732, http://dx.doi.org/10.1016/j.optmat.2017.11.030.
[21] 徐姣, 陈俊明, 陈鹏, 王勇禄, 张益彬, 孔钒宇, 晋云霞, 邵建达. 960线光谱合束光栅的热畸变分析. 光学学报[J]. 2018, 38(5): 0505002-1, http://lib.cqvip.com/Qikan/Article/Detail?id=675410131.
[22] Xu, Jiao, Chen, Junming, Chen, Peng, Wang, Yonglu, Zhang, Yibin, Kong, Fanyu, Jin, Yunxia, Shao, Jianda. Dependence of temperature and far-field beam quality on substrate thickness of a spectral beam combining grating with 13.4k W/cm(2) laser irradiation. APPLIED OPTICS[J]. 2018, 57(18): D165-D170, https://www.webofscience.com/wos/woscc/full-record/WOS:000435841800023.
[23] Chen, Junming, Huang, Haopeng, Zhang, Yibing, Wang, Yonglu, Kong, Fanyu, Wang, Yanzhi, Jin, Yunxia, Chen, Peng, Xu, Jiao, Shao, Jianda. Reducing electric-field-enhancement in metal-dielectric grating by designing grating with asymmetric ridge. SCIENTIFIC REPORTS[J]. 2018, 8(1): https://doaj.org/article/c8a1116df78046f3926e8a510b00ec87.
[24] Li, Linxin, Jin, Yunxia, Kong, Fanyu, Wang, Leilei, Chen, Junming, Shao, Jianda. Beam modulation due to thermal deformation of grating in a spectral beam combining system. APPLIED OPTICS[J]. 2017, 56(19): 5511-5519, https://www.webofscience.com/wos/woscc/full-record/WOS:000404745800051.
[25] Chen, Junming, Jin, Yunxia, Chen, Peng, Shan, Yao, Xu, Jiao, Kong, Fanyu, Shao, Jianda. Polarization-independent almost-perfect absorber controlled from narrowband to broadband. OPTICS EXPRESS[J]. 2017, 25(12): 13916-13922, https://www.webofscience.com/wos/woscc/full-record/WOS:000403942300099.
[26] Wang, Leilei, Kong, Fanyu, Xia, Zhilin, Jin, Yunxia, Huang, Haopeng, Li, Linxin, Chen, Junming, Cui, Yun, Shao, Jianda. Evaluation of femtosecond laser damage to gold pulse compression gratings fabricated by magnetron sputtering and e-beam evaporation. APPLIED OPTICS[J]. 2017, 56(11): 3087-3095, https://www.webofscience.com/wos/woscc/full-record/WOS:000399326300036.
[27] Chen, Junming, Zhang, Yibing, Wang, Yonglu, Kong, Fanyu, Huang, Haopeng, Wang, Yanzhi, Jin, Yunxia, Chen, Peng, Xu, Jiao, Shao, Jianda. Polarization-independent broadband beam combining grating with over 98% measured diffraction efficiency from 1023 to 1080 nm. OPTICS LETTERS[J]. 2017, 42(19): 4016-4019, https://www.webofscience.com/wos/woscc/full-record/WOS:000411904500075.
[28] Huang, Haopeng, Kong, Fanyu, Xia, Zhilin, Jin, Yunxia, Li, Linxin, Wang, Leilei, Chen, Junming, Zhang, Hong, Cui, Yun, Shao, Jianda. Ultrashort pulses-driven dynamics of blisters in Au-coated gratings. OPTICAL MATERIALS[J]. 2017, 72: 130-135, http://dx.doi.org/10.1016/j.optmat.2017.05.058.
[29] Kong, Fanyu, Huang, Haopeng, Wang, Leilei, Shao, Jianda, Jin, Yunxia, Xia, Zhilin, Chen, Junming, Li, Linxin. Femtosecond laser induced damage of pulse compression gratings. OPTICS AND LASER TECHNOLOGY[J]. 2017, 97: 339-345, http://dx.doi.org/10.1016/j.optlastec.2017.07.021.
[30] 张洪, 晋云霞, 孔钒宇, 黄昊鹏, 崔云, 胡国行, 李响潭, 葛雯娜, 叶邦角. Influence of Annealing on Interface Diffusion and Anti-Chemica-Cleaning Property of Metal-Dielectric Multilayer Films. 中国激光[J]. 2016, 43(10): 1003002-, http://ir.siom.ac.cn/handle/181231/28108.
[31] Kong, Fanyu, Jin, Yunxia, Huang, Haopeng, Zhang, Hong, Liu, Shijie, He, Hongbo. Laser-induced damage of multilayer dielectric gratings with picosecond laser pulses under vacuum and air. OPTICS AND LASER TECHNOLOGY[J]. 2015, 73: 39-43, http://dx.doi.org/10.1016/j.optlastec.2015.03.011.
[32] Wu JianBo, Jin YunXia, Guan HeYuan, Kong FanYu, Liu WenWen, Liu ShiJie, Yi Kui. Effect of Annealing Temperature on Metal/Dielectric Multilayers for Fabricating Broadband Pulse Compression Gratings. JOURNAL OF INORGANIC MATERIALS[J]. 2014, 29(10): 1087-1092, https://www.webofscience.com/wos/woscc/full-record/WOS:000344821700015.
[33] 孔钒宇. 高功率脉冲压缩光栅的激光损伤机制及其测试技术. 2014, http://ir.siom.ac.cn/handle/181231/15857.
[34] Guan, Heyuan, Jin, Yunxia, Liu, Shijie, Kong, Fanyu, Du, Yin, He, Kai, Yi, Kui, Shao, Jianda. Near-field optical properties of wide bandwidth metal multi-layer dielectric gratings for pulse compressor. APPLIED PHYSICS B-LASERS AND OPTICS[J]. 2014, 114(4): 557-565, https://www.webofscience.com/wos/woscc/full-record/WOS:000332852200015.
[35] 孔钒宇. 高功率脉冲压缩光栅的激光损伤破坏机制及其测试技术. 2014, [36] Kong, Fanyu, Jin, Yunxia, Guan, Heyuan, Liu, Shijie, Wu, Jianbo, Du, Ying, He, Hongbo. Influence of horizontal damage size of grating ridge on the optical properties of multilayer dielectric gratings. APPLIED OPTICS[J]. 2014, 53(22): 4859-4864, https://www.webofscience.com/wos/woscc/full-record/WOS:000340824800019.
[37] Guan, Heyuan, Chen, Hui, Wu, Jianbo, Jin, Yunxia, Kong, Fanyu, Liu, Shijie, Yi, Kui, Shao, Jianda. High-efficiency, broad-bandwidth metal/multilayerdielectric gratings. OPTICS LETTERS[J]. 2014, 39(1): 170-173, https://www.webofscience.com/wos/woscc/full-record/WOS:000329033400046.
[38] Wu JianBo, Jin YunXia, Guan HeYuan, Kong FanYu, Liu WenWen, Liu ShiJie, Yi Kui. Effect of Annealing Temperature on Metal/Dielectric Multilayers for Fabricating Broadband Pulse Compression Gratings. JOURNAL OF INORGANIC MATERIALS[J]. 2014, 29(10): 1087-1092, https://www.webofscience.com/wos/woscc/full-record/WOS:000344821700015.
[39] Kong, Fanyu, Chen, Shunli, Liu, Xiaofeng, He, Kai, Jin, Yunxia, Liu, Shijie, Guan, Heyuan, Du, Ying, He, Hongbo. Femtosecond laser damage of all-dielectric pulse compression gratings. LASER PHYSICS[J]. 2014, 24(10): https://www.webofscience.com/wos/woscc/full-record/WOS:000344763500048.
[40] Du, Ying, Zhu, Meiping, Jin, Yunxia, He, Hongbo, Kong, Fanyu, Guan, Heyuan, Zhang, Junchao. Broadband antireflective structures with hole for highly transparent glasses. OPTIK[J]. 2013, 124(19): 3799-3803, http://dx.doi.org/10.1016/j.ijleo.2012.11.032.
[41] Kong, Fanyu, Jin, Yunxia, Liu, Shijie, Chen, Shunli, Guan, Heyuan, He, Kai, Du, Ying, He, Hongbo. Femtosecond laser damage of broadband pulse compression gratings. CHINESE OPTICS LETTERS[J]. 2013, 11(10): https://www.webofscience.com/wos/woscc/full-record/WOS:000327321800019.
[42] He, Kai, Wang, Jianpeng, Hou, Yongqiang, Li, Xu, Guan, Heyuan, Kong, Fanyu, Liu, Shijie, Jin, Yunxia, Yi, Kui. High-spectral-resolution characterization of broadband high-efficiency reflection gratings. APPLIED OPTICS[J]. 2013, 52(4): 653-658, https://www.webofscience.com/wos/woscc/full-record/WOS:000314684600026.
[43] Kong, Fanyu, Chen, Shunli, Jin, Yunxia, Liu, Shijie, Guan, Heyuan, Du, Ying, He, Hongbo. Investigation of fs-laser induced damage on high reflection mirrors used for 800 nm broadband pulse compression gratings. OPTICS AND LASER TECHNOLOGY[J]. 2013, 54: 45-49, http://dx.doi.org/10.1016/j.optlastec.2013.04.031.
[44] 孔钒宇, 晋云霞, 刘世杰, 陈顺利, 关贺元, 何凯, 杜颖, 贺洪波. Femtosecond laser damage of broadband pulse compression gratings. 中国光学快报(英文版). 2013, 79-82, http://lib.cqvip.com/Qikan/Article/Detail?id=71887566504849514948484957.
[45] Guan, Heyuan, Jin, Yunxia, Liu, Shijie, Kong, Fanyu, Du, Ying, He, Kai, Yi, Kui, Shao, Jianda. Broadband trapeziform multilayer dielectric grating for femtosecond pulse compressor: design, fabrication, and analysis. LASER PHYSICS[J]. 2013, 23(11): https://www.webofscience.com/wos/woscc/full-record/WOS:000325915200010.
[46] Du, Ying, He, Hongbo, Jin, Yunxia, Kong, Fanyu, Guan, Heyuan, Yu, Zhenkun. Optical model of porous glasses using genetic algorithms. OPTIK[J]. 2013, 124(15): 2093-2096, http://dx.doi.org/10.1016/j.ijleo.2012.06.050.
[47] Guan, Heyuan, Jin, Yunxia, Liu, Shijie, Wang, Jianpeng, Kong, Fanyu, Du, Yin, Shao, Jianda. Optimization design of polarizing beam splitter based on metal-multilayer dielectric reflecting grating. OPTICS COMMUNICATIONS[J]. 2013, 287: 25-30, http://dx.doi.org/10.1016/j.optcom.2012.09.045.
[48] Du, Ying, Liu, Shijie, He, Hongbo, Jin, Yunxia, Kong, Fanyu, Guan, Heyuan. Laser-induced damage properties of antireflective porous glasses. OPTICS COMMUNICATIONS[J]. 2012, 285(24): 5512-5518, http://dx.doi.org/10.1016/j.optcom.2012.07.120.
[49] Du, Ying, He, Hongbo, Jin, Yunxia, Kong, Fanyu, Guan, Heyuan, Fan, Zhengxiu. Graded porous glasses for antireflective applications formed by chemical treatment. APPLIED SURFACE SCIENCE[J]. 2012, 258(17): 6431-6435, http://dx.doi.org/10.1016/j.apsusc.2012.03.055.

科研活动

   
科研项目
( 1 ) 提升熔石英透过率的表面随机结构研究, 负责人, 国家任务, 2016-01--2019-12
( 2 ) 衍射光学元件中试验证与关键技术攻关, 负责人, 国家任务, 2020-07--2021-06
( 3 ) 超低吸收体布拉格光栅研制, 负责人, 国家任务, 2020-06--2021-12